Solutions & Examples for Perl Programmers

Perl
Cookbook

(:)’REILI_\I® Tom Christiansen & Nathan Torkington

Perl/Programming

O’REILLY*

Perl Cookbook

Perl Cookbook is a comprehensive collection of problems, solutions, and practical
examples for anyone programming in Perl. The first edition of Perl Cookbook was pub-
lished in 1998 to universal acclaim. It quickly became known not only as one of the
best books on Perl, but also as one of the best programming books for any language.
With Perl Cookbook, a new type of programming book had been invented: not just a collection

of tips and tricks, but a book that taught the nuances of programming through real-life problems
and examples.

This second edition of Perl Cookbook has been expanded to cover not only new features in Perl
itself, but also new technologies that have emerged since the first edition. Two new chapters have
been added and many existing chapters have been expanded. In all, 80 new recipes have been
added, and more than 100 older recipes have been updated to include new modules or techniques.

As with the first edition of Perl Cookbook, this book covers data manipulation (strings, numbers,

dates, arrays, and hashes), file I/O, regular expressions, modules, references, objects, data structures,

signal processing, database processing, graphical applications, interprocess communication, security,

Internet programming, CGI, and LWP. In addition, this edition also includes:

e Coverage of Unicode character handling in Perl, particularly with respect to string manipulation,
regular expression handling, and file I/O

s A chapter devoted to programming in mod_perl, an Apache module that embeds Perl into the
Apache web server, vastly improving the speed of tasks that might otherwise be performed
using CGI

e New and updated recipes to cover modules that are now included with the Perl core distribution

* A new chapter on processing XML, the worldwide standard used for representing and exchanging
documents and information, independent of its final form

Perl Cookbook has been called the most useful book ever written on Perl. It teaches programming

in the most immediate way: by showing how things are done by the experts, and then explaining

why they work. Perl Cookbook isn’t a book about the Perl programming language, it's a book about
how to program in Perl.

www.oreilly.com

US $49.95 CAN $77.95
ISBN-10: 0-596-00313-7
ISBN-13: 978-0-596-00313-5

e

7805967003135

G

Perl Cookbook’

Other Perl resources from 0’Reilly

Related titles

Perl Books
Resource Center

O'REILLY*

perl.com

THE SOURCE FOR PERL

Conferences

O'REILLY N_ETWORK
Safari
Bookshelf.

Programming Perl Perl 6 Essentials

Learning Perl Learning Perl Objects,

CGI Programming with Perl References & Modules

Computer Science & Perl Mastering Regular
Programming Expressions

Web, Graphics & Perl/Tk Practical mod_perl

Games, Diversions & Perl Perl Pocket Reference
Culture Perl in a Nutshell

Programming Web Services Perl Graphics Programming
with Perl

perl.oreilly.com is a complete catalog of O’Reilly’s books on Perl

and related technologies, including sample chapters and code
examples.

Perl.com is the central web site for the Per] community. It is the
perfect starting place for finding out everything there is to know
about Perl.

O’Reilly & Associates brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

SECOND EDITION

Perl Cookbook

Tom Christiansen and Nathan Torkington

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Perl Cookbook, Second Edition
by Tom Christiansen and Nathan Torkington

Copyright © 2003, 1998 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information, con-
tact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Linda Mui

Production Editor: Genevieve d’Entremont
Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:
August 1998: First Edition.
August 2003: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The Cookbook series designations, Perl Cookbook, the image
of a bighorn sheep, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00313-7
ISBN13: 978-0-596-00313-5
(M] [12/06]

Foreword
Preface

1.

Strings

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22

Table of Contents

Accessing Substrings

Establishing a Default Value

Exchanging Values Without Using Temporary Variables
Converting Between Characters and Values

Using Named Unicode Characters

Processing a String One Character at a Time

Reversing a String by Word or Character

Treating Unicode Combined Characters as Single Characters
Canonicalizing Strings with Unicode Combined Characters
Treating a Unicode String as Octets

Expanding and Compressing Tabs

Expanding Variables in User Input

Controlling Case

Properly Capitalizing a Title or Headline

Interpolating Functions and Expressions Within Strings
Indenting Here Documents

Reformatting Paragraphs

Escaping Characters

Trimming Blanks from the Ends of a String

Parsing Comma-Separated Data

Constant Variables

Soundex Matching

1.23 Program: fixstyle 52

1.24 Program: psgrep 55
2. Numbers 59
2.1 Checking Whether a String Is a Valid Number 60
2.2 Rounding Floating-Point Numbers 63
2.3 Comparing Floating-Point Numbers 67
2.4 Operating on a Series of Integers 68
2.5 Working with Roman Numerals 70
2.6 Generating Random Numbers 71
2.7 Generating Repeatable Random Number Sequences 72
2.8 Making Numbers Even More Random 73
2.9 Generating Biased Random Numbers 74
2.10 Doing Trigonometry in Degrees, Not Radians 76
2.11 Calculating More Trigonometric Functions 77
2.12 Taking Logarithms 78
2.13 Multiplying Matrices 80
2.14 Using Complex Numbers 82
2.15 Converting Binary, Octal, and Hexadecimal Numbers 83
2.16 Putting Commas in Numbers 84
2.17 Printing Correct Plurals 85
2.18 Program: Calculating Prime Factors 87
3. DatesandTimes 92
3.1 Finding Today’s Date 92
3.2 Converting DMYHMS to Epoch Seconds 94
3.3 Converting Epoch Seconds to DMYHMS 95
3.4 Adding to or Subtracting from a Date 96
3.5 Difference of Two Dates 97
3.6 Day in a Week/Month/Year or Week Number 99
3.7 Parsing Dates and Times from Strings 100
3.8 Printing a Date 101
3.9 High-Resolution Timers 103
3.10 Short Sleeps 105
3.11 Program: hopdelta 106
4. ArMays ... 110
4.1 Specifying a List in Your Program 111
4.2 Printing a List with Commas 113

vi | Tableof Contents

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Changing Array Size

Implementing a Sparse Array

Iterating Over an Array

Iterating Over an Array by Reference

Extracting Unique Elements from a List

Finding Elements in One Array but Not Another
Computing Union, Intersection, or Difference of Unique Lists
Appending One Array to Another

Reversing an Array

Processing Multiple Elements of an Array

Finding the First List Element That Passes a Test

Finding All Elements in an Array Matching Certain Criteria
Sorting an Array Numerically

Sorting a List by Computable Field

Implementing a Circular List

Randomizing an Array

Program: words

Program: permute

5. Hashes

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Adding an Element to a Hash

Testing for the Presence of a Key in a Hash
Creating a Hash with Immutable Keys or Values
Deleting from a Hash

Traversing a Hash

Printing a Hash

Retrieving from a Hash in Insertion Order
Hashes with Multiple Values per Key

Inverting a Hash

Sorting a Hash

Merging Hashes

Finding Common or Different Keys in Two Hashes
Hashing References

Presizing a Hash

Finding the Most Common Anything
Representing Relationships Between Data
Program: dutree

115
117
119
122
124
126
128
130
131
132
134
136
138
139
143
144
144
146

152
153
155
156
157
160
161
162
164
166
167
169
170
171
172
173
174

Table of Contents

vii

6. PatternMatching 179

6.1 Copying and Substituting Simultaneously 185
6.2 Matching Letters 186
6.3 Matching Words 188
6.4 Commenting Regular Expressions 189
6.5 Finding the Nth Occurrence of a Match 192
6.6 Matching Within Multiple Lines 195
6.7 Reading Records with a Separator 198
6.8 Extracting a Range of Lines 199
6.9 Matching Shell Globs as Regular Expressions 202
6.10 Speeding Up Interpolated Matches 203
6.11 Testing for a Valid Pattern 205
6.12 Honoring Locale Settings in Regular Expressions 207
6.13 Approximate Matching 209
6.14 Matching from Where the Last Pattern Left Off 210
6.15 Greedy and Non-Greedy Matches 212
6.16 Detecting Doubled Words 215
6.17 Matching Nested Patterns 218
6.18 Expressing AND, OR, and NOT in a Single Pattern 220
6.19 Matching a Valid Mail Address 224
6.20 Matching Abbreviations 226
6.21 Program: urlify 228
6.22 Program: tcgrep 229
6.23 Regular Expression Grab Bag 235
7. FileAccess 239
7.1 Opening a File 247
7.2 Opening Files with Unusual Filenames 251
7.3 Expanding Tildes in Filenames 253
7.4 Making Perl Report Filenames in Error Messages 254
7.5 Storing Filehandles into Variables 255
7.6 Writing a Subroutine That Takes Filehandles as Built-ins Do 258
7.7 Caching Open Output Filehandles 259
7.8 Printing to Many Filehandles Simultaneously 260
7.9 Opening and Closing File Descriptors by Number 262
7.10 Copying Filehandles 263
7.11 Creating Temporary Files 265
7.12 Storing a File Inside Your Program Text 266
7.13 Storing Multiple Files in the DATA Area 268

viii | Table of Contents

7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25

Writing a Unix-Style Filter Program

Modifying a File in Place with a Temporary File
Modifying a File in Place with the -i Switch
Modifying a File in Place Without a Temporary File
Locking a File

Flushing Output

Doing Non-Blocking I/0

Determining the Number of Unread Bytes
Reading from Many Filehandles Without Blocking
Reading an Entire Line Without Blocking
Program: netlock

Program: lockarea

8. FileContents

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25

Reading Lines with Continuation Characters
Counting Lines (or Paragraphs or Records) in a File
Processing Every Word in a File

Reading a File Backward by Line or Paragraph
Trailing a Growing File

Picking a Random Line from a File
Randomizing All Lines

Reading a Particular Line in a File

Processing Variable-Length Text Fields
Removing the Last Line of a File

Processing Binary Files

Using Random-Access I/O

Updating a Random-Access File

Reading a String from a Binary File

Reading Fixed-Length Records

Reading Configuration Files

Testing a File for Trustworthiness

Treating a File as an Array

Setting the Default I/O Layers

Reading or Writing Unicode from a Filehandle
Converting Microsoft Text Files into Unicode
Comparing the Contents of Two Files
Pretending a String Is a File

Program: tailwtmp

Program: tctee

270
274
276
277
279
281
284
285
287
289
291
294

306
307
309
310
312
314
315
316
318
319
320
321
322
324
325
326
329
331
333
333
336
338
339
340
341

Table of Contents

9. Directories

10. Subroutines

8.26
8.27

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18

Program: laston
Program: Flat File Indexes

Getting and Setting Timestamps

Deleting a File

Copying or Moving a File

Recognizing Two Names for the Same File
Processing All Files in a Directory

Globbing, or Getting a List of Filenames Matching a Pattern

Processing All Files in a Directory Recursively
Removing a Directory and Its Contents
Renaming Files

Splitting a Filename into Its Component Parts

Working with Symbolic File Permissions Instead of Octal Values

Program: symirror

Program: Ist

Accessing Subroutine Arguments

Making Variables Private to a Function
Creating Persistent Private Variables
Determining Current Function Name
Passing Arrays and Hashes by Reference
Detecting Return Context

Passing by Named Parameter

Skipping Selected Return Values
Returning More Than One Array or Hash
Returning Failure

Prototyping Functions

Handling Exceptions

Saving Global Values

Redefining a Function

Trapping Undefined Function Calls with AUTOLOAD
Nesting Subroutines

Writing a Switch Statement

Program: Sorting Your Mail

342
343

351
353
354
355
356
358
359
362
363
365
367
369
370

374
376
378
379
381
382
383
385
386
387
388
391
393
397
399
400
401
404

X

Table of Contents

11.

12.

Referencesand Records

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17

Taking References to Arrays

Making Hashes of Arrays

Taking References to Hashes

Taking References to Functions

Taking References to Scalars

Creating Arrays of Scalar References

Using Closures Instead of Objects

Creating References to Methods

Constructing Records

Reading and Writing Hash Records to Text Files
Printing Data Structures

Copying Data Structures

Storing Data Structures to Disk

Transparently Persistent Data Structures

Coping with Circular Data Structures Using Weak References
Program: Outlines

Program: Binary Trees

Packages, Libraries,and Modules

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18

Defining a Module’s Interface

Trapping Errors in require or use

Delaying use Until Runtime

Making Variables Private to a Module
Making Functions Private to a Module
Determining the Caller’s Package

Automating Module Cleanup

Keeping Your Own Module Directory
Preparing a Module for Distribution

Speeding Module Loading with SelfLoader
Speeding Up Module Loading with Autoloader
Overriding Built-in Functions

Overriding a Built-in Function in All Packages
Reporting Errors and Warnings Like Built-ins
Customizing Warnings

Referring to Packages Indirectly

Using h2ph to Translate C #include Files
Using h2xs to Make a Module with C Code

413
415
416
417
420
421
423
424
425
428
429
431
432
434
435
438
441

449
451
453
455
457
459
461
463
465
467
468
469
471
473
475
479
480
483

Table of Contents

| xi

13.

14.

12.19 Writing Extensions in C with Inline::C

12.20 Documenting Your Module with Pod

12.21 Building and Installing a CPAN Module

12.22 Example: Module Template

12.23 Program: Finding Versions and Descriptions of Installed Modules

Classes, Objects,and Ties
13.1 Constructing an Object
13.2 Destroying an Object
13.3 Managing Instance Data
13.4 Managing Class Data
13.5 Using Classes as Structs
13.6 Cloning Constructors
13.7 Copy Constructors
13.8 Invoking Methods Indirectly
13.9 Determining Subclass Membership
13.10 Writing an Inheritable Class
13.11 Accessing Overridden Methods
13.12 Generating Attribute Methods Using AUTOLOAD
13.13 Coping with Circular Data Structures Using Objects
13.14 Overloading Operators
13.15 Creating Magic Variables with tie

Database Access
14.1 Making and Using a DBM File
14.2 Emptying a DBM File
14.3 Converting Between DBM Files
14.4 Merging DBM Files
14.5 Sorting Large DBM Files
14.6 Storing Complex Data in a DBM File
14.7 Persistent Data
14.8 Saving Query Results to Excel or CSV
14.9 Executing an SQL Command Using DBI
14.10 Escaping Quotes
14.11 Dealing with Database Errors
14.12 Repeating Queries Efficiently
14.13 Building Queries Programmatically
14.14 Finding the Number of Rows Returned by a Query
14.15 Using Transactions

486
487
489
492
493

506
508
510
513
515
519
520
522
524
525
527
529
532
535
540

550
552
553
555
556
558
559
561
562
565
566
568
570
571
572

Xii

Table of Contents

14.16
14.17
14.18
14.19

Viewing Data One Page at a Time

Querying a CSV File with SQL

Using SQL Without a Database Server
Program: ggh—Grep Netscape Global History

15. Interactivity

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21
15.22
15.23

Parsing Program Arguments

Testing Whether a Program Is Running Interactively
Clearing the Screen

Determining Terminal or Window Size
Changing Text Color

Reading Single Characters from the Keyboard
Ringing the Terminal Bell

Using POSIX termios

Checking for Waiting Input

Reading Passwords

Editing Input

Managing the Screen

Controlling Another Program with Expect
Creating Menus with Tk

Creating Dialog Boxes with Tk

Responding to Tk Resize Events

Removing the DOS Shell Window with Windows Perl/Tk
Graphing Data

Thumbnailing Images

Adding Text to an Image

Program: Small termcap Program

Program: tkshufflepod

Program: graphbox

16. Process Management and Communication

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Gathering Output from a Program

Running Another Program

Replacing the Current Program with a Different One
Reading or Writing to Another Program

Filtering Your Own Output

Preprocessing Input

Reading STDERR from a Program

Controlling Input and Output of Another Program

574
576
577
579

585
587
588
589
590
592
593
595
597
597
599
600
603
605
607
610
612
613
614
615
616
618
620

625
626
629
630
632
634
635
638

Table of Contents

| xiii

16.9 Controlling the Input, Output, and Error of Another Program 639

16.10 Communicating Between Related Processes 641
16.11 Making a Process Look Like a File with Named Pipes 647
16.12 Sharing Variables in Different Processes 650
16.13 Listing Available Signals 652
16.14 Sending a Signal 653
16.15 Installing a Signal Handler 654
16.16 Temporarily Overriding a Signal Handler 655
16.17 Writing a Signal Handler 656
16.18 Catching Ctrl-C 659
16.19 Avoiding Zombie Processes 660
16.20 Blocking Signals 663
16.21 Timing Out an Operation 664
16.22 Turning Signals into Fatal Errors 665
16.23 Program: sigrand 666
17. Sockets 672
17.1 Writing a TCP Client 674
17.2 Writing a TCP Server 676
17.3 Communicating over TCP 679
17.4 Setting Up a UDP Client 682
17.5 Setting Up a UDP Server 684
17.6 Using Unix Domain Sockets 686
17.7 Identifying the Other End of a Socket 688
17.8 Finding Your Own Name and Address 689
17.9 Closing a Socket After Forking 690
17.10 Writing Bidirectional Clients 692
17.11 Forking Servers 694
17.12 Pre-Forking Servers 695
17.13 Non-Forking Servers 698
17.14 Multitasking Server with Threads 701
17.15 Writing a Multitasking Server with POE 703
17.16 Writing a Multihomed Server 705
17.17 Making a Daemon Server 706
17.18 Restarting a Server on Demand 708
17.19 Managing Multiple Streams of Input 710
17.20 Program: backsniff 713
17.21 Program: fwdport 714

xiv | Table of Contents

18. Internet Services

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
18.16

Simple DNS Lookups

Being an FTP Client

Sending Mail

Reading and Posting Usenet News Messages
Reading Mail with POP3
Simulating Telnet from a Program
Pinging a Machine

Accessing an LDAP Server
Sending Attachments in Mail
Extracting Attachments from Mail
Writing an XML-RPC Server
Writing an XML-RPC Client
Writing a SOAP Server

Writing a SOAP Client

Program: rfrm

Program: expn and vrfy

19. CGIProgramming i,

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13

Writing a CGI Script

Redirecting Error Messages

Fixing a 500 Server Error

Writing a Safe CGI Program

Executing Commands Without Shell Escapes
Formatting Lists and Tables with HTML Shortcuts
Redirecting to a Different Location
Debugging the Raw HTTP Exchange
Managing Cookies

Creating Sticky Widgets

Writing a Multiscreen CGI Script

Saving a Form to a File or Mail Pipe
Program: chemiserie

20. Web Automation

20.1
20.2
20.3
20.4
20.5

Fetching a URL from a Perl Script
Automating Form Submission
Extracting URLs

Converting ASCII to HTML
Converting HTML to ASCII

721
724
727
730
732
734
736
738
741
744
746
748
749
750
751
753

760
762
763
767
770
773
775
777
779
781
783
785
787

793
796
797
800
801

Table of Contents

XV

20.6

20.7

20.8

20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21

21. mod_perl

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17

Extracting or Removing HTML Tags
Finding Stale Links

Finding Fresh Links

Using Templates to Generate HTML
Mirroring Web Pages

Creating a Robot

Parsing a Web Server Log File
Processing Server Logs

Using Cookies

Fetching Password-Protected Pages
Fetching https:// Web Pages
Resuming an HTTP GET

Parsing HTML

Extracting Table Data

Program: htmlsub

Program: hrefsub

Authenticating

Setting Cookies

Accessing Cookie Values

Redirecting the Browser

Interrogating Headers

Accessing Form Parameters

Receiving Uploaded Files

Speeding Up Database Access

Customizing Apache’s Logging
Transparently Storing Information in URLs
Communicating Between mod_perl and PHP
Migrating from CGI to mod_perl

Sharing Information Between Handlers
Reloading Changed Modules
Benchmarking a mod_perl Application
Templating with HTML::Mason
Templating with Template Toolkit

Parsing XML into Data Structures
Parsing XML into a DOM Tree

802
804
805
807
810
811
812
813
816
817
818
819
820
823
825
827

834
835
837
838
838
839
840
842
843
845
846
847
848
849
850
852
856

871
874

xvi | Table of Contents

22.3 Parsing XML into SAX Events
22.4 Making Simple Changes to Elements or Text
22.5 Validating XML
22.6 Finding Elements and Text Within an XML Document
22.7 Processing XML Stylesheet Transformations
22.8 Processing Files Larger Than Available Memory
22.9 Reading and Writing RSS Files
22.10 Writing XML

876
879
882
885
887
890
891
895

Table of Contents

Xvii

Foreword

They say that it’s easy to get trapped by a metaphor. But some metaphors are so
magnificent that you don’t mind getting trapped in them. Perhaps the cooking meta-
phor is one such, at least in this case. The only problem I have with it is a personal
one—I feel a bit like Betty Crocker’s mother. The work in question is so monumen-
tal that anything I could say here would be either redundant or irrelevant.

However, that never stopped me before.

Cooking is perhaps the humblest of the arts; but to me humility is a strength, not a
weakness. Great artists have always had to serve their artistic medium—great cooks
just do so literally. And the more humble the medium, the more humble the artist
must be in order to lift the medium beyond the mundane. Food and language are
both humble media, consisting as they do of an overwhelming profusion of seem-
ingly unrelated and unruly ingredients. And yet, in the hands of someone with a bit
of creativity and discipline, things like potatoes, pasta, and Perl are the basis of works
of art that “hit the spot” in a most satisfying way, not merely getting the job done,
but doing so in a way that makes your journey through life a little more pleasant.

Cooking is also one of the oldest of the arts. Some modern artists would have you
believe that so-called ephemeral art is a recent invention, but cooking has always
been an ephemeral art. We can try to preserve our art, make it last a little longer, but
even the food we bury with our pharoahs gets dug up eventually. So too, much of
our Perl programming is ephemeral. This aspect of Perl cuisine has been much
maligned. You can call it quick-and-dirty if you like, but there are billions of dollars
out there riding on the supposition that fast food is not necessarily dirty food. (We
hope.)

Easy things should be easy, and hard things should be possible. For every fast-food
recipe, there are countless slow-food recipes. One of the advantages of living in Cali-
fornia is that I have ready access to almost every national cuisine ever invented. But
even within a given culture, There’s More Than One Way To Do It. It’s said in Rus-
sia that there are more recipes for borscht than there are cooks, and I believe it. My

Xix

mom’s recipe doesn’t even have any beets in it! But that’s okay, and it’s more than
okay. Borscht is a cultural differentiator, and different cultures are interesting, and
educational, and useful, and exciting.

So you won’t always find Tom and Nat doing things in this book the way I would do
them. Sometimes they don’t even do things the same way as each other. That’s
okay—again, this is a strength, not a weakness. I have to confess that I learned quite
a few things I didn’t know before I read this book. What’s more, I'm quite confident
that I still don’t know it all. And I hope I don’t any time soon. I often talk about Perl
culture as if it were a single, static entity, but there are in fact many healthy Perl sub-
cultures, not to mention sub-subcultures and supercultures and circumcultures in
every conceivable combination, all inheriting attributes and methods from each
other. It can get confusing. Hey, I'm confused most of the time.

So the essence of a cookbook like this is not to cook for you (it can’t), or even to
teach you how to cook (though it helps), but rather to pass on various bits of culture
that have been found useful, and perhaps to filter out other bits of “culture” that
grew in the refrigerator when no one was looking. You in turn will pass on some of
these ideas to other people, filtering them through your own experiences and tastes,
your creativity and discipline. You’ll come up with your own recipes to pass to your
children. Just don’t be surprised when they in turn cook up some recipes of their
own, and ask you what you think. Try not to make a face.

I commend to you these recipes, over which I've made very few faces.

Larry Wall
June, 1998

xx | Foreword

Preface

The investment group eyed the entrepreneur with caution, their expressions flickering
from scepticism to intrigue and back again.

“Your bold plan holds promise,” their spokesman conceded. “But it is costly and
entirely speculative. Our mathematicians mistrust your figures. Why should we
entrust our money into your hands? What do you know that we do not?”

“For one thing,” he replied, “I know how to balance an egg on its point without out-
side support. Do you?” And with that, the entrepreneur reached into his satchel and
delicately withdrew a fresh hen’s egg. He handed over the egg to the financial tycoons,
who passed it amongst themselves trying to carry out the simple task. At last they gave
up. In exasperation they declared, “What you ask is impossible! No man can balance
an egg on its point.”

So the entrepreneur took back the egg from the annoyed businessmen and placed it
upon the fine oak table, holding it so that its point faced down. Lightly but firmly, he
pushed down on the egg with just enough force to crush in its bottom about half an
inch. When he took his hand away, the egg stood there on its own, somewhat messy,
but definitely balanced. “Was that impossible?” he asked.

“It’s just a trick,” cried the businessmen. “Once you know how, anyone can do it.”

“True enough,” came the retort. “But the same can be said for anything. Before you
know how, it seems an impossibility. Once the way is revealed, it’s so simple that you
wonder why you never thought of it that way before. Let me show you that easy way,
so others may easily follow. Will you trust me?”

Eventually convinced that this entrepreneur might possibly have something to show
them, the skeptical venture capitalists funded his project. From the tiny Andalusian
port of Palos de Moguer set forth the Nifia, the Pinta, and the Santa Maria, led by an
entrepreneur with a slightly broken egg and his own ideas: Christopher Columbus.

Many have since followed.

Approaching a programming problem can be like balancing Columbus’s egg. If no
one shows you how, you may sit forever perplexed, watching the egg—and your pro-
gram—fall over again and again, no closer to the Indies than when you began. This is
especially true in a language as idiomatic as Perl.

Xxi

This book isn’t meant to be a complete reference book for Perl. Keeping a copy of
Programming Perl handy will let you look up exact definitions of operators, key-
words, functions, pragmata, or modules. Alternatively, every Perl installation comes
with a voluminous collection of searchable, online reference materials. If those aren’t
where you can easily get at them, see your system administrator if you have one, or
consult the documentation section at http://www.perl.com.

Neither is this book meant to be a bare-bones introduction for programmers who
have never seen Perl before. That's what Learning Perl, a kinder and gentler intro-
duction to Perl, is designed for. (If you’re on a Microsoft system, you might prefer
the Learning Perl for Win32 Systems version.)

Instead, this is a book for learning more Perl. Neither a reference book nor a tutorial
book, Perl Cookbook serves as a companion book to both. It’s for people who
already know the basics but are wondering how to mix all those ingredients together
into a complete program. Spread across 22 chapters and more than 400 focused
topic areas affectionately called recipes, this task-oriented book contains thousands
of solutions to everyday challenges encountered by novice and journeyman alike.

We tried hard to make this book useful for both random and sequential access. Each
recipe is self-contained, but has a list of references at the end should you need fur-
ther information on the topic. We’ve tried to put the simpler, more common recipes
toward the front of each chapter and the simpler chapters toward the front of the
book. Perl novices should find that these recipes about Perl’s basic data types and
operators are just what they’re looking for. We gradually work our way through topic
areas and solutions more geared toward the journeyman Perl programmer. Now and
then we include material that should inspire even the master Perl programmer.

Each chapter begins with an overview of that chapter’s topic. This introduction is
followed by the main body of each chapter, its recipes. In the spirit of the Perl slogan
of TMTOWTDI, There’s more than one way to do it, most recipes show several dif-
ferent techniques for solving the same or closely related problems. These recipes
range from short-but-sweet solutions to in-depth mini-tutorials. Where more than
one technique is given, we often show costs and benefits of each approach.

As with a traditional cookbook, we expect you to access this book more or less at
random. When you want to learn how to do something, you’ll look up its recipe.
Even if the exact solutions presented don’t fit your problem exactly, they’ll give you
ideas about possible approaches.

Each chapter concludes with one or more complete programs. Although some reci-
pes already include small programs, these longer applications highlight the chapter’s
principal focus and combine techniques from other chapters, just as any real-world
program would. All are useful, and many are used on a daily basis. Some even helped
us put this book together.

xxii | Preface

What'’s in This Book

Spread over five chapters, the first portion of the book addresses Perl’s basic data
types. Chapter 1, Strings, covers matters like accessing substrings, expanding func-
tion calls in strings, and parsing comma-separated data; it also covers Unicode
strings. Chapter 2, Numbers, tackles oddities of floating-point representation, plac-
ing commas in numbers, and pseudo-random numbers. Chapter 3, Dates and Times,
demonstrates conversions between numeric and string date formats and using tim-
ers. Chapter 4, Arrays, covers everything relating to list and array manipulation,
including finding unique elements in a list, efficiently sorting lists, and randomizing
them. Chapter 5, Hashes, concludes the basics with a demonstration of the most use-
ful data type, the associative array. The chapter shows how to access a hash in inser-
tion order, how to sort a hash by value, how to have multiple values per key, and
how to have an immutable hash.

Chapter 6, Pattern Matching, includes recipes for converting a shell wildcard into a
pattern, matching letters or words, matching multiple lines, avoiding greediness,
matching nested or recursive patterns, and matching strings that are close to but not
exactly what you’re looking for. Although this chapter is one of the longest in the
book, it could easily have been longer still—every chapter contains uses of regular
expressions. It’s part of what makes Perl Perl.

The next three chapters cover the filesystem. Chapter 7, File Access, shows opening
files, locking them for concurrent access, modifying them in place, and storing file-
handles in variables. Chapter 8, File Contents, discusses storing filehandles in vari-
ables, managing temporary files, watching the end of a growing file, reading a
particular line from a file, handling alternative character encodings like Unicode and
Microsoft character sets, and random access binary I/O. Finally, in Chapter 9, Direc-
tories, we show techniques to copy, move, or delete a file, manipulate a file’s times-
tamps, and recursively process all files in a directory.

Chapters 10 through 13 focus on making your program flexible and powerful.
Chapter 10, Subroutines, includes recipes on creating persistent local variables, pass-
ing parameters by reference, calling functions indirectly, crafting a switch statement,
and handling exceptions. Chapter 11, References and Records, is about data struc-
tures; basic manipulation of references to data and functions are demonstrated. Later
recipes show how to create elaborate data structures and how to save and restore
these structures from permanent storage. Chapter 12, Packages, Libraries, and Mod-
ules, concerns breaking up your program into separate files; we discuss how to make
variables and functions private to a module, customize warnings for modules, replace
built-ins, trap errors loading missing modules, and use the h2ph and h2xs tools to
interact with C and C++ code. Lastly, Chapter 13, Classes, Objects, and Ties, covers
the fundamentals of building your own object-based module to create user-defined
types, complete with constructors, destructors, and inheritance. Other recipes show
examples of circular data structures, operator overloading, and tied data types.

Preface | xxiii

The next two chapters are about interfaces: one to databases, the other to users.
Chapter 14, Database Access, includes techniques for manipulating DBM files and
querying and updating databases with SQL and the DBI module. Chapter 15, Inter-
activity, covers topics such as clearing the screen, processing command-line switches,
single-character input, moving the cursor using termcap and curses, thumbnailing
images, and graphing data.

The last portion of the book is devoted to interacting with other programs and ser-
vices. Chapter 16, Process Management and Communication, is about running other
programs and collecting their output, handling zombie processes, named pipes, sig-
nal management, and sharing variables between running programs. Chapter 17,
Sockets, shows how to establish stream connections or use datagrams to create low-
level networking applications for client-server programming. Chapter 18, Internet
Services, is about higher-level protocols such as mail, FTP, Usenet news, XML-RPC,
and SOAP. Chapter 19, CGI Programming, contains recipes for processing web
forms, trapping their errors, avoiding shell escapes for security, managing cookies,
shopping cart techniques, and saving forms to files or pipes. Chapter 20, Web Auto-
mation, covers non-interactive uses of the Web, such as fetching web pages, auto-
mating form submissions in a script, extracting URLs from a web page, removing
HTML tags, finding fresh or stale links, and parsing HTML. Chapter 21, mod_perl,
introduces mod_perl, the Perl interpreter embedded in Apache. It covers fetching
form parameters, issuing redirections, customizing Apache’s logging, handling
authentication, and advanced templating with Mason and the Template Toolkit.
Finally, Chapter 22, XML is about the ubiquitous data format XML and includes rec-
ipes such as validating XML, parsing XML into events and trees, and transforming
XML into other formats.

What'’s New in This Edition

The book you’re holding is thicker than its previous edition of five years ago—about
200 pages thicker. New material is spread across more than 80 entirely new recipes
plus over 100 existing recipes that were substantially updated since the first edition.
You’ll also find two new chapters: one on mod_perl, Perl’s interface to the popular
Apache web server; the other on XML, an increasingly important standard for
exchanging structured data.

Growth in this book reflects growth in Perl itself, from Version 5.004 in the first edi-
tion to v5.8.1 in this one. Syntactic changes to the core language are nevertheless
comparatively few. Some include the spiffy our keyword to replace the crufty use vars
construct for declaring global variables, fancier forms of open to disambiguate filena-
mes with strange characters in them, and automatic allocation of anonymous filehan-
dles into undefined scalar variables. We’ve updated our solutions and code examples
to reflect these changes where it made sense to make use of the new features.

xxiv | Preface

Several of Perl’s major subsystems have been completely overhauled for improved
functionality, stability, and portability. Some of these are relatively isolated, like the
subsystems for threading (see Recipe 17.14) and for safe signals (see Recipe 16.17).
Their applications are usually confined to systems programming.

More sweeping are the changes to Perl and to this book that stem from integrated
support for Unicode characters. The areas most profoundly affected are strings (now
with multibyte characters) and I/O (now with stackable encoding layers), so Chap-
ters 1 and 8 include new introductory material to orient you to these sometimes con-
fusing topics. These chapters also provide the bulk of recipes dealing with those
specific topics, but this fundamental shift touches many more recipes throughout the
book.

Another growth area for this book and Perl has been the welcome proliferation of
many highly used and highly useful modules now released standard with the Perl
core. Previously, these modules had to be separately located, downloaded, config-
ured, built, tested, and installed. Now that they’re included in the standard distribu-
tion, that’s all taken care of when installing Perl itself.

Some new core modules are really pragmas that alter Perl’s compilation or runtime
environment, as demonstrated in Recipes like 1.21 (“Constant Variables”), 12.3
(“Delaying use Until Runtime”), and 12.15 (“Customizing Warnings”). Some are
programmer tools to aid code development and debugging, like modules shown in
Recipes 11.11 (“Printing Data Structures”), 11.13 (“Storing Data Structures to
Disk”), 11.15 (“Coping with Circular Data Structures Using Weak References”), and
22.2 (“Parsing XML into a DOM Tree”). Others augment basic operations available
on core data types, like those shown in Recipes 2.1 (“Checking Whether a String Is
a Valid Number”), 4.13 (“Finding the First List Element That Passes a Test”), 4.18
(“Randomizing an Array”), 5.3 (“Creating a Hash with Immutable Keys or Values™),
8.7 (“Randomizing All Lines”), and 11.15 (“Coping with Circular Data Structures
Using Weak References”). Finally, the networking modules have at last made their
way into the core distribution, as seen throughout Chapter 18. We’ve probably not
seen the last of this inward migration of modules.

Platform Notes

This book was developed using Perl release v5.8.1. That means major release 5,
minor release 8, and patch level 1. We tested most programs and examples under
BSD, Linux, and SunOS, but that doesn’t mean they’ll work only on those systems.
Perl was designed for platform independence. When you use Perl as a general-pur-
pose programming language, employing basic operations like variables, patterns,
subroutines, and high-level I/O, your program should work the same everywhere
that Perl runs—which is just about everywhere. The first two-thirds of this book uses
Perl for general-purpose programming.

Preface | xxv

Perl was originally conceived as a high-level, cross-platform language for systems
programming. Although it has long since expanded beyond its original domain, Perl
continues to be heavily used for systems programming, both on its native Unix sys-
tems and elsewhere. Most recipes in Chapters 14 through 18 deal with classic sys-
tems programming. For maximum portability in this area, we’ve mainly focused on
open systems as defined by the Portable Operating System Interface (POSIX), which
includes nearly every form of Unix and numerous other systems as well. Most reci-
pes should run with little or no modification on any POSIX system.

You can still use Perl for systems programming work even on non-POSIX systems by
using vendor-specific modules, but these are not covered in this book. That’s
because they’re not portable—and to be perfectly forward, because we have no such
systems at our disposal. Consult the documentation that came with your port of Perl
for any proprietary modules that may have been included. The perlport(1) manpage
is a good start; its SEE ALSO section points to per-platform documentation, such as
perlmacos(1) and perlvms(1).

But don’t worry. Many recipes for systems programming should work on non-POSIX
systems as well, especially those dealing with databases, networking, and web inter-
action. That’s because the modules used for those areas hide platform dependencies.
The principal exception is those few recipes and programs that rely upon multitask-
ing constructs, notably the powerful fork function, standard on POSIX systems, but
seldom on others. Mac OS X now supports fork natively, however, and even on
Windows systems Perl now emulates that syscall remarkably well.

When we needed structured files, we picked the convenient Unix /etc/passwd data-
base; when we needed a text file to read, we picked /etc/motd; and when we needed a
program to produce output, we picked who(1). These were merely chosen to illus-
trate the principles—the principles work whether or not your system has these files
and programs.

Other Books

If you'd like to learn more about Perl, here are some related publications that we
(somewhat sheepishly) recommend:

Programming Perl, by Larry Wall, Tom Christiansen, and Jon Orwant; O’Reilly &
Associates (Third Edition, 2000). This book is indispensable for every Perl pro-
grammer. Coauthored by Perl’s creator, this classic reference is the authoritative
guide to Perl’s syntax, functions, modules, references, invocation options, and
much more.

Mastering Algorithms with Perl, by Jon Orwant, Jarkko Hietaniemi, and John Mac-
donald; O’Reilly & Associates (2000). All the useful techniques from a CS algo-
rithms course, but without the painful proofs. This book covers fundamental
and useful algorithms in the fields of graphs, text, sets, and more.

xxvi | Preface

Mastering Regular Expressions, by Jeffrey Friedl; O’Reilly & Associates (Second Edi-
tion, 2002). This book is dedicated to explaining regular expressions from a
practical perspective. It not only covers general regular expressions and Perl pat-
terns well, it also compares and contrasts these with those used in other popular
languages.

Object Oriented Perl, by Damian Conway; Manning (1999). For beginning as well as
advanced OO programmers, this book explains common and esoteric tech-
niques for writing powerful object systems in Perl.

Learning Perl, by Randal Schwartz and Tom Phoenix; O’Reilly & Associates (Third
Edition, 2001). A tutorial introduction to Perl for folks who are already program-
mers and who are interested in learning Perl from scratch. It’s a good starting
point if this book is over your head. Erik Olson refurbished this book for Win-
dows systems, called Learning Perl for Win32 Systems.

Programming the Perl DBI, by Tim Bunce and Alligator Descartes; O’Reilly & Asso-
ciates (2000). The only book on Perl’s relational database interface, by the
author of the DBI module.

CGI Programming with Perl, by Scott Guelich, Shishir Gundavaram, and Gunther
Birznieks; O’Reilly & Associates (Second Edition, 2000). This is a solid introduc-
tion to the world of CGI programming.

Writing Apache Modules with Perl and C, by Lincoln Stein and Doug MacEachern;
O’Reilly & Associates (1999). This guide to web programming teaches you how
to extend the capabilities of the Apache web server, especially using the turbo-
charged mod_perl for fast CGI scripts and via the Perl-accessible Apache API.

Practical mod_perl, by Stas Bekman and Eric Cholet; O’Reilly & Associates (2003). A
comprehensive guide to installing, configuring, and developing with mod_perl.
This book goes into corners of mod_perl programming that no other book dares
to touch.

The mod_perl Developer’s Cookbook, by Geoff Young, Paul Lindner, and Randy
Kobes; SAMS (2002). Written in a similar style to the Cookbook you hold in
your hand, this book belongs on every mod_perl developer’s desk. It covers
almost every task a mod_perl developer might want to perform.

Beyond the Perl-related publications listed here, the following books came in handy
when writing this book. They were used for reference, consultation, and inspiration.

The Art of Computer Programming, by Donald Knuth, Volumes I-III: “Fundamental
Algorithms,” “Seminumerical Algorithms,” and “Sorting and Searching”; Addi-
son-Wesley (Third Edition, 1998).

Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, and Ronald
L. Rivest; MIT Press and McGraw-Hill (1990).

Preface | xvii

Algorithms in C, by Robert Sedgewick; Addison-Wesley (1992).
The Art of Mathematics, by Jerry P. King; Plenum (1992).

The Elements of Programming Style, by Brian W. Kernighan and P.J. Plauger;
McGraw-Hill (1988).

The UNIX Programming Environment, by Brian W. Kernighan and Rob Pike;
Prentice-Hall (1984).

POSIX Programmer’s Guide, by Donald Lewine; O’Reilly & Associates (1991).

Advanced Programming in the UNIX Environment, by W. Richard Stevens; Addison-
Wesley (1992).

TCP/IP Illustrated, by W. Richard Stevens, et al., Volumes I-III; Addison-Wesley
(1992-1996).

HTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy; O’Reilly &
Associates (Third Edition, 1998).

Official Guide to Programming with CGLpm, by Lincoln Stein; John Wiley & Sons
(1997).

Web Client Programming with Perl, by Clinton Wong; O’Reilly & Associates (1997).

The New Fowler’s Modern English Usage, edited by R.W. Burchfield; Oxford (Third
Edition, 1996).

Conventions Used in This Book

Programming Conventions

We give lots of examples, most of which are pieces of code that should go into a
larger program. Some examples are complete programs, which you can recognize
because they begin with a #! line. We start nearly all of our longer programs with:

#!/usr/bin/perl -w
use strict;

or else the newer:

#!/usr/bin/perl

use strict;

use warnings;
Still other examples are things to be typed on a command line. We’ve used % to show
the shell prompt:

% perl -e 'print "Hello, world.\n
Hello, world.

This style represents a standard Unix command line, where single quotes represent the
“most quoted” form. Quoting and wildcard conventions on other systems vary. For

xxviii | Preface

example, many command-line interpreters under MS-DOS and VMS require double
quotes instead of single ones to group arguments with spaces or wildcards in them.

Typesetting Conventions
The following typographic conventions are used in this book:

Bold
is used exclusively for command-line switches. This allows one to distinguish for
example, between the -w warnings switch and the -w filetest operator.

Italic
is used for URLs, manpages, pathnames, and programs. New terms are also itali-
cized when they first appear in the text.

Constant Width
is used for function and method names and their arguments; in examples to
show text that you enter verbatim; and in regular text to show literal code.

Constant Width Bold Italic
is used in examples to show output produced.

Indicates a warning or caution.

Documentation Conventions

The most up-to-date and complete documentation about Perl is included with Perl
itself. If typeset and printed, this massive anthology would use more than a thou-
sand pages of printed paper, greatly contributing to global deforestation. Fortu-
nately, you don’t have to print it out, because it’s available in a convenient and
searchable electronic form.

When we refer to a “manpage” in this book, we’re talking about this set of online
manuals. The name is purely a convention; you don’t need a Unix-style man program
to read them. The perldoc command distributed with Perl also works, and you may
even have the manpages installed as HTML pages, especially on non-Unix systems.
Plus, once you know where they’re installed, you can grep them directly.” The
HTML version of the manpages is available on the Web at http://'www.perl.com/
CPAN/doc/manual/html/.

When we refer to non-Perl documentation, as in “See kill(2) in your system manual,”
this refers to the kill manpage from section 2 of the Unix Programmer’s Manual (sys-
tem calls). These won’t be available on non-Unix systems, but that’s probably okay,

* If your system doesn’t have grep, use the tcgrep program supplied at the end of Chapter 6.

Preface | xxix

because you couldn’t use them there anyway. If you really do need the documenta-
tion for a system call or library function, many organizations have put their manpages
on the Web; a quick search of Google for crypt(3) manual will find many copies.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (which may in fact resemble bugs).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request
a catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

There is a web site for the book, where we’ll list errata and plans for future editions.
Here you’ll also find source code for the book’s examples available for download so
you don’t have to type them in yourself. You can access this page at:

http://www.oreilly.com/catalog/perlckbk2/
For more information about this book and others, see the O’Reilly web site:

http:/fwww.oreilly.com/

Acknowledgments for the First Edition

This book wouldn’t exist but for a legion of people standing, knowing and unknow-
ing, behind the authors. At the head of this legion would have to be our editor, Linda
Mui, carrot on a stick in one hand and a hot poker in the other. She was great.

As the author of Perl, Larry Wall was our ultimate reality check. He made sure we
weren’t documenting things he was planning to change and helped out on wording
and style.” If now and then you think you’re hearing Larry’s voice in this book, you
probably are.

* And footnotes.

xxx | Preface

Larry’s wife, Gloria, a literary critic by trade, shocked us by reading through every
single word—and actually liking most of them. Together with Sharon Hopkins, resi-
dent Perl Poetess, she helped us rein in our admittedly nearly insatiable tendency to
produce pretty prose sentences that could only be charitably described as lying
somewhere between the inscrutably complex and the hopelessly arcane, eventually
rendering the meandering muddle into something legible even to those whose native
tongues were neither PDP-11 assembler nor Medizeval Spanish.

Our three most assiduous reviewers, Mark-Jason Dominus, Jon Orwant, and Abig-
ail, have worked with us on this book nearly as long as we’ve been writing it. Their
rigorous standards, fearsome intellects, and practical experience in Perl applications
have been of invaluable assistance. Doug Edwards methodically stress-tested every
piece of code from the first seven chapters of the book, finding subtle border cases
no one else ever thought about. Other major reviewers include Andy Dougherty,
Andy Oram, Brent Halsey, Bryan Buus, Gisle Aas, Graham Barr, Jeff Haemer, Jeffrey
Friedl, Lincoln Stein, Mark Mielke, Martin Brech, Matthias Neeracher, Mike Stok,
Nate Patwardhan, Paul Grassie, Peter Prymmer, Raphaél Manfredi, and Rod Whitby.

And this is just the beginning. Part of what makes Perl fun is the sense of community
and sharing it seems to engender. Many selfless individuals lent us their technical
expertise. Some read through complete chapters in formal review. Others provided
insightful answers to brief technical questions when we were stuck on something
outside our own domain. A few even sent us code. Here’s a partial list of these help-
ful people: Aaron Harsh, Ali Rayl, Alligator Descartes, Andrew Hume, Andrew Stre-
bkov, Andy Wardley, Ashton MacAndrews, Ben Gertzfield, Benjamin Holzman,
Brad Hughes, Chaim Frenkel, Charles Bailey, Chris Nandor, Clinton Wong, Dan
Klein, Dan Sugalski, Daniel Grisinger, Dennis Taylor, Doug MacEachern, Douglas
Davenport, Drew Eckhardt, Dylan Northrup, Eric Eisenhart, Eric Watt Forste, Greg
Bacon, Gurusamy Sarathy, Henry Spencer, Jason Ornstein, Jason Stewart, Joel
Noble, Jonathan Cohen, Jonathan Scott Duff, Josh Purinton, Julian Anderson, Keith
Winstein, Ken Lunde, Kirby Hughes, Larry Rosler, Les Peters, Mark Hess, Mark
James, Martin Brech, Mary Koutsky, Michael Parker, Nick Ing-Simmons, Paul Mar-
quess, Peter Collinson, Peter Osel, Phil Beauchamp, Piers Cawley, Randal Schwartz,
Rich Rauenzahn, Richard Allan, Rocco Caputo, Roderick Schertler, Roland Walker,
Ronan Waide, Stephen Lidie, Steven Owens, Sullivan Beck, Tim Bunce, Todd Miller,
Troy Denkinger, and Willy Grimm.

And let’s not forget Perl itself, without which this book could never have been writ-
ten. Appropriately enough, we used Perl to build endless small tools to help produce
this book. Perl tools converted our text in pod format into troff for displaying and
review and into FrameMaker for production. Another Perl program ran syntax
checks on every piece of code in the book. The Tk extension to Perl was used to
build a graphical tool to shuffle around recipes using drag-and-drop. Beyond these,
we also built innumerable smaller tools for tasks like checking RCS locks, finding

Preface | xxxi

duplicate words, detecting certain kinds of grammatical errors, managing mail fold-
ers with feedback from reviewers, creating program indices and tables of contents,
and running text searches that crossed line boundaries or were restricted to certain
sections—just to name a few. Some of these tools found their way into the same
book they were used on.

Tom

Thanks first of all to Larry and Gloria for sacrificing some of their European vaca-
tion to groom the many nits out of this manuscript, and to my other friends and fam-
ily—Bryan, Sharon, Brent, Todd, and Drew—for putting up with me over the last
couple of years and being subjected to incessant proofreadings.

I'd like to thank Nathan for holding up despite the stress of his weekly drives, my
piquant vegetarian cooking and wit, and his getting stuck researching the topics I so
diligently avoided.

I’d like to thank those largely unsung titans in our field—Dennis, Linus, Kirk, Eric,
and Rich—who were all willing to take the time to answer my niggling operating sys-
tem and troff questions. Their wonderful advice and anecdotes aside, without their
tremendous work in the field, this book could never have been written.

Thanks also to my instructors who sacrificed themselves to travel to perilous places
like New Jersey to teach Perl in my stead. I’d like to thank Tim O’Reilly and Frank
Willison first for being talked into publishing this book, and second for letting time-
to-market take a back seat to time-to-quality. Thanks also to Linda, our shamelessly
honest editor, for shepherding dangerously rabid sheep through the eye of a release
needle.

Most of all, T want to thank my mother, Mary, for tearing herself away from her
work in prairie restoration and teaching high school computer and biological sci-
ences to keep both my business and domestic life in smooth working order long
enough for me to research and write this book.

Finally, I'd like to thank Johann Sebastian Bach, who was for me a boundless font of
perspective, poise, and inspiration—a therapy both mental and physical. I am cer-
tain that forevermore the Cookbook will evoke for me the sounds of BWV 849, now
indelibly etched into the wetware of head and hand.

Nat

Without my family’s love and patience, I'd be baiting hooks in a 10-foot swell
instead of mowing my lawn in suburban America. Thank you! My friends have
taught me much: Jules, Amy, Raj, Mike, Kef, Sai, Robert, Ewan, Pondy, Mark, and
Andy. I owe a debt of gratitude to the denizens of Nerdsholm, who gave sound tech-
nical advice and introduced me to my wife (they didn’t give me sound technical

xxxii | Preface

advice on her, though). Thanks also to my employer, Front Range Internet, for a day
job I don’t want to quit.

Tom was a great co-author. Without him, this book would be nasty, brutish, and
short. Finally, I have to thank Jenine. We’d been married a year when I accepted the
offer to write, and we’ve barely seen each other since then. Nobody will savour the
final full-stop in this sentence more than she.

Acknowledgments for the Second Edition

We would like to thank our many tech reviewers, who gave generously of their time
and knowledge so that we might look better. Some were formal reviewers who pain-
stakingly plodded through endless drafts and revisions, while others were casual
comrades roped into reading small excerpts related to their own particular expertise
or interest. The bugs you don’t find in this book are thanks to them. Those you do
find were probably introduced after they reviewed it.

Just a few of these selfless people were Adam Maccabee Trachtenberg, Rafael Garcia-
Suarez, Ask Bjorn Hansen, Mark-Jason Dominus, Abhijit Menon-Sen, Jarkko Hiet-
aniemi, Benjamin Goldberg, Aaron Straup Cope, Tony Stubblebine, Michel Rod-
riguez, Nick Ing-Simmons, Geoffrey Young, Douglas Wilson, Paul Kulchenko,
Jeffrey Friedl, Arthur Bergman, Autrijus Tang, Matt Sergeant, Steve Marvell, Damian
Conway, Sean M. Burke, Elaine Ashton, Steve Lidie, Ken Williams, Robert Spier,
Chris Nandor, Brent Halsey, Matthew Free, Rocco Caputo, Robin Berjon, Adam
Turoff, Chip Turner, David Sklar, Mike Sierra, Dave Rolsky, Kip Hampton, Chris
Fedde, Graham Barr, Jon Orwant, Rich Bowen, Mike Stok, Tim Bunce, Rob Brown,
Dan Brian, Gisle Aas, and Abigail.

We’d also like to thank our patient and persistent editor, Linda Mui, who ran seri-
ous risk of getting herself committed as she tried to wrestle “the final edits” from us.

Tom

I would like to thank Larry Wall for making the programming world (and several
others) a better place for all of us, Nathan for documenting the undocumented, and
our editor, Linda Mui, for her indefatigable patience at herding her author cats of the
Schradinger clan ever onward. This book would not exist but for all three of them.

I would especially like to thank someone who is no longer here to read these words
in print, words he would otherwise himself have shepherded: O’Reilly’s longtime
editor-in-chief and my friend, Frank Willison, gone from us two years now. His
many erudite epistles are a thing of legend, carefully crafted treasures more dear to
any writer than finest gold. Over our years of working together, Frank was a con-
stant source of personal inspiration and encouragement. His easygoing cheer and
charm, his broad learning and interests, and his sparkling wit—sometimes subtle,

Preface | xoxiii

sometimes hilarious, and often both—made him more deserving of being called
avuncular than anyone else I have ever known, and as such do I miss him. Thank
you, Frank, wherever you are.

Nat

Henry David Thoreau wrote, “What is commonly called friendship is only a little
more honor among rogues.” If that be true, I have two honorable rogues to thank:
Jon Orwant, who engineered my job at O’Reilly & Associates; and Linda Mui, who
helped me keep it.

As with the first edition, the book in your hands wouldn’t be there without Tom’s
drive, attention to detail, and willingness to tackle the hard stuff. Thanks for taking
the Unicode bullet, Tom.

And finally, my family. Jenine nearly became a solo parent while I worked on this
book. My heart broke when William sadly told a friend, “My daddy works and
works—all day and all night,” and again when one of Raley’s first two-word sen-
tences was “Daddy work.” Thank you all.

xxxiv | Preface

CHAPTER 1
Strings

He multiplieth words without knowledge.
— Job 35:16

1.0 Introduction

Many programming languages force you to work at an uncomfortably low level. You
think in lines, but your language wants you to deal with pointers. You think in
strings, but it wants you to deal with bytes. Such a language can drive you to distrac-
tion. Don’t despair; Perl isn’t a low-level language, so lines and strings are easy to
handle.

Perl was designed for easy but powerful text manipulation. In fact, Perl can manipu-
late text in so many ways that they can’t all be described in one chapter. Check out
other chapters for recipes on text processing. In particular, see Chapters 6 and 8,
which discuss interesting techniques not covered here.

Perl’s fundamental unit for working with data is the scalar, that is, single values
stored in single (scalar) variables. Scalar variables hold strings, numbers, and refer-
ences. Array and hash variables hold lists or associations of scalars, respectively. Ref-
erences are used for referring to values indirectly, not unlike pointers in low-level
languages. Numbers are usually stored in your machine’s double-precision floating-
point notation. Strings in Perl may be of any length, within the limits of your
machine’s virtual memory, and can hold any arbitrary data you care to put there—
even binary data containing null bytes.

A string in Perl is not an array of characters—nor of bytes, for that matter. You can-
not use array subscripting on a string to address one of its characters; use substr for
that. Like all data types in Perl, strings grow on demand. Space is reclaimed by Perl’s
garbage collection system when no longer used, typically when the variables have
gone out of scope or when the expression in which they were used has been evalu-
ated. In other words, memory management is already taken care of, so you don’t
have to worry about it.

A scalar value is either defined or undefined. If defined, it may hold a string, num-
ber, or reference. The only undefined value is undef. All other values are defined,
even numeric 0 and the empty string. Definedness is not the same as Boolean truth,
though; to check whether a value is defined, use the defined function. Boolean truth
has a specialized meaning, tested with operators such as 8&% and || or in an if or
while block’s test condition.

Two defined strings are false: the empty string (*") and a string of length one contain-
ing the digit zero ("0"). All other defined values (e.g., "false", 15, and \$x) are true.
You might be surprised to learn that "0" is false, but this is due to Perl’s on-demand
conversion between strings and numbers. The values 0., 0.00, and 0.0000000 are all
numbers and are therefore false when unquoted, since the number zero in any of its
guises is always false. However, those three values ("0.", "0.00", and "0.0000000") are
true when used as literal quoted strings in your program code or when they’re read
from the command line, an environment variable, or an input file.

This is seldom an issue, since conversion is automatic when the value is used numeri-
cally. If it has never been used numerically, though, and you just test whether it’s
true or false, you might get an unexpected answer—Boolean tests never force any
sort of conversion. Adding O to the variable makes Perl explicitly convert the string to
a number:

print "Gimme a number: ";

0.00000

chomp($n = <STDIN>); # $n now holds "0.00000";

print "The value $n is ", $n ? "TRUE" : "FALSE", "\n";
That value 0.00000 is TRUE

$n += 0;
print "The value $n is now ", $n ? "TRUE" : "FALSE", "\n";
That value 0 is now FALSE

The undef value behaves like the empty string ("") when used as a string, 0 when
used as a number, and the null reference when used as a reference. But in all three
possible cases, it’s false. Using an undefined value where Perl expects a defined value
will trigger a runtime warning message on STDERR if you’ve enabled warnings. Merely
asking whether something is true or false demands no particular value, so this is
exempt from warnings. Some operations do not trigger warnings when used on vari-
ables holding undefined values. These include the autoincrement and autodecre-
ment operators, ++ and --, and the addition and concatenation assignment
operators, += and .= (“plus-equals” and “dot-equals”).

Specify strings in your program using single quotes, double quotes, the quoting oper-
ators q// and qq//, or here documents. No matter which notation you use, string lit-
erals are one of two possible flavors: interpolated or uninterpolated. Interpolation
governs whether variable references and special sequences are expanded. Most are
interpolated by default, such as in patterns (/regex/) and running commands ($x =
“emd’).

2 | Chapter1: Strings

Where special characters are recognized, preceding any special character with a
backslash renders that character mundane; that is, it becomes a literal. This is often
referred to as “escaping” or “backslash escaping.”

Using single quotes is the canonical way to get an uninterpolated string literal. Three
special sequences are still recognized: ' to terminate the string, \' to represent a sin-
gle quote, and \\ to represent a backslash in the string.

$string = "\n'; # two characters, \ and an n

$string = 'Jon \'Maddog\' Orwant'; # literal single quotes
Double quotes interpolate variables (but not function calls—see Recipe 1.15 to find
how to do this) and expand backslash escapes. These include "\n" (newline), "\033"
(the character with octal value 33), "\cJ" (Ctrl-]), "\x1B" (the character with hex
value 0x1B), and so on. The full list of these is given in the perlop(1) manpage and
the section on “Specific Characters” in Chapter 5 of Programming Perl.

$string = "\n"; # a "newline" character

$string = "Jon \"Maddog\" Orwant"; # literal double quotes
If there are no backslash escapes or variables to expand within the string, it makes no
difference which flavor of quotes you use. When choosing between writing 'this'
and writing "this", some Perl programmers prefer to use double quotes so that the
strings stand out. This also avoids the slight risk of having single quotes mistaken for
backquotes by readers of your code. It makes no difference to Perl, and it might help
readers.

The q// and qq// quoting operators allow arbitrary delimiters on interpolated and
uninterpolated literals, respectively, corresponding to single- and double-quoted
strings. For an uninterpolated string literal that contains single quotes, it’s easier to
use g// than to escape all single quotes with backslashes:

$string = 'Jon \'Maddog\' Orwant'; # embedded single quotes

$string = q/Jon 'Maddog' Orwant/; # same thing, but more legible
Choose the same character for both delimiters, as we just did with /, or pair any of
the following four sets of bracketing characters:

$string = q[Jon 'Maddog' Orwant]; # literal single quotes

$string = q{Jon 'Maddog' Orwant}; # literal single quotes

$string = q(Jon 'Maddog' Orwant); # literal single quotes

$string = g<Jon 'Maddog' Orwant>; # literal single quotes
Here documents are a notation borrowed from the shell used to quote a large chunk
of text. The text can be interpreted as single-quoted, double-quoted, or even as com-
mands to be executed, depending on how you quote the terminating identifier. Unin-
terpolated here documents do not expand the three backslash sequences the way
single-quoted literals normally do. Here we double-quote two lines with a here
document:

$a = <<"EOF";
This is a multiline here document

Introduction | 3

terminated by EOF on a line by itself

EOF
Notice there’s no semicolon after the terminating EOF. Here documents are covered
in more detail in Recipe 1.16.

The Universal Character Code

As far as the computer is concerned, all data is just a series of individual numbers,
each a string of bits. Even text strings are just sequences of numeric codes inter-
preted as characters by programs like web browsers, mailers, printing programs, and
editors.

Back when memory sizes were far smaller and memory prices far more dear, program-
mers would go to great lengths to save memory. Strategies such as stuffing six charac-
ters into one 36-bit word or jamming three characters into one 16-bit word were
common. Even today, the numeric codes used for characters usually aren’t longer
than 7 or 8 bits, which are the lengths you find in ASCII and Latin1, respectively.

That doesn’t leave many bits per character—and thus, not many characters. Con-
sider an image file with 8-bit color. You’re limited to 256 different colors in your pal-
ette. Similarly, with characters stored as individual octets (an octet is an 8-bit byte), a
document can usually have no more than 256 different letters, punctuation marks,
and symbols in it.

ASCII, being the American Standard Code for Information Interchange, was of lim-
ited utility outside the United States, since it covered only the characters needed for a
slightly stripped-down dialect of American English. Consequently, many countries
invented their own incompatible 8-bit encodings built upon 7-bit ASCII. Conflicting
schemes for assigning numeric codes to characters sprang up, all reusing the same
limited range. That meant the same number could mean a different character in dif-
ferent systems and that the same character could have been assigned a different num-
ber in different systems.

Locales were an early attempt to address this and other language- and country-spe-
cific issues, but they didn’t work out so well for character set selection. They’re still
reasonable for purposes unrelated to character sets, such as local preferences for
monetary units, date and time formatting, and even collating sequences. But they are
of far less utility for reusing the same 8-bit namespace for different character sets.

That’s because if you wanted to produce a document that used Latin, Greek, and
Cyrillic characters, you were in for big trouble, since the same numeric code would be
a different character under each system. For example, character number 196 is a Latin
capital A with a diaeresis above it in ISO 8859-1 (Latinl); under ISO 8859-7, that
same numeric code represents a Greek capital delta. So a program interpreting
numeric character codes in the ISO 8859-1 locale would see one character, but under
the ISO 8859-7 locale, it would see something totally different.

4 | Chapter1: Strings

This makes it hard to combine different character sets in the same document. Even if
you did cobble something together, few programs could work with that document’s
text. To know what characters you had, you’d have to know what system they were
in, and you couldn’t easily mix systems. If you guessed wrong, you’d get a jumbled
mess on your screen, or worse.

Unicode Supportin Perl
Enter Unicode.

Unicode attempts to unify all character sets in the entire world, including many sym-
bols and even fictional character sets. Under Unicode, different characters have dif-
ferent numeric codes, called code points.

Mixed-language documents are now easy, whereas before they weren’t even possi-
ble. You no longer have just 128 or 256 possible characters per document. With Uni-
code you can have tens of thousands (and more) of different characters all jumbled
together in the same document without confusion.

The problem of mixing, say, an A with a A evaporates. The first character, formally
named “LATIN CAPITAL LETTER A WITH DIAERESIS” under Unicode, is assigned
the code point U+00C4 (that’s the Unicode preferred notation). The second, a
“GREEK CAPITAL LETTER DELTA”, is now at code point U+0394. With different
characters always assigned different code points, there’s no longer any conflict.

Perl has supported Unicode since v5.6 or so, but it wasn’t until the v5.8 release that
Unicode support was generally considered robust and usable. This by no coinci-
dence corresponded to the introduction of I/O layers and their support for encod-
ings into Perl. These are discussed in more detail in Chapter 8.

All Perl’s string functions and operators, including those used for pattern matching,
now operate on characters instead of octets. If you ask for a string’s length, Perl
reports how many characters are in that string, not how many bytes are in it. If you
extract the first three characters of a string using substr, the result may or may not be
three bytes. You don’t know, and you shouldn’t care, either. One reason not to care
about the particular underlying bytewise representation is that if you have to pay
attention to it, you’re probably looking too closely. It shouldn’t matter, really—but if
it does, this might mean that Perl’s implementation still has a few bumps in it. We're
working on that.

Because characters with code points above 256 are supported, the chr function is no
longer restricted to arguments under 256, nor is ord restricted to returning an integer
smaller than that. Ask for chr(0x394), for example, and you’ll get a Greek capital
delta: A.

$char
$code

chr(ox394);
ord($char);

Introduction | 5

printf "char %s is code %d, %#04x\n", $char, $code, $code;

char A is code 916, 0x394

If you test the length of that string, it will say 1, because it’s just one character.
Notice how we said character; we didn’t say anything about its length in bytes. Cer-
tainly the internal representation requires more than just 8 bits for a numeric code
that big. But you the programmer are dealing with characters as abstractions, not as
physical octets. Low-level details like that are best left up to Perl.

You shouldn’t think of characters and bytes as the same. Programmers who inter-
change bytes and characters are guilty of the same class of sin as C programmers who
blithely interchange integers and pointers. Even though the underlying representa-
tions may happen to coincide on some platforms, this is just a coincidence, and con-
flating abstract interfaces with physical implementations will always come back to
haunt you, eventually.

You have several ways to put Unicode characters into Perl literals. If you’re lucky
enough to have a text editor that lets you enter Unicode directly into your Perl pro-
gram, you can inform Perl you’ve done this via the use utf8 pragma. Another way is
to use \x escapes in Perl interpolated strings to indicate a character by its code point
in hex, as in \xC4. Characters with code points above 0xFF require more than two
hex digits, so these must be enclosed in braces.

print "\xC4 and \x{0394} look different\n";

char A and A look different\n

Recipe 1.5 describes how to use charnames to put \N{NAME} escapes in string literals,
such as \N{GREEK CAPITAL LETTER DELTA}, \N{greek:Delta}, or even just \N{Delta} to
indicate a A character.

That’s enough to get started using Unicode in Perl alone, but getting Perl to interact
properly with other programs requires a bit more.

Using the old single-byte encodings like ASCII or ISO 8859-n, when you wrote out a
character whose numeric code was NN, a single byte with numeric code NN would
appear. What actually appeared depended on which fonts were available, your cur-
rent locale setting, and quite a few other factors. But under Unicode, this exact dupli-
cation of logical character numbers (code points) into physical bytes emitted no
longer applies. Instead, they must be encoded in any of several available output for-
mats.

Internally, Perl uses a format called UTF-8, but many other encoding formats for
Unicode exist, and Perl can work with those, too. The use encoding pragma tells Perl
in which encoding your script itself has been written, or which encoding the stan-
dard filehandles should use. The use open pragma can set encoding defaults for all
handles. Special arguments to open or to binmode specify the encoding format for that
particular handle. The -C command-line flag is a shortcut to set the encoding on all

6 | Chapter1: Strings

(or just standard) handles, plus the program arguments themselves. The environ-
ment variables PERLIO, PERL_ENCODING, and PERL_UNICODE all give Perl various sorts of
hints related to these matters.

1.1 Accessing Substrings

Problem

You want to access or modify just a portion of a string, not the whole thing. For
instance, you’ve read a fixed-width record and want to extract individual fields.

Solution

The substr function lets you read from and write to specific portions of the string.

$value = substr($string, $offset, $count);
$value = substr($string, $offset);

substr($string, $offset, $count) = $newstring;

substr($string, $offset, $count, $newstring); # same as previous

substr($string, $offset) = $newtail;
The unpack function gives only read access, but is faster when you have many sub-
strings to extract.

get a 5-byte string, skip 3 bytes,

then grab two 8-byte strings, then the rest;

(NB: only works on ASCII data, not Unicode)

($leading, $s1, $s2, $trailing) =
unpack("A5 x3 A8 A8 A*", $data);

split at 5-byte boundaries
@fivers = unpack("A5" x (length($string)/5), $string);

chop string into individual single-byte characters
@chars = unpack("A1" x length($string), $string);

Discussion

Strings are a basic data type; they aren’t arrays of a basic data type. Instead of using
array subscripting to access individual characters as you sometimes do in other pro-
gramming languages, in Perl you use functions like unpack or substr to access indi-
vidual characters or a portion of the string.

The offset argument to substr indicates the start of the substring you’re interested in,
counting from the front if positive and from the end if negative. If the offset is 0, the
substring starts at the beginning. The count argument is the length of the substring.

$string = "This is what you have";
+012345678901234567890 Indexing forwards (left to right)

Accessing Substrings | 7

109876543210987654321- Indexing backwards (right to left)

note that 0 means 10 or 20, etc. above
$first = substr($string, 0, 1); # "T"

$start = substr($string, 5, 2); # "is"

$rest = substr($string, 13); # "you have"
$last = substr($string, -1); # "e"

$end = substr($string, -4); # "have"

$piece = substr($string, -8, 3); # "you"

You can do more than just look at parts of the string with substr; you can actually
change them. That’s because substr is a particularly odd kind of function—an lvalu-
able one, that is, a function whose return value may be itself assigned a value. (For
the record, the others are vec, pos, and keys. If you squint, local, my, and our can also
be viewed as lvaluable functions.)

$string = "This is what you have";

print $string;

This is what you have

substr($string, 5, 2) = "wasn't"; # change
This wasn't what you have

is" to "wasn't"

substr($string, -12) = "ondrous";# "This wasn't wondrous"
This wasn't wondrous

substr($string, 0, 1) = ""; # delete first character
his wasn't wondrous

substr($string, -10) =""; # delete last 10 characters
his wasn'

Use the =~ operator and the s///, m//, or tr/// operators in conjunction with substr
to make them affect only that portion of the string.

you can test substrings with =~
if (substr($string, -10) =~ /pattern/) {

print "Pattern matches in last 10 characters\n";
}

substitute "at" for "is", restricted to first five characters
substr($string, 0, 5) =~ s/is/at/g;

You can even swap values by using several substrs on each side of an assignment:

exchange the first and last letters in a string

$a = "make a hat";

(substr($a,0,1), substr($a,-1)) =

(substr($a,-1), substr($a,0,1));

print $a;

take a ham
Although unpack is not lvaluable, it is considerably faster than substr when you
extract numerous values all at once. Specify a format describing the layout of the
record to unpack. For positioning, use lowercase "x" with a count to skip forward
some number of bytes, an uppercase "X" with a count to skip backward some num-

ber of bytes, and an "@" to skip to an absolute byte offset within the record. (If the

8 | Chapter1: Strings

data contains Unicode strings, be careful with those three: they’re strictly byte-
oriented, and moving around by bytes within multibyte data is perilous at best.)

extract column with unpack

$a = "To be or not to be";

$b = unpack("x6 A6", $a); # skip 6, grab 6

print $b;

or not

($b, $c) = unpack("x6 A2 X5 A2", $a); # forward 6, grab 2; backward 5, grab 2

print "$b\n$c\n";

or

be
Sometimes you prefer to think of your data as being cut up at specific columns. For
example, you might want to place cuts right before positions 8, 14, 20, 26, and 30.
Those are the column numbers where each field begins. Although you could calcu-
late that the proper unpack format is "A7 A6 A6 A6 A4 A*", this is too much mental
strain for the virtuously lazy Perl programmer. Let Perl figure it out for you. Use the
cut2fmt function:

sub cut2fmt {

my(@positions) = @ ;
my $template ="'";
my $lastpos =1;
foreach $place (@positions) {
$template .= "A" . ($place - $lastpos) . " ";

$lastpos = $place;
}
$template .= "A*";
return $template;

}

$fmt = cut2fmt(8, 14, 20, 26, 30);

print "$fmt\n";

A7 A6 A6 A6 A4 A*
The powerful unpack function goes far beyond mere text processing. It’s the gateway
between text and binary data.

In this recipe, we’ve assumed that all character data is 7- or 8-bit data so that pack’s
byte operations work as expected.

See Also

The pack, unpack, and substr functions in perlfunc(l) and in Chapter 29 of Program-
ming Perl; use of the cut2fmt subroutine in Recipe 1.24; the binary use of unpack in
Recipe 8.24

Accessing Substrings | 9

1.2 Establishing a Default Value

Problem

You would like to supply a default value to a scalar variable, but only if it doesn’t
already have one. It often happens that you want a hardcoded default value for a
variable that can be overridden from the command line or through an environment
variable.

Solution
Use the || or | |= operator, which work on both strings and numbers:

use $b if $b is true, else $c
$a = $b || $c;

set $x to $y unless $x is already true

$x [1= $y;
Ifo, "0", and "" are valid values for your variables, use defined instead:

use $b if $b is defined, else $c
$a = defined($b) ? $b : $c;

the "new" defined-or operator from future perl
use v5.9;
$a = $b // $c;

Discussion

The big difference between the two techniques (defined and ||) is what they test:
definedness versus truth. Three defined values are still false in the world of Perl: o,
"0", and "". If your variable already held one of those, and you wanted to keep that
value, a || wouldn’t work. You’d have to use the more elaborate three-way test with
defined instead. It’s often convenient to arrange for your program to care about only
true or false values, not defined or undefined ones.

Rather than being restricted in its return values to a mere 1 or 0 as in most other lan-
guages, Perl’s || operator has a much more interesting property: it returns its first
operand (the lefthand side) if that operand is true; otherwise it returns its second
operand. The 88 operator also returns the last evaluated expression, but is less often
used for this property. These operators don’t care whether their operands are strings,
numbers, or references—any scalar will do. They just return the first one that makes
the whole expression true or false. This doesn’t affect the Boolean sense of the return
value, but it does make the operators’ return values more useful.

This property lets you provide a default value to a variable, function, or longer
expression in case the first part doesn’t pan out. Here’s an example of ||, which

10 | Chapter1: Strings

would set $foo to be the contents of either $bar or, if $bar were false, "DEFAULT
VALUE":

$foo = $bar || "DEFAULT VALUE";

Here’s another example, which sets $dir to be either the first argument to the pro-
gram or "/tmp" if no argument were given.

$dir = shift(@ARGV) || "/tmp";
We can do this without altering @ARGV:
$dir = $ARGV[O] || "/tmp";

If 0 is a valid value for $ARGV[0], we can’t use ||, because it evaluates as false even
though it’s a value we want to accept. We must resort to Perl’s only ternary opera-
tor, the ?: (“hook colon,” or just “hook”):

$dir = defined($ARCV[0]) ? shift(@ARGV) : "/tmp";
We can also write this as follows, although with slightly different semantics:
$dir = @ARGV ? $ARGV[O] : "/tmp";

This checks the number of elements in @ARGV, because the first operand (here, @ARGV)
is evaluated in scalar context. It’s only false when there are 0 elements, in which case
we use "/tmp". In all other cases (when the user gives an argument), we use the first
argument.

The following line increments a value in %count, using as the key either $shell or, if
$shell is false, "/bin/sh".

$count{ $shell || "/bin/sh" }++;

You may chain several alternatives together as we have in the following example. The
first expression that returns a true value will be used.

find the user name on Unix systems

$user = $ENV{USER}

|| $ENV{LOGNAME}

|| getlogin()
|l (getpwuid($<))[o]
|| "Unknown uid number $<";
The 8& operator works analogously: it returns its first operand if that operand is
false; otherwise, it returns the second one. Because there aren’t as many interesting
false values as there are true ones, this property isn’t used much. One use is demon-
strated in Recipes 13.12 and 14.19.

The | |= assignment operator looks odd, but it works exactly like the other binary
assignment operators. For nearly all of Perl’s binary operators, $VAR OP= VALUE means
$VAR = $VAR OP VALUE; for example, $a += $b is the same as $a = $a + $b. So | | = is used to
set a variable when that variable is itself still false. Since the || check is a simple Bool-
ean one—testing for truth—it doesn’t care about undefined values, even when warn-
ings are enabled.

Establishing a Default Value | 11

Here’s an example of | |= that sets $starting point to "Greenwich" unless it is already
set. Again, we assume $starting point won’t have the value 0 or "0", or that if it
does, it’s okay to change it.

$starting point ||= "Greenwich";

You can’t use or in place of || in assignments, because or’s precedence is too low.
$a = $b or $c is equivalent to ($a = $b) or $c. This will always assign $b to $a, which
is not the behavior you want.

Don’t extend this curious use of || and ||= from scalars to arrays and hashes. It
doesn’t work, because the operators put their left operand into scalar context.
Instead, you must do something like this:

@ = @ unless @a; # copy only if empty

@ =@ ? @b : @c; # assign @ if nonempty, else @c
Perl is someday expected to support new operators: //, //=, and err. It may already
do so by the time you read this text. These defined-or operators will work just like
the logical-or operators, ||, except that they will test definedness, not mere truth.
That will make the following pairs equivalent:

$a = defined($b) ? $b : $c;
$a = $b // $c;

$x = defined($x) ? $x : $y;
$x //= $y;

defined(read(FH, $buf, $count)) or die "read failed: $!";
read(FH, $buf, $count) err die "read failed: $!";

These three operators are already present in Perl release v5.9, which being an odd-
numbered release, is an experimental version and not what you want in a produc-
tion environment. It is expected to be in v5.10, which will be a stable release, and
will most certainly be in Perl v6, whose release date has not yet been determined.

See Also

The || operator in perlop(l) and Chapter 3 of Programming Perl; the defined and
exists functions in perlfunc(1) and Chapter 29 of Programming Perl

1.3 Exchanging Values Without Using
Temporary Variables

Problem

You want to exchange the values of two scalar variables, but don’t want to use a tem-
porary variable.

12 | Chapter1: Strings

Solution

Use list assignment to reorder the variables.

($VAR1, $VAR2) = ($VAR2, $VAR1);

Discussion

Most programming languages require an intermediate step when swapping two vari-
ables’ values:

$temp = $a;
$a = $b;
$b = $temp;

Not so in Perl. It tracks both sides of the assignment, guaranteeing that you don’t acci-
dentally clobber any of your values. This eliminates the temporary variable:

$a = "alpha";
$b = "omega";
($a, $b) = ($b, $a); # the first shall be last -- and versa vice

You can even exchange more than two variables at once:

($alpha, $beta, $production) = gw(January March August);

move beta to alpha,
move production to beta,
move alpha to production

($alpha, $beta, $production) = ($beta, $production, $alpha);

When this code finishes, $alpha, $beta, and $production have the values "March”,
"August”, and "January".

See Also

The section on “List value constructors” in perldata(l) and on “List Values and
Arrays” in Chapter 2 of Programming Perl

1.4 Converting Between Characters and Values

Problem

You want to print the number represented by a given character, or you want to print
a character given a number.

Solution
Use ord to convert a character to a number, or use chr to convert a number to its cor-
responding character:

$num = ord($char);
$char = chr($num);

Converting Between Characters and Values | 13

The %c format used in printf and sprintf also converts a number to a character:

$char = sprintf("%c", $num); # slower than chr($num)

printf("Number %d is character %c\n", $num, $num);

Number 101 is character e
A C* template used with pack and unpack can quickly convert many 8-bit bytes; simi-
larly, use U* for Unicode characters.

@bytes = unpack("C*", $string);
$string = pack("C*", @bytes);

$unistr = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
@unichars = unpack("U*", $unistr);

Discussion

Unlike low-level, typeless languages such as assembler, Perl doesn’t treat characters
and numbers interchangeably; it treats strings and numbers interchangeably. That
means you can’t just assign characters and numbers back and forth. Perl provides
Pascal’s chr and ord to convert between a character and its corresponding ordinal
value:

$value = ord("e"); # now 101

$character = chr(101); # now "e

If you already have a character, it’s really represented as a string of length one, so just
print it out directly using print or the %s format in printf and sprintf. The %c for-
mat forces printf or sprintf to convert a number into a character; it’s not used for
printing a character that’s already in character format (that is, a string).

printf("Number %d is character %c\n", 101, 101);

The pack, unpack, chr, and ord functions are all faster than sprintf. Here are pack and
unpack in action:

@ascii character numbers = unpack("C*", "sample");
print "@ascii_character numbers\n";
115 97 109 112 108 101

$word = pack("C*", @ascii character numbers);

$word = pack("C*", 115, 97, 109, 112, 108, 101); # same
print "$word\n";

sample

Here’s how to convert from HAL to IBM:

$hal = "HAL";
@byte = unpack("C*", $hal);
foreach $val (@byte) {

$val++; # add one to each byte value
}
$ibm = pack("C*", @byte);
print "$ibm\n"; # prints "IBM"

14 | Chapter1: Strings

On single-byte character data, such as plain old ASCII or any of the various ISO 8859
charsets, the ord function returns numbers from 0 to 255. These correspond to C’s
unsigned char data type.

However, Perl understands more than that: it also has integrated support for Uni-
code, the universal character encoding. If you pass chr, sprintf "%c", or pack "U*"
numeric values greater than 255, the return result will be a Unicode string.

Here are similar operations with Unicode:

@unicode_points = unpack("U*", "fac\x{0327}ade");
print "@unicode points\n";
102 97 99 807 97 100 101

$word = pack("U*", @unicode points);
print "$word\n";
facade

If all you’re doing is printing out the characters’ values, you probably don’t even
need to use unpack. Perl’s printf and sprintf functions understand a v modifier that
works like this:

printf "%vd\n", "fac\x{0327}ade";
102.97.99.807.97.100.101

printf "%vx\n", "fac\x{0327}ade";
66.61.63.327.61.64.65

The numeric value of each character (that is, its “code point” in Unicode parlance) in
the string is emitted with a dot separator.

See Also

The chr, ord, printf, sprintf, pack, and unpack functions in perlfunc(l) and Chapter
29 of Programming Perl

1.5 Using Named Unicode Characters

Problem

You want to use Unicode names for fancy characters in your code without worrying
about their code points.

Solution

Place a use charnames at the top of your file, then freely insert "\N{CHARSPEC}" escapes
into your string literals.

Using Named Unicode Characters | 15

Discussion

The use charnames pragma lets you use symbolic names for Unicode characters.
These are compile-time constants that you access with the \N{CHARSPEC} double-
quoted string sequence. Several subpragmas are supported. The :full subpragma
grants access to the full range of character names, but you have to write them out in
full, exactly as they occur in the Unicode character database, including the loud, all-
capitals notation. The :short subpragma gives convenient shortcuts. Any import
without a colon tag is taken to be a script name, giving case-sensitive shortcuts for
those scripts.

use charnames ':full’;
print "\N{GREEK CAPITAL LETTER DELTA} is called delta.\n";

A is called delta.

use charnames ':short’;
print "\N{greek:Delta} is an upper-case delta.\n";

A is an upper-case delta.

use charnames qw(cyrillic greek);
print "\N{Sigma} and \N{sigma} are Greek sigmas.\n";
print "\N{Be} and \N{be} are Cyrillic bes.\n";

Y and ¢ are Greek sigmas.
b and © are Cyrillic bes.

Two functions, charnames::viacode and charnames::vianame, can translate between
numeric code points and the long names. The Unicode documents use the notation
U+XXXX to indicate the Unicode character whose code point is XXXX, so we’ll use
that here in our output.

use charnames qw(:full);
for $code (0xC4, 0x394) {
printf "Character U+%04X (%s) is named %s\n",
$code, chr($code), charnames::viacode($code);

}

Character U+00C4 (A) is named LATIN CAPITAL LETTER A WITH DIAERESIS
Character U+0394 (A) is named GREEK CAPITAL LETTER DELTA

use charnames qw(:full);

$name = "MUSIC SHARP SIGN";

$code = charnames::vianame($name);

printf "%s is character U+%04X (%s)\n",
$name, $code, chr($code);

MUSIC SHARP SIGN is character U+266F (:)
Here’s how to find the path to Perl’s copy of the Unicode character database:

% perl -MConfig -le 'print "$Config{privlib}/unicore/NamesList.txt""
/usr/local/lib/per15/5.8.1/unicore/NameslList. txt

16 | Chapter1: Strings

Read this file to learn the character names available to you.

See Also

The charnames(3) manpage and Chapter 31 of Programming Perl; the Unicode Char-
acter Database at http://www.unicode.org/

1.6 Processing a String One Character at a Time

Problem

You want to process a string one character at a time.

Solution

Use split with a null pattern to break up the string into individual characters, or use
unpack if you just want the characters’ values:

@array = split(//, $string); # each element a single character
@array = unpack("U*", $string); # each element a code point (number)

Or extract each character in turn with a loop:

while (/(.)/g) { # . is never a newline here
$1 has character, ord($1) its number
}
Discussion

As we said before, Perl’s fundamental unit is the string, not the character. Needing to
process anything a character at a time is rare. Usually some kind of higher-level Perl
operation, like pattern matching, solves the problem more handily. See, for example,
Recipe 7.14, where a set of substitutions is used to find command-line arguments.

Splitting on a pattern that matches the empty string returns a list of individual char-
acters in the string. This is a convenient feature when done intentionally, but it’s easy
to do unintentionally. For instance, /X*/ matches all possible strings, including the
empty string. Odds are you will find others when you don’t mean to.

Here’s an example that prints the characters used in the string "an apple a day",
sorted in ascending order:

%seen = ();

$string = "an apple a day";

foreach $char (split //, $string) {
$seen{$char}++;

}

print "unique chars are: ", sort(keys %seen), "\n";
unique chars are: adelnpy

Processing a String One CharacterataTime | 17

These split and unpack solutions give an array of characters to work with. If you
don’t want an array, use a pattern match with the /g flag in a while loop, extracting
one character at a time:

%seen = ();

$string = "an apple a day"

while ($string =~ /(.)/g)

$seen{$1}++;
}

print "unique chars are:
unique chars are: adelnpy

{

, sort(keys %seen), "\n";

In general, whenever you find yourself doing character-by-character processing,
there’s probably a better way to go about it. Instead of using index and substr or
split and unpack, it might be easier to use a pattern. Instead of computing a 32-bit
checksum by hand, as in the next example, the unpack function can compute it far
more efficiently.

The following example calculates the checksum of $string with a foreach loop.
There are better checksums; this just happens to be the basis of a traditional and
computationally easy checksum. You can use the standard” Digest::MD5 module if
you want a more robust checksum.

$sum = 0;

foreach $byteval (unpack("C*", $string)) {

$sum += $byteval;
}

print "sum is $sum\n";
prints "1248" if $string was "an apple a day"

This does the same thing, but much faster:
$sum = unpack("%32C*", $string);
This emulates the SysV checksum program:

#!/usr/bin/perl

sum - compute 16-bit checksum of all input files
$checksum = 0;

while (<>) { $checksum += unpack("%16C*", $) }
$checksum %= (2 ** 16) - 1;

print "$checksum\n";

Here’s an example of its use:

% perl sum /etc/termcap
1510

If you have the GNU version of sum, you’ll need to call it with the --sysv option to
get the same answer on the same file.

% sum --sysv /etc/termcap
1510 851 /etc/termcap

* It’s standard as of the v5.8 release of Perl; otherwise, grab it from CPAN.

18 | Chapter1: Strings

Another tiny program that processes its input one character at a time is slowcat,
shown in Example 1-1. The idea here is to pause after each character is printed so
you can scroll text before an audience slowly enough that they can read it.

Example 1-1. slowcat

#!/usr/bin/perl
slowcat - emulate a s 1 ow line printer
usage: slowcat [-DELAY] [files ...]
$DELAY = ($ARGV[O] =~ /~-([.\d]+)/) ? (shift, $1) : 1;
$1 = 15
while (<>) {
for (split(//)) {
print;
select(undef,undef,undef, 0.005 * $DELAY);

See Also

The split and unpack functions in perlfunc(1) and Chapter 29 of Programming Perl;
the use of expanding select for timing is explained in Recipe 3.10

1.7 Reversing a String by Word or Character

Problem

You want to reverse the words or characters of a string.

Solution

Use the reverse function in scalar context for flipping characters:
$revchars = reverse($string);

To flip words, use reverse in list context with split and join:

$revwords = join(" ", reverse split(" ", $string));

Discussion

The reverse function is two different functions in one. Called in scalar context, it
joins together its arguments and returns that string in reverse order. Called in list con-
text, it returns its arguments in the opposite order. When using reverse for its charac-
ter-flipping behavior, use scalar to force scalar context unless it’s entirely obvious.

$gnirts = reverse($string); # reverse letters in $string
@sdrow = reverse(@words); # reverse elements in @words
$confused = reverse(@words); # reverse letters in join("", @words)

Reversing a String by Word or Character | 19

Here’s an example of reversing words in a string. Using a single space, " ", as the pat-
tern to split is a special case. It causes split to use contiguous whitespace as the
separator and also discard leading null fields, just like awk. Normally, split discards
only trailing null fields.

reverse word order

$string = 'Yoda said, "can you see this?"';
@allwords = split(" ", $string);
$revwords = join(" ", reverse @allwords);
print $revwords, "\n";

this?" see you "can said, Yoda

We could remove the temporary array @allwords and do it on one line:

$revwords = join(" ", reverse split(" ", $string));

Multiple whitespace in $string becomes a single space in $revwords. If you want to
preserve whitespace, use this:

$revwords = join("", reverse split(/(\s+)/, $string));

One use of reverse is to test whether a word is a palindrome (a word that reads the
same backward or forward):

$word = "reviver";
$is_palindrome = ($word eq reverse($word));

We can turn this into a one-liner that finds big palindromes in /ust/dict/words:

% perl -nle 'print if §_ eq reverse && length > 5' /usr/dict/words
deedeed
degged
deified
denned
hallah
kakkak
muxrdrum
redder
repaper
retter
reviver
rotator
sooloos
tebbet
terret
tut-tut

See Also

The split, reverse, and scalar functions in perlfunc(1) and Chapter 29 of Program-
ming Perl; Recipe 1.8

20 | Chapter1: Strings

1.8 Treating Unicode Combined Characters
as Single Characters

Problem

You have a Unicode string that contains combining characters, and you’d like to
treat each of these sequences as a single logical character.

Solution
Process them using \X in a regular expression.
$string = "fac\x{0327}ade"; # "facade"
$string =~ /fa.ade/; # fails
$string =~ /fa\Xade/; # succeeds
@chars = split(//, $string); # 7 letters in @chars
@chars = $string =~ /(.)/g; # same thing
@chars = $string =~ /(\X)/g; # 6 "letters" in @chars
Discussion

In Unicode, you can combine a base character with one or more non-spacing charac-
ters following it; these are usually diacritics, such as accent marks, cedillas, and til-
des. Due to the presence of precombined characters, for the most part to
accommodate legacy character systems, there can be two or more ways of writing the
same thing.

For example, the word “facade” can be written with one character between the two
a’s, "\x{E7}", a character right out of Latin1 (ISO 8859-1). These characters might be
encoded into a two-byte sequence under the UTF-8 encoding that Perl uses inter-
nally, but those two bytes still only count as one single character. That works just
fine.

There’s a thornier issue. Another way to write U+00E7 is with two different code
points: a regular “c” followed by "\x{0327}". Code point U+0327 is a non-spacing
combining character that means to go back and put a cedilla underneath the preced-
ing base character.

There are times when you want Perl to treat each combined character sequence as one
logical character. But because they’re distinct code points, Perl’s character-related
operations treat non-spacing combining characters as separate characters, including
substr, length, and regular expression metacharacters, such asin /./ or /[*abc]/.

In a regular expression, the \X metacharacter matches an extended Unicode combin-
ing character sequence, and is exactly equivalent to (?:\PM\pM*) or, in long-hand:

(?x: # begin non-capturing group
\PM # one character without the M (mark) property,

Treating Unicode Combined Characters as Single Characters | 21

such as a letter

\pM # one character that does have the M (mark) property,
such as an accent mark
* # and you can have as many marks as you want

)

Otherwise simple operations become tricky if these beasties are in your string. Con-
sider the approaches for reversing a word by character from the previous recipe.
Written with combining characters, "année" and "nifio" can be expressed in Perl as
"anne\x{301}e" and "nin\x{303}0".
for $word ("anne\x{301}e", "nin\x{303}0") {
printf "%s simple reversed to %s\n", $word,
scalar reverse $word;

printf "%s better reversed to %s\n", $word,
join("", reverse $word =~ /\X/g);

That produces:

année simple reversed to éenna

année better reversed to eénna

nifio simple reversed to onin

nifio better reversed to oiiin
In the reversals marked as simply reversed, the diacritical marking jumped from one
base character to the other one. That’s because a combining character always fol-
lows its base character, and you’ve reversed the whole string. By grabbing entire
sequences of a base character plus any combining characters that follow, then revers-
ing that list, this problem is avoided.

See Also

The perlre(1) and perluniintro(1) manpages; Chapter 15 of Programming Perl; Rec-
ipe 1.9

1.9 Canonicalizing Strings with Unicode
Combined Characters

Problem

You have two strings that look the same when you print them out, but they don’t
test as string equal and sometimes even have different lengths. How can you get Perl
to consider them the same strings?

Solution

When you have otherwise equivalent strings, at least some of which contain Unicode
combining character sequences, instead of comparing them directly, compare the

22 | Chapter1: Strings

results of running them through the NFD() function from the Unicode::Normalize
module.

use Unicode::Normalize;

$s1 = "fa\x{E7}ade";

$s2 = "fac\x{0327}ade";
if (NFD($s1) eq NFD($s2)) { print "Yup!\n" }

Discussion

The same character sequence can sometimes be specified in multiple ways. Some-
times this is because of legacy encodings, such as the letters from Latinl that contain
diacritical marks. These can be specified directly with a single character (like
U+00E7, LATIN SMALL LETTER C WITH CEDILLA) or indirectly via the base
character (like U+0063, LATIN SMALL LETTER C) followed by a combining char-
acter (U+0327, COMBINING CEDILLA).

Another possibility is that you have two or more marks following a base character,
but the order of those marks varies in your data. Imagine you wanted the letter “c” to
have both a cedilla and a caron on top of it in order to print a ¢. That could be speci-
fied in any of these ways:

$string = v231.780;

LATIN SMALL LETTER C WITH CEDILLA

COMBINING CARON

$string = v99.807.780;

LATIN SMALL LETTER C
COMBINING CARON
COMBINING CEDILLA

$string = v99.780.807

LATIN SMALL LETTER C
COMBINING CEDILLA
COMBINING CARON

The normalization functions rearrange those into a reliable ordering. Several are pro-
vided, including NFD(') for canonical decomposition and NFC(') for canonical decom-
position followed by canonical composition. No matter which of these three ways
you used to specify your ¢, the NFD version is v99.807.780, whereas the NFC ver-
sion is v231.780.

Sometimes you may prefer NFKD() and NFKC(), which are like the previous two func-
tions except that they perform compatible decomposition, which for NFKC() is then
followed by canonical composition. For example, \x{FB00} is the double-f ligature.
Its NFD and NFC forms are the same thing, "\x{FB00}", but its NFKD and NFKC
forms return a two-character string, "\x{66 }\x{66}".

Canonicalizing Strings with Unicode Combined Characters | 23

See Also

The section on “The Universal Character Code” at the beginning of this chapter; the
documentation for the Unicode::Normalize module; Recipe 8.20

1.10 Treating a Unicode String as Octets

Problem

You have a Unicode string but want Perl to treat it as octets (e.g., to calculate its
length or for purposes of I/0).

Solution

The use bytes pragma makes all Perl operations in its lexical scope treat the string as
a group of octets. Use it when your code is calling Perl’s character-aware functions
directly:

$ff = "\x{FBoO}"; # ff ligature

$chars = length($ff); # length is one character

{
use bytes; # force byte semantics
$octets = length($ff); # length is two octets

}

$chars = length($ff); # back to character semantics

Alternatively, the Encode module lets you convert a Unicode string to a string of
octets, and back again. Use it when the character-aware code isn’t in your lexical
scope:

use Encode gw(encode utf8);
sub somefunc; # defined elsewhere

$Ff = "\x{FBOO}"; # ff ligature
$ff oct = encode utf8($ff); # convert to octets

$chars = somefunc($ff); # work with character string
$octets = somefunc($ff_oct); # work with octet string

Discussion

As explained in this chapter’s Introduction, Perl knows about two types of string:
those made of simple uninterpreted octets, and those made of Unicode characters
whose UTF-8 representation may require more than one octet. Each individual string
has a flag associated with it, identifying the string as either UTF-8 or octets. Perl’s /O
and string operations (such as length) check this flag and give character or octet
semantics accordingly.

24 | Chapter1: Strings

Sometimes you need to work with bytes and not characters. For example, many pro-
tocols have a Content-Length header that specifies the size of the body of a message in
octets. You can’t simply use Perl’s length function to calculate the size, because if the
string you're calling length on is marked as UTF-8, you’ll get the size in characters.

The use bytes pragma makes all Perl functions in its lexical scope use octet seman-
tics for strings instead of character semantics. Under this pragma, length always
returns the number of octets, and read always reports the number of octets read.
However, because the use bytes pragma is lexically scoped, you can’t use it to change
the behavior of code in another scope (e.g., someone else’s function).

For this you need to create an octet-encoded copy of the UTF-8 string. In memory, of
course, the same byte sequence is used for both strings. The difference is that the
copy of your UTF-8 string has the UTF-8 flag cleared. Functions acting on the octet
copy will give octet semantics, regardless of the scope they’re in.

There is also a no bytes pragma, which forces character semantics, and a decode_utf8
function, which turns octet-encoded strings into UTF-8 encoded strings. However,
these functions are less useful because not all octet strings are valid UTF-8 strings,
whereas all UTF-8 strings are valid octet strings.

See Also

The documentation for the bytes pragma; the documentation for the standard
Encode module

1.11 Expanding and Compressing Tabs

Problem

You want to convert tabs in a string to the appropriate number of spaces, or vice
versa. Converting spaces into tabs can be used to reduce file size when the file has
many consecutive spaces. Converting tabs into spaces may be required when produc-
ing output for devices that don’t understand tabs or think them at different posi-
tions than you do.

Solution

Either use a rather funny looking substitution:

while ($string =~ s/\t+/' ' x (length($&) * 8 - length($") % 8)/e) {
spin in empty loop until substitution finally fails
}

or use the standard Text::Tabs module:

use Text::Tabs;
@expanded lines = expand(@lines with tabs);
@tabulated lines = unexpand(@lines without tabs);

Expanding and Compressing Tabs | 25

Discussion

Assuming tab stops are set every N positions (where N is customarily eight), it’s easy
to convert them into spaces. The standard textbook method does not use the Text::
Tabs module but suffers slightly from being difficult to understand. Also, it uses the
$~ variable, whose very mention currently slows down every pattern match in the
program. This is explained in “Special Variables” in Chapter 6. You could use this
algorithm to make a filter to expand its input’s tabstops to eight spaces each:
while (<>) {
1 while s/\t+/" ' x (length($&) * 8 - length($) % 8)/e;
print;
}
To avoid $°, you could use a slightly more complicated alternative that uses the
numbered variables for explicit capture; this one expands tabstops to four each
instead of eight:

1 while s/~(.*?)(\t+)/$1 . ' ' x (length($2) * 4 - length($1) % 4)/e;

Another approach is to use the offsets directly from the @+ and @- arrays. This also
expands to four-space positions:

1 while s/\t+/' ' x (($+[0] - $-[0]) * 4 - $-[0] % 4)/e;

If you’re looking at all of these 1 while loops and wondering why they couldn’t have
been written as part of a simple s///g instead, it’s because you need to recalculate
the length from the start of the line again each time rather than merely from where
the last match occurred.

The convention 1 while CONDITION is the same as while (CONDITION) { }, but shorter.
Its origins date to when Perl ran the first incredibly faster than the second. While the
second is now almost as fast, it remains convenient, and the habit has stuck.

The standard Text::Tabs module provides conversion functions to convert both
directions, exports a $tabstop variable to control the number of spaces per tab, and
does not incur the performance hit because it uses $1 and $2 rather than $& and $°.
use Text::Tabs;
$tabstop = 4;
while (<>) { print expand($_) }
We can also use Text::Tabs to “unexpand” the tabs. This example uses the default
$tabstop value of 8:

use Text::Tabs;
while (<>) { print unexpand($_) }

See Also

The manpage for the Text::Tabs module; the s/// operator in perlre(1) and
perlop(l); the @- and @+ variables (@LAST MATCH START and @LAST MATCH END) in

26 | Chapter1: Strings

Chapter 28 of Programming Perl; the section on “When a global substitution just
isn’t global enough” in Chapter 5 of Programming Perl

1.12 Expanding Variables in User Input

Problem

You’ve read a string with an embedded variable reference, such as:
You owe $debt to me.

Now you want to replace $debt in the string with its value.

Solution

Use a substitution with symbolic references if the variables are all globals:
$text =~ s/A\A$(\w+)/${$1}/g;

But use a double /ee if they might be lexical (my) variables:
$text =~ s/(\$\w+)/$1/gee;

Discussion

The first technique is basically to find what looks like a variable name, then use sym-
bolic dereferencing to interpolate its contents. If $1 contains the string somevar, ${$1}
will be whatever $somevar contains. This won’t work if the use strict 'refs' pragma
is in effect because that bans symbolic dereferencing.

Here’s an example:

our ($rows, $cols);
no strict 'refs'; # for ${$1}/g below
my $text;

($rows, $cols) = (24, 80);

$text = (I am $rows high and $cols long); # like single quotes!

$text =~ s/\$(\w+)/${$1}/g;

print $text;

I am 24 high and 80 long
You may have seen the /e substitution modifier used to evaluate the replacement as
code rather than as a string. It’s designed for situations where you don’t know the
exact replacement value, but you do know how to calculate it. For example, dou-
bling every whole number in a string:

$text = "I am 17 years old";

$text =~ s/(\d+)/2 * $1/eg;
When Perl is compiling your program and sees a /e on a substitute, it compiles the
code in the replacement block along with the rest of your program, long before the

Expanding Variables in User Input | 27

substitution actually happens. When a substitution is made, $1 is replaced with the
string that matched. The code to evaluate would then be something like:

2 %17
If we tried saying:

$text = 'I am $AGE years old'; # note single quotes

$text =~ s/(\$\w+)/$1/eg; # WRONG
assuming $text held a mention of the variable $AGE, Perl would dutifully replace $1
with $AGE and then evaluate code that looked like:

"$AGE"

which just yields us our original string back again. We need to evaluate the result
again to get the value of the variable. To do that, just add another /e:

$text =~ s/(\$\w+)/$1/eeg; # finds my() variables

Yes, you can have as many /e modifiers as you’d like. Only the first one is compiled
and syntax-checked with the rest of your program. This makes it work like the eval
{BLOCK} construct, except that it doesn’t trap exceptions. Think of it more as a do
{BLOCK} instead.

Subsequent /e modifiers are quite different. They’re more like the eval "STRING" con-
struct. They don’t get compiled until runtime. A small advantage of this scheme is
that it doesn’t require a no strict 'refs' pragma for the block. A tremendous advan-
tage is that unlike symbolic dereferencing, this mechanism finds lexical variables cre-
ated with my, something symbolic references can never do.

The following example uses the /x modifier to enable whitespace and comments in
the pattern part of the substitute and /e to evaluate the righthand side as code. The
/e modifier gives more control over what happens in case of error or other extenuat-
ing circumstances, as we have here:

expand variables in $text, but put an error message in
if the variable isn't defined

$text =~ s{
\$ # find a literal dollar sign
(\w+) # find a "word" and store it in $1
H
no strict 'refs’; # for $$1 below
if (defined ${$1}) {
${$1}; # expand global variables only
} else {
"[NO VARIABLE: \$$1]"; # error msg
}
tegx;

Once upon a time, long ago and far away, $$1 used to mean ${$}1 when it occurred
within a string; that is, the $$ variable followed by a 1. This was grandfathered to work
that way so you could more readily expand the $$ variable as your process ID to com-
pose temporary filenames. It now always means ${$1}, i.e., dereference the contents of
the $1 variable. We have written it the more explicit way for clarity, not correctness.

28 | Chapter1: Strings

See Also

The s/// operator in perlre(1) and perlop(1) and Chapter 5 of Programming Perl; the
eval function in perlfunc(l) and Chapter 29 of Programming Perl; the similar use of
substitutions in Recipe 20.9

1.13 Controlling Case

Problem

A string in uppercase needs converting to lowercase, or vice versa.

Solution

Use the 1c and uc functions or the \L and \U string escapes.
$big = uc($little); # "bo peep" -> "BO PEEP"
$little = lc($big); # "JOHN" -> "john"
$big = "\U$little"; # "bo peep" -> "BO PEEP"
$little = "\L$big"; # "JOHN" -> "john"

To alter just one character, use the lcfirst and ucfirst functions or the \1 and \u
string escapes.

$big = "\uplittle";
$little = "\1$big";

"po"
"BoPeep"

-5 "Bo"
-> "boPeep"

Discussion

The functions and string escapes look different, but both do the same thing. You can
set the case of either just the first character or the whole string. You can even do both
at once to force uppercase (actually, titlecase; see later explanation) on initial charac-
ters and lowercase on the rest.

$beast = "dromedary";
capitalize various parts of $beast

$capit = ucfirst($beast); # Dromedary
$capit = "\u\L$beast"; # (same)
$capall = uc($beast); # DROMEDARY
$capall = "\U$beast"; # (same)
$caprest = lcfirst(uc($beast)); # dROMEDARY
$caprest = "\1\U$beast"; # (same)

These capitalization-changing escapes are commonly used to make a string’s case

consistent:

titlecase each word's first character, lowercase the rest

$text = "thIS is a 1oNG 1iNE";
$text =~ s/(\w+)/\u\L$1/g;
print $text;

This Is A Long Line

Controlling Case | 29

You can also use these for case-insensitive comparison:

if (uc($a) eq uc($b)) { # or "\U$a" eq "\U$b"
print "a and b are the same\n";
}

The randcap program, shown in Example 1-2, randomly titlecases 20 percent of the
letters of its input. This lets you converse with 14-year-old WaREz d00Dz.

Example 1-2. randcap

#!/usr/bin/perl -p

randcap: filter to randomly capitalize 20% of the letters

call to srand() is unnecessary as of v5.4

BEGIN { srand(time() ~ ($$ + ($$<<15))) }

sub randcase { rand(100) < 20 ? "\u$ _[0]" : "\1$ [o0]" }
s/(\w)/randcase($1)/ge;

% randcap < genesis | head -9

boOk 01 genesis

001:001 in the BEginning goD created the heaven and tHe earTh.

001:002 and the earth wAS without ForM, aND void; AnD darkneSS was
upon The Face of the dEEp. and the spIrit of GOd movEd upOn
tHe face of the Waters.

001:003 and god Said, let there be ligHt: and therE wAs LigHt.

In languages whose writing systems distinguish between uppercase and titlecase, the
ucfirst() function (and \u, its string escape alias) converts to titlecase. For example,
in Hungarian the “dz” sequence occurs. In uppercase, it’s written as “DZ”, in title-
case as “Dz”, and in lowercase as “dz”. Unicode consequently has three different
characters defined for these three situations:

Code point Written Meaning

01F1 Dz LATIN CAPITAL LETTER DZ
01F2 Dz LATIN CAPITAL LETTER D WITH SMALL LETTER Z
01F3 dz LATIN SMALL LETTER DZ

It is tempting but ill-advised to just use tr[a-z][A-Z] or the like to convert case. This
is a mistake because it omits all characters with diacritical markings—such as diaere-
ses, cedillas, and accent marks—which are used in dozens of languages, including
English. However, correctly handling case mappings on data with diacritical mark-
ings can be far trickier than it seems. There is no simple answer, although if every-
thing is in Unicode, it’s not all that bad, because Perl’s case-mapping functions do
work perfectly fine on Unicode data. See the section on “Universal Character Code”
in the Introduction to this chapter for more information.

See Also

The uc, 1c, ucfirst, and lcfirst functions in perlfunc(l) and Chapter 29 of Program-
ming Perl; \L, \U, \1, and \u string escapes in the “Quote and Quote-like Operators”
section of perlop(1) and Chapter 5 of Programming Perl

30 | Chapter1: Strings

1.14 Properly Capitalizing a Title or Headline

Problem

You have a string representing a headline, the title of book, or some other work that
needs proper capitalization.

Solution

Use a variant of this tc() titlecasing function:

INIT {
our %nocap;
for (qw(
a an the
and but or
as at but by for from in into of off on onto per to with

))
$nocap{$_}++;
}

sub tc {
local § = shift;

put into lowercase if on stop list, else titlecase
s/(\pL[\pL']*)/$nocap{$1} ? 1c($1) : ucfirst(lc($1))/ge;

s/A(\pL[\pL']*) /\u\L$1/x; # first word guaranteed to cap
s/ (\pL[\pL']*)$/\u\L$1/x; # last word guaranteed to cap

treat parenthesized portion as a complete title
s/AC (\pL[\pL'T*) 7(\u\L$1/x;
s/(\pLI\pL'T*) \) /\u\L$1)/x;

capitalize first word following colon or semi-colon
s/ ([:;] \s+) (\pL[\pL']*) /$1\u\L$2/x;

return $_;

Discussion

The rules for correctly capitalizing a headline or title in English are more complex
than simply capitalizing the first letter of each word. If that’s all you need to do,
something like this should suffice:

s/(\w+\S*¥\w*)/\u\L$1/g;

Properly Capitalizing a Title or Headline | 31

Most style guides tell you that the first and last words in the title should always be
capitalized, along with every other word that’s not an article, the particle “to” in an
infinitive construct, a coordinating conjunction, or a preposition.

Here’s a demo, this time demonstrating the distinguishing property of titlecase.
Assume the tc function is as defined in the Solution.

with apologies (or kudos) to Stephen Brust, PJF,
and to JRRT, as always.
@data = (
"the enchantress of \x{01F3}ur mountain",
"meeting the enchantress of \x{01F3}ur mountain",
"the lord of the rings: the fellowship of the ring",

)5
$mask = "%-20s: %s\n";
sub tc_lame {

local $ = shift;
s/(\w\S*¥\w*) /\u\L$1/g;

return $_;

}

for $datum (@data) {
printf $mask, "ALL CAPITALS", uc($datum);
printf $mask, "no capitals"”, lc($datum);
printf $mask, "simple titlecase", tc_lame($datum);
printf $mask, "better titlecase", tc($datum);
print "\n";

}

ALL CAPITALS THE ENCHANTRESS OF DZUR MOUNTAIN
no capitals the enchantress of dzur mountain
simple titlecase : The Enchantress Of Dzur Mountain
better titlecase The Enchantress of Dzur Mountain

ALL CAPITALS : MEETING THE ENCHANTRESS OF DZUR MOUNTAIN
no capitals meeting the enchantress of dzur mountain
simple titlecase Meeting The Enchantress Of Dzur Mountain
better titlecase : Meeting the Enchantress of Dzur Mountain

ALL CAPITALS THE LORD OF THE RINGS: THE FELLOWSHIP OF THE RING
no capitals : the lord of the rings: the fellowship of the ring
simple titlecase The Lord Of The Rings: The Fellowship Of The Ring
better titlecase The Lord of the Rings: The Fellowship of the Ring

One thing to consider is that some style guides prefer capitalizing only prepositions
that are longer than three, four, or sometimes five letters. O’Reilly & Associates, for
example, keeps prepositions of four or fewer letters in lowercase. Here’s a longer list
of prepositions if you prefer, which you can modify to your needs:
@all prepositions = quf
about above absent across after against along amid amidst

among amongst around as at athwart before behind below
beneath beside besides between betwixt beyond but by circa

32 | Chapter1: Strings

down during ere except for from in into near of off on onto

out over past per since than through till to toward towards

under until unto up upon versus via with within without

};

This kind of approach can take you only so far, though, because it doesn’t distin-
guish between words that can be several parts of speech. Some prepositions on the
list might also double as words that should always be capitalized, such as subordi-
nating conjunctions, adverbs, or even adjectives. For example, it’s “Down by the Riv-
erside” but “Getting By on Just $30 a Day”, or “A Ringing in My Ears” but “Bringing
In the Sheaves”.
Another consideration is that you might prefer to apply the \u or ucfirst conversion
by itself without also putting the whole string into lowercase. That way a word that’s
already in all capital letters, such as an acronym, doesn’t lose that trait. You proba-
bly wouldn’t want to convert “FBI” and “LBJ” into “Fbi” and “Lbj”.

See Also

The uc, 1c, ucfirst, and lcfirst functions in perlfunc(1l) and Chapter 29 of Program-
ming Perl; the \L, \U, \1, and \u string escapes in the “Quote and Quote-like Opera-
tors” section of perlop(1) and Chapter 5 of Programming Perl

1.15 Interpolating Functions and Expressions
Within Strings

Problem

You want a function call or expression to expand within a string. This lets you con-
struct more complex templates than with simple scalar variable interpolation.

Solution

Break up your expression into distinct concatenated pieces:
$answer = $varl . func() . $var2; # scalar only
Or use the slightly sneaky @{[LIST EXPR]} or ${ \(SCALAR EXPR) } expansions:

$answer = "STRING @{[LIST EXPR]} MORE STRING";
$answer = "STRING ${\(SCALAR EXPR)} MORE STRING";

Discussion

This code shows both techniques. The first line shows concatenation; the second
shows the expansion trick:

$phrase = "I have " . ($n + 1) . " guanacos.";
$phrase = "I have ${\($n + 1)} guanacos.";

Interpolating Functions and Expressions Within Strings | 33

The first technique builds the final string by concatenating smaller strings, avoiding
interpolation but achieving the same end. Because print effectively concatenates its
entire argument list, if we were going to print $phrase, we could have just said:

print "I have ", $n + 1, " guanacos.\n";

When you absolutely must have interpolation, you need the punctuation-riddled
interpolation from the Solution. Only @, $, and \ are special within double quotes
and most backquotes. (As with m// and s///, the gx() synonym is not subject to
double-quote expansion if its delimiter is single quotes! $home = gqx'echo home is
$HOME " ; would get the shell $HOME variable, not one in Perl.) So, the only way to force
arbitrary expressions to expand is by expanding a ${ } or @{ } whose block contains a
reference.

In the example:
$phrase = "I have ${\(count_em())} guanacos.";

the function call within the parentheses is not in scalar context; it is still in list con-
text. The following overrules that:

$phrase = "I have ${\(scalar count _em())} guanacos.";

You can do more than simply assign to a variable after interpolation. It’s a general
mechanism that can be used in any double-quoted string. For instance, this example
builds a string with an interpolated expression and passes the result to a function:

some_func("What you want is @{[split /:/, $rec]} items");
You can interpolate into a here document, as by:

die "Couldn't send mail" unless send mail(<<"EOTEXT", $target);
To: $naughty

From: Your Bank

Cc: @{ get manager list($naughty) }

Date: @{[do { my $now = “date’; chomp $now; $now }]} (today)

Dear $naughty,

Today, you bounced check number @{[500 + int rand(100)]} to us.
Your account is now closed.

Sincerely,

the management

EOTEXT
Expanding backquotes (**) is particularly challenging because you would normally
end up with spurious newlines. By creating a braced block following the @ within the
@{[1} anonymous array dereference, as in the last example, you can create private
variables.

Although these techniques work, simply breaking your work up into several steps or
storing everything in temporary variables is almost always clearer to the reader.

34 | Chapter1: Strings

The Interpolation module from CPAN provides a more syntactically palatable cover-
ing. For example, to make elements of the hash %E evaluate and return its subscript:

use Interpolation E => 'eval';
print "You bounced check number $E{500 + int rand(100)}\n";

Or to make a hash named %money call a suitably defined function of your choice:

use Interpolation money => \¤cy commify;

print "That will be $money{ 4 * $payment }, right now.\n";
expect to get something like:

That will be $3,232.421.04, right now.

See Also

perlref(1) and the “Other Tricks You Can Do with Hard References” section in
Chapter 8 of Programming Perl; the Interpolation CPAN module

1.16 Indenting Here Documents

Problem

When using the multiline quoting mechanism called a here document, the text must
be flush against the margin, which looks out of place in the code. You would like to
indent the here document text in the code, but not have the indentation appear in
the final string value.

Solution

Use a s/// operator to strip out leading whitespace.

all in one

($var = << HERE_TARGET) =~ s/"\s+//gm;
your text
goes here

HERE_TARGET

or with two steps
$var = << HERE_TARGET;
your text
goes here
HERE_TARGET
$var =~ s/"\s+//gm;

Discussion

The substitution is straightforward. It removes leading whitespace from the text of
the here document. The /m modifier lets the * character match at the start of each

Indenting Here Documents | 35

line in the string, and the /g modifier makes the pattern-matching engine repeat the
substitution as often as it can (i.e., for every line in the here document).
($definition = << 'FINIS') =~ s/"\s+//gm;
The five varieties of camelids
are the familiar camel, his friends
the 1lama and the alpaca, and the
rather less well-known guanaco

and vicuna.
FINIS

Be warned: all patterns in this recipe use \s, meaning one whitespace character,
which will also match newlines. This means they will remove any blank lines in your
here document. If you don’t want this, replace \s with [*\S\n] in the patterns.

The substitution uses the property that the result of an assignment can be used as the
lefthand side of =~. This lets us do it all in one line, but works only when assigning to
a variable. When you’re using the here document directly, it would be considered a
constant value, and you wouldn’t be able to modify it. In fact, you can’t change a
here document’s value unless you first put it into a variable.

Not to worry, though, because there’s an easy way around this, particularly if you’re
going to do this a lot in the program. Just write a subroutine:

sub fix {
my $string = shift;
$string =~ s/"\s+//gm;
return $string;

}

print fix(<< "END");
My stuff goes here
END

With function predeclaration, you can omit the parens:
print fix << "END";

My stuff goes here
END

As with all here documents, you have to place this here document’s target (the token
that marks its end, END in this case) flush against the lefthand margin. To have the
target indented also, you’ll have to put the same amount of whitespace in the quoted
string as you use to indent the token.
($quote = << ' FINIS') =~ s/™\s+//gm;

...we will have peace, when you and all your works have

perished--and the works of your dark master to whom you would

deliver us. You are a liar, Saruman, and a corrupter of men's

hearts. --Theoden in /usr/src/perl/taint.c

FINIS
$quote =~ s/\s+--/\n--/; #move attribution to line of its own

If you’re doing this to strings that contain code you’re building up for an eval, or just
text to print out, you might not want to blindly strip all leading whitespace, because

36 | Chapter1: Strings

that would destroy your indentation. Although eval wouldn’t care, your reader
might.

Another embellishment is to use a special leading string for code that stands out. For
example, here we’ll prepend each line with @@@, properly indented:

if ($REMEMBER_THE MAIN) {

$perl main_C = dequote << ' MAIN_INTERPRETER_LOOP';
@@@ int
@@@ runops() {
@e@ SAVEI32(runlevel);
@e@ runlevel++;
@e@ while (op = (*op->op_ppaddr)()) ;
eEe TAINT _NOT;
€2 return 0;
eee }

MAIN_INTERPRETER_LOOP

add more code here if you want

}
Destroying indentation also gets you in trouble with poets.

sub dequote;
$poem = dequote << EVER_ON_AND ON;
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.
--Bilbo in /usr/src/perl/pp_ctl.c
EVER_ON_AND_ON
print "Here's your poem:\n\n$poem\n";

Here is its sample output:

Here's your poem:

Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.
--Bilbo in /usr/src/perl/pp_ctl.c

The following dequote function handles all these cases. It expects to be called with a
here document as its argument. It checks whether each line begins with a common
substring, and if so, strips that off. Otherwise, it takes the amount of leading
whitespace found on the first line and removes that much from each subsequent line.
sub dequote {

local $ = shift;

my ($white, $leader); # common whitespace and common leading string

if (/M\s*(2:([M\Ww\sT+) (\s*) . F\n) (2:\s*¥\1\22.%\n)+$/) {

($white, $leader) = ($2, quotemeta($1));

Indenting Here Documents | 37

} else {
($white, $leader) = (/~(\s+)/, '");
}

s/Ms*?$leader(?:$white)?//gm;
return $;

}

If that pattern makes your eyes glaze over, you could always break it up and add
comments by adding /x:

if (m{
start of line
0 or more whitespace chars
begin first non-remembered grouping
begin save buffer $1
one character neither space nor word
1 or more of such
end save buffer $1
put 0 or more white in buffer $2
match through the end of first line
end of first grouping
begin second non-remembered grouping
0 or more whitespace chars
whatever string is destined for $1
what'll be in $2, but optionally
match through the end of the line
now repeat that group idea 1 or more
until the end of the line

\s *

(2:

[M\w\s]

(\s*)
K \n

\s *
\1
\2 ?
¥ \n
) +
$
Ix

HOoH O HFH R HHE R R

)

{

($white, $leader) = ($2, quotemeta($1));
} else {

($white, $leader) = (/~(\s+)/, '");
}

s{

N
\s *
?
$leader
(2:
$white
) ?
H Ixgm;
There, isn’t that much easier to read? Well, maybe not; sometimes it doesn’t help to
pepper your code with insipid comments that mirror the code. This may be one of
those cases.

start of each line (due to /m)
any amount of leading whitespace
but minimally matched
our quoted, saved per-line leader
begin unremembered grouping
the same amount
optionalize in case EOL after leader

HOoH O R HH

See Also

The “Scalar Value Constructors” section of perldata(l) and the section on “Here
Documents” in Chapter 2 of Programming Perl; the s/// operator in perlre(1) and
perlop(1), and the “Pattern Matching” section in Chapter 5 of Programming Perl

38 | Chapter1: Strings

1.17 Reformatting Paragraphs

Problem

Your string is too big to fit the screen, and you want to break it up into lines of
words, without splitting a word between lines. For instance, a style correction script
might read a text file a paragraph at a time, replacing bad phrases with good ones.
Replacing a phrase like utilizes the inherent functionality of with uses will change the
length of lines, so it must somehow reformat the paragraphs when they’re output.

Solution

Use the standard Text::Wrap module to put line breaks at the right place:

use Text::Wrap;
@output = wrap($leadtab, $nexttab, @para);

Or use the more discerning CPAN module, Text::Autoformat, instead:

use Text::Autoformat;
$formatted = autoformat $rawtext;

Discussion

The Text::Wrap module provides the wrap function, shown in Example 1-3, which
takes a list of lines and reformats them into a paragraph with no line more than
$Text: :Wrap::columns characters long. We set $columns to 20, ensuring that no line
will be longer than 20 characters. We pass wrap two arguments before the list of
lines: the first is the indent for the first line of output, the second the indent for every
subsequent line.

Example 1-3. wrapdemo

#!/usr/bin/perl -w

wrapdemo - show how Text::Wrap works

@input = ("Folding and splicing is the work of an editor,",
"not a mere collection of silicon",
"and",
"mobile electrons!");

use Text::Wrap gw($columns &wrap);

$columns = 20;

print "0123456789" x 2, "\n";

print wrap(" ", " ", @input), "\n";

The result of this program is:

01234567890123456789
Folding and
splicing is the

work of an
editor, not a

Reformatting Paragraphs | 39

mere collection
of silicon and
mobile electrons!

We get back a single string, with newlines ending each line but the last:

merge multiple lines into one, then wrap one long line
use Text::Wrap;

undef $/;

print wrap('', "', split(/\s*\n\s*/, <>));

If you have the Term::ReadKey module (available from CPAN) on your system, you
can determine your window size so you can wrap lines to fit the current screen size.

If you don’t have the module, sometimes the screen size can be found in
$ENV{COLUMNS} or by parsing the output of the stty(1) command.

The following program tries to reformat both short and long lines within a para-
graph, similar to the fm#(1) program, by setting the input record separator $/ to the
empty string (causing <> to read paragraphs) and the output record separator $\ to
two newlines. Then the paragraph is converted into one long line by changing all
newlines and any surrounding whitespace to single spaces. Finally, we call the wrap
function with leading and subsequent tab strings set to the empty string so we can
have block paragraphs.

use Text::Wrap gw(&wrap $columns);
use Term::ReadKey qw(GetTerminalSize);
($columns) = GetTerminalSize();
($/, $\) = ("', "\n\n"); # read by paragraph, output 2 newlines
while (<>) { # grab a full paragraph
s/\s*\n\s*/ /g; # convert intervening newlines to spaces
print wrap('', '', $_); # and format

The CPAN module Text::Autoformat is much more clever. For one thing, it tries to
avoid “widows,” that is, very short lines at the end. More remarkably, it correctly
copes with reformatting paragraphs that have multiple, deeply nested citations. An
example from that module’s manpage shows how the module can painlessly convert:

In comp.lang.perl.misc you wrote:

<CN = Clooless Noobie> writes:

CN> PERL sux because:

CN> * It doesn't have a switch statement and you have to put $
CN>signs in front of everything

CN> * There are too many OR operators: having |, || and 'or'
CN>operators is confusing

CN> * VB rools, yeah!!lIII111]

CN> So anyway, how can I stop reloads on a web page?

CN> Email replies only, thanks - I don't read this newsgroup.

V V. V V V V V V V V.V

Begone, sirrah! You are a pathetic, Bill-loving, microcephalic

: > script-infant.

: Sheesh, what's with this group - ask a question, get toasted! And how
: *dare* you accuse me of Ianuphilial

40 | Chapter1: Strings

nto:

In comp.lang.perl.misc you wrote:

: > <CN = Clooless Noobie> writes:

: > CN> PERL sux because:

:> N> * It doesn't have a switch statement and you

: > CN> have to put $ signs in front of everything
> N> * There are too many OR operators: having |, ||
:> N> and 'or' operators is confusing

: > CN> * VB rools, yeah!!!!IIII11 So anyway, how can I
> CN> stop reloads on a web page? Email replies

:> N> only, thanks - I don't read this newsgroup.
T

: > Begone, sirrah! You are a pathetic, Bill-loving,

: > microcephalic script-infant.

: Sheesh, what's with this group - ask a question, get toasted!
: And how *dare* you accuse me of Ianuphilia!

simply via print autoformat($badparagraph). Pretty impressive, eh?
Here’s a miniprogram that uses that module to reformat each paragraph of its input
stream:

use Text::Autoformat;
§/ =
while (<>) {
print autoformat($_, {squeeze => 0, all => 1}),

"\t

}

See Also

The split and join functions in perlfunc(1l) and Chapter 29 of Programming Perl; the
manpage for the standard Text::Wrap module; the CPAN module Term::ReadKey,
and its use in Recipe 15.6 and the CPAN module Text::Autoformat

1.18 Escaping Characters

Problem

You need to output a string with certain characters (quotes, commas, etc.) escaped.
For instance, you're producing a format string for sprintf and want to convert lit-
eral % signs into %%.

Solution

Use a substitution to backslash or double each character to be escaped:
backslash
$var =~ s/([CHARLIST])/\\$1/g;

double
$var =~ s/([CHARLIST])/$1$1/g;

Escaping Characters | 41

Discussion

$var is the variable to be altered. The CHARLIST is a list of characters to escape and
can contain backslash escapes like \t and \n. If you just have one character to escape,
omit the brackets:

$string =~ s/%/%%/g;

The following code lets you do escaping when preparing strings to submit to the
shell. (In practice, you would need to escape more than just ' and " to make any arbi-
trary string safe for the shell. Getting the list of characters right is so hard, and the
risks if you get it wrong are so great, that you’re better off using the list form of system
and exec to run programs, shown in Recipe 16.2. They avoid the shell altogether.)

$string = q(Mom said, "Don't do that.");

$string =~ s/(['"])/\\$1/g;
We had to use two backslashes in the replacement because the replacement section
of a substitution is read as a double-quoted string, and to get one backslash, you
need to write two. Here’s a similar example for VMS DCL, where you need to dou-
ble every quote to get one through:

$string = q(Mom said, "Don't do that.");

$string =~ s/(['"])/$1%$1/g;
Microsoft command interpreters are harder to work with. In Windows, COM-
MAND.COM recognizes double quotes but not single ones, disregards backquotes
for running commands, and requires a backslash to make a double quote into a lit-
eral. Any of the many free or commercial Unix-like shell environments available for
Windows will work just fine, though.

Because we’re using character classes in the regular expressions, we can use - to
define a range and * at the start to negate. This escapes all characters that aren’t in
the range A through Z.

$string =~ s/([*A-Z])/\\$1/g;

In practice, you wouldn’t want to do that, since it would pick up a lowercase "a" and
turn it into "\a", for example, which is ASCII BEL character. (Usually when you
mean non-alphabetic characters, \PL works better.)

If you want to escape all non-word characters, use the \Q and \E string metacharac-
ters or the quotemeta function. For example, these are equivalent:

$string = "this \Qis a test!\E";
$string = "this is\\ a\\ test\\!";
$string = "this " . quotemeta("is a test!");

See Also

The s/// operator in perlre(1) and perlop(1) and Chapter 5 of Programming Perl; the
quotemeta function in perlfunc(1) and Chapter 29 of Programming Perl; the

42 | Chapter1: Strings

discussion of HTML escaping in Recipe 19.1; Recipe 19.5 for how to avoid having to
escape strings to give the shell

1.19 Trimming Blanks from the Ends of a String

Problem

You have read a string that may have leading or trailing whitespace, and you want to
remove it.

Solution

Use a pair of pattern substitutions to get rid of them:

$string =~ s/"\s+//;
$string =~ s/\s+$//;

Or write a function that returns the new value:

$string = trim($string);
@many = trim(@many);

sub trim {
my @ut = @_;
for (@out) {
s/™M\s+//; # trim left
s/\s+$//; # trim right
}

return @out ==
? $out[0] # only one to return
¢ @out; # or many

Discussion

This problem has various solutions, but this one is the most efficient for the com-
mon case. This function returns new versions of the strings passed in to it with their
leading and trailing whitespace removed. It works on both single strings and lists.

To remove the last character from the string, use the chop function. Be careful not to
confuse this with the similar but different chomp function, which removes the last part
of the string contained within that variable if and only if it is contained in the $/ vari-
able, "\n" by default. These are often used to remove the trailing newline from input:
print what's typed, but surrounded by > < symbols
while (<STDIN>) {
chomp;
print ">$ <\n";

}

This function can be embellished in any of several ways.

Trimming Blanks from the Ends of a String | 43

First, what should you do if several strings are passed in, but the return context
demands a single scalar? As written, the function given in the Solution does a some-
what silly thing: it (inadvertently) returns a scalar representing the number of strings
passed in. This isn’t very useful. You could issue a warning or raise an exception. You
could also squash the list of return values together.

For strings with spans of extra whitespace at points other than their ends, you could
have your function collapse any remaining stretch of whitespace characters in the
interior of the string down to a single space each by adding this line as the new last
line of the loop:

s/\s+/ /g; # finally, collapse middle

That way a string like " but\t\tnot here\n" would become "but not here". A more
efficient alternative to the three substitution lines:
s/™M\s+//;

s/\s+$//;
s/\s+/ /g;

would be:

$_ = join(' ', split(' '));
If the function isn’t passed any arguments at all, it could act like chop and chomp by
defaulting to $_. Incorporating all of these embellishments produces this function:

1. trim leading and trailing white space

2. collapse internal whitespace to single space each

3. take input from $_ if no arguments given

4. join return list into single scalar with intervening spaces

if return is scalar context
sub trim {
my @out =@ ?@_ : $_;

$ = join(' ', split(' ")) for @out;
return wantarray ? @out : "@out";

See Also

The s/// operator in perlre(1) and perlop(1) and Chapter 5 of Programming Perl; the
chomp and chop functions in perlfunc(l) and Chapter 29 of Programming Perl; we trim
leading and trailing whitespace in the getnum function in Recipe 2.1

1.20 Parsing Comma-Separated Data

Problem

You have a data file containing comma-separated values that you need to read, but
these data fields may have quoted commas or escaped quotes in them. Most

44 | Chapter1: Strings

spreadsheets and database programs use comma-separated values as a common

interchange format.

Solution

If your data file follows normal Unix quoting and escaping conventions, where
quotes within a field are backslash-escaped "1ike \"this\"", use the standard Text:

ParseWords and this simple code:

use Text::Parselords;
sub parse _csvo {
return quotewords("," => 0, $ [0]);

}

However, if quotes within a field are doubled "like ""this""", you could use the fol-

lowing procedure from Mastering Regular Expressions, Second Edition:

sub parse csvl {
my $text = shift; # record containing comma-separated values
my @fields = ();

while ($text =~ m{
Either some non-quote/non-comma text:

1+

...0r...

...a double-quoted field: (with "" allowed inside)

" # field's opening quote; don't save this
(now a field is either
(2: [# non-quotes or

|
) # adjacent quote pairs
* # any number

" # field's closing quote; unsaved

Jgx)
{
if (defined $1) {
$field = $1;
} else {
($Field = $2) =~ s/""/"/g;
}

push @fields, $field;
}

return @fields;

}
Or use the CPAN Text:CSV module:

use Text::CSV;
sub parse_csvl {

Parsing Comma-Separated Data

45

my $line = shift;
my $csv = Text::CSV->new();
return $csv->parse($line) && $csv->fields();

}
Or use the CPAN Tie::CSV_File module:
tie @data, "Tie::CSV_File", "data.csv";

for ($1 = 0; $i < @data; $i++) {
printf "Row %d (Line %d) is %s\n", $i, $i+1, "@{$data[$i]}";
for ($j = 0; $J < @{$data[$i]}; $j++) {
print "Column $j is <$data[$i][$j]>\n";
}

Discussion

Comma-separated input is a deceptive and complex format. It sounds simple, but
involves a fairly complex escaping system because the fields themselves can contain
commas. This makes the pattern-matching solution complex and rules out a simple
split /,/. Still worse, quoting and escaping conventions vary between Unix-style
files and legacy systems. This incompatibility renders impossible any single algo-
rithm for all CSV data files.

The standard Text::ParseWords module is designed to handle data whose quoting
and escaping conventions follow those found in most Unix data files. This makes it
eminently suitable for parsing the numerous colon-separated data files found on
Unix systems, including disktab(5), gettytab(5), printcap(5), and termcap(5). Pass
that module’s quotewords function two arguments and the CSV string. The first argu-
ment is the separator (here a comma, but often a colon), and the second is a true or
false value controlling whether the strings are returned with quotes around them.

In this style of data file, you represent quotation marks inside a field delimited by
quotation marks by escaping them with backslashes "like\"this\"". Quotation
marks and backslashes are the only characters that have meaning when back-
slashed. Any other use of a backslash will be left in the output string. The standard
Text::ParseWords module’s quotewords() function can handle such data.

However, it’s of no use on data files from legacy systems that represent quotation
marks inside such a field by doubling them "like""this""". For those, you’ll need
one of the other solutions. The first of these is based on the regular expression from
Mastering Regular Expressions, Second Edition, by Jeffrey E. F. Friedl (O’Reilly). It
enjoys the advantage of working on any system without requiring installation of
modules not found in the standard distribution. In fact, it doesn’t use any modules at
all. Tts slight disadvantage is the risk of sending the unseasoned reader into punctua-
tion shock, despite its copious commenting.

46 | Chapter1: Strings

The object-oriented CPAN module Text::CSV demonstrated in the next solution
hides that parsing complexity in more easily digestible wrappers. An even more ele-
gant solution is offered by the Tie::CSV_File module from CPAN, in which you are
given what appears to be a two-dimensional array. The first dimension represents
each line of the file, and the second dimension each column on each row.

Here’s how you’d use our two kinds of parse_csv subroutines. The q() is just a fancy
quote so we didn’t have to backslash everything.

$line = q(XYZzy,"","0'Reilly, Inc","Wall, Larry","a \"glug\" bit,",5,"Error, Core
Dumped");
@fields = parse csvo($line);
for ($i = 0; $i < @fields; $i++) {
print "$i : $fields[$i]\n";
}

s Xyzzy

: 0'Reilly, Inc

: Wall, Larry

: a "glug" bit,

5

: Error, Core Dumped

AUV ANWNRKRO
.

If the second argument to quotewords had been 1 instead of 0, the quotes would have
been retained, producing this output instead:
s Xyzzy

: "0'Reilly, Inc"

: "Wall, Larry"

: "a \"glug\" bit,"
:5

: "Error, Core Dumped"

AN ANWNRKRO

The other sort of data file is manipulated the same way, but using our parse_csvi
function instead of parse csvo. Notice how the embedded quotes are doubled, not
escaped.

$line = g(Ten Thousand, 10000, 2710 ,,"10,000","It's ""10 Grand"", baby",10K);
@fields = parse csvi($line);
for ($1 = 0; $i < @fields; $i++) {
print "$i : $fields[$i]\n";
}

: Ten Thousand
: 10000
2710

: 10,000
: It's "10 Grand", baby
: 10K

AUV ANWNRKRO
e oo

Parsing Comma-Separated Data | 47

See Also

The explanation of regular expression syntax in perlre(1) and Chapter 5 of Program-
ming Perl; the documentation for the standard Text::ParseWords module; the sec-
tion on “Parsing CSV Files” in Chapter 5 of Mastering Regular Expressions, Second
Edition

1.21 Constant Variables

Problem

You want a variable whose value cannot be modified once set.

Solution

If you don’t need it to be a scalar variable that can interpolate, the use constant
pragma will work:

use constant AVOGADRO => 6.02252e23;

printf "You need %g of those for guac\n", AVOGADRO;

If it does have to be a variable, assign to the typeglob a reference to a literal string or
number, then use the scalar variable:

*AVOGADRO = \6.02252e23;
print "You need $AVOGADRO of those for guac\n";

But the most foolproof way is via a small tie class whose STORE method raises an
exception:

package Tie::Constvar;

use Carp;

sub TIESCALAR {
my ($class, $initval) = @ ;
my $var = $initval;
return bless \$var => $class;

}
sub FETCH {
my $selfref = shift;
return $$selfref;
}
sub STORE {
confess "Meddle not with the constants of the universe";
}
Discussion

The use constant pragma is the easiest to use, but has a few drawbacks. The biggest
one is that it doesn’t give you a variable that you can expand in double-quoted

48 | Chapter1: Strings

strings. Another is that it isn’t scoped; it puts a subroutine of that name into the
package namespace.

The way the pragma really works is to create a subroutine of that name that takes no
arguments and always returns the same value (or values if a list is provided). That
means it goes into the current package’s namespace and isn’t scoped. You could do
the same thing yourself this way:

sub AVOGADRO() { 6.02252e23 }

If you wanted it scoped to the current block, you could make a temporary subrou-
tine by assigning an anonymous subroutine to the typeglob of that name:

use subs qw(AVOGADRO);
local *AVOGADRO = sub () { 6.02252e23 };

But that’s pretty magical, so you should comment the code if you don’t plan to use
the pragma.

If instead of assigning to the typeglob a reference to a subroutine, you assign to it a
reference to a constant scalar, then you’ll be able to use the variable of that name.
That’s the second technique given in the Solution. Its disadvantage is that typeglobs
are available only for package variables, not for lexicals created via my. Under the rec-
ommended use strict pragma, an undeclared package variable will get you into
trouble, too, but you can declare the variable using our:

our $AVOGADRO;
local *AVOGADRO = \6.02252e23;

The third solution provided, that of creating your own little tie class, might appear
the most complicated, but it provides the most flexibility. Plus you get to declare it as
a lexical if you want.

tie my $AVOGADRO, Tie::Constvar, 6.02252e23;
After which this is okay:

print "You need $AVOGADRO of those for guac\n";
But this will get you in trouble:

$AVOCADRO = 6.6256e-34; # sorry, Max

See Also

Recipe 1.15; Recipe 5.3; the discussion on folding constant subroutines toward the
end of the section on “Compiling Your Code” in Chapter 18 of Programming Perl;
the CPAN module Tie::Scalar::RestrictUpdates might give you some other ideas

Constant Variables | 49

1.22 Soundex Matching

Problem

You have two English surnames and want to know whether they sound somewhat
similar, regardless of spelling. This would let you offer users a “fuzzy search” of
names in a telephone book to catch “Smith” and “Smythe” and others within the set,
such as “Smite” and “Smote”.

Solution

Use the standard Text::Soundex module:

use Text::Soundex;
$CODE = soundex($STRING);
@CODES = soundex(@LIST);

Or use the CPAN module Text::Metaphone:

use Text::Metaphone;
$phoned words = Metaphone('Schwern');

Discussion

The soundex algorithm hashes words (particularly English surnames) into a small
space using a simple model that approximates an English speaker’s pronunciation of
the words. Roughly speaking, each word is reduced to a four-character string. The
first character is an uppercase letter; the remaining three are digits. By comparing the
soundex values of two strings, we can guess whether they sound similar.

The following program prompts for a name and looks for similarly sounding names
from the password file. This same approach works on any database with names, so
you could key the database on the soundex values if you wanted to. Such a key
wouldn’t be unique, of course.

use Text::Soundex;

use User::pwent;

print "Lookup user: ";
chomp($user =<STDIN>);

exit unless defined $user;
$name_code = soundex($user);

while ($uent = getpwent()) {
($firstname, $lastname) = $uent->gecos =~ /(\w+)[*,]*\b(\w+)/;

if ($name_code eq soundex($uent->name) |
$name_code eq soundex($lastname) |
$name_code eq soundex($firstname))

50 | Chapter1: Strings

printf "%s: %s %s\n", $uent->name, $firstname, $lastname;

}

The Text::Metaphone module from CPAN addresses the same problem in a differ-
ent and better way. The soundex function returns a letter and a three-digit code that
maps just the beginning of the input string, whereas Metaphone returns a code as let-
ters of variable length. For example:

soundex metaphone

Christiansen €623 KRSXNSN
Kris Jenson K625 KRSINSN
Kyrie Eleison K642 KRLSN

Curious Liaison €624 KRSLSN

To get the most of Metaphone, you should also use the String::Approx module from
CPAN, described more fully in Recipe 6.13. It allows for there to be errors in the
match and still be successful. The edit distance is the number of changes needed to go
from one string to the next. This matches a pair of strings with an edit distance of
two:

if (amatch("string1", [2], "string2") {}

There’s also an adist function that reports the edit distance. The edit distance
between “Kris Jenson” “Christiansen” is 6, but between their Metaphone encodings
is only 1. Likewise, the distance between the other pair is 8 originally, but down to 1
again if you compare Metaphone encodings.

use Text::Metaphone qw(Metaphone);
use String::Approx qw(amatch);

if (amatch(Metaphone($s1), [1], Metaphone($s1)) {
print "Close enough!\n";
}

This would successfully match both of our example pairs.

See Also

The documentation for the standard Text::Soundex and User::pwent modules; the
Text::Metaphone and String::Approx modules from CPAN; your system’s passwd(5)
manpage; Volume 3, Chapter 6 of The Art of Computer Programming, by Donald E.
Knuth (Addison-Wesley)

Soundex Matching | 51

1.23 Program: fixstyle

Imagine you have a table with both old and new strings, such as the following:

0ld words New words
bonnet hood
rubber eraser

lorry truck
trousers pants

The program in Example 1-4 is a filter that changes all occurrences of each element
in the first set to the corresponding element in the second set.

When called without filename arguments, the program is a simple filter. If filenames
are supplied on the command line, an in-place edit writes the changes to the files,
with the original versions saved in a file with a ".orig" extension. See Recipe 7.16 for
a description. A -v command-line option writes notification of each change to stan-
dard error.

The table of original strings and their replacements is stored below __END__ in the
main program, as described in Recipe 7.12. Each pair of strings is converted into
carefully escaped substitutions and accumulated into the $code variable like the
popgrep2 program in Recipe 6.10.

A -t check to test for an interactive run check tells whether we’re expecting to read
from the keyboard if no arguments are supplied. That way if users forget to give an
argument, they aren’t wondering why the program appears to be hung.

Example 1-4. fixstyle

#!/usr/bin/perl -w

fixstyle - switch first set of <DATA> strings to second set
usage: $0 [-v] [files ...]

use strict;

my $verbose = (@ARGV 8& $ARCV[0] eq '-v' && shift);

if (@ARGV) {

$°1 = ".orig"; # preserve old files
} else {
warn "$0: Reading from stdin\n" if -t STDIN;

}
my $code = "while (<>) {\n";
read in config, build up code to eval
while (<DATA>) {
chomp;
my ($in, $out) = split /\s*=>\s*/;
next unless $in 8& $out;
$code .= "s{\\Q$inm\\E}{$out}g";
$code .= "8& printf STDERR qq($in => $out at \$ARGV line \$.\\n)"
if $verbose;
$code .= ";\n";

52 | Chapter1: Strings

Example 1-4. fixstyle (continued)

}

$code .= "print;\n}\n";

eval "{ $code } 1" || die;
_END__

analysed => analyzed
built-in => builtin
chastized => chastised
commandline => command-line
de-allocate => deallocate
dropin => drop-in
hardcode => hard-code
meta-data => metadata
multicharacter => multi-character
multiway => multi-way
non-empty => nonempty
non-profit => nonprofit
non-trappable => nontrappable
pre-define => predefine
preextend => pre-extend
re-compiling => recompiling
reenter => re-enter
turnkey => turn-key

One caution: this program is fast, but it doesn’t scale if you need to make hundreds
of changes. The larger the DATA section, the longer it takes. A few dozen changes
won’t slow it down, and in fact, the version given in Example 1-4 is faster for that
case. But if you run the program on hundreds of changes, it will bog down.

Example 1-5 is a version that’s slower for few changes but faster when there are
many changes.

Example 1-5. fixstyle2

#!/usx/bin/perl -w
fixstyle2 - like fixstyle but faster for many many changes
use strict;
my $verbose = (@ARGV 8& $ARCV[0] eq '-v' && shift);
my %change = ();
while (<DATA>) {
chomp;
my ($in, $out) = split /\s*=>\s*/;
next unless $in 8& $out;
$change{$in} = $out;

if (@ARGY) {
$°1 = ".orig";
} else {
warn "$0: Reading from stdin\n" if -t STDIN;

}
while (<>) {
my $i = 0;

s/M(\s+)// 8& print $1; # emit leading whitespace

Program: fixstyle | 53

Example 1-5. fixstyle2 (continued)

for (split /(\s+)/, $_, -1) { # preserve trailing whitespace
print(($i++ & 1) 2 $_ : ($change{$ } || $.));

}
}
__END__
analysed => analyzed
built-in => builtin
chastized => chastised
commandline => command-line
de-allocate => deallocate
dropin => drop-in
hardcode => hard-code
meta-data => metadata
multicharacter => multi-character
multiway => multi-way
non-empty => nonempty
non-profit => nonprofit
non-trappable => nontrappable
pre-define => predefine
preextend => pre-extend
re-compiling => recompiling
reenter => re-enter
turnkey => turn-key

This version breaks each line into chunks of whitespace and words, which isn’t a fast
operation. It then uses those words to look up their replacements in a hash, which is
much faster than a substitution. So the first part is slower, the second faster. The dif-
ference in speed depends on the number of matches.

If you don’t care about keeping the whitespace separating each word constant, the
second version can run as fast as the first, even for a few changes. If you know a lot
about your input, collapse whitespace into single blanks by plugging in this loop:

very fast, but whitespace collapse
while (<>) {
for (split) {
print $change{$ } || $_, " ";
}
print "\n";

}

That leaves an extra blank at the end of each line. If that’s a problem, you could use
the technique from Recipe 16.5 to install an output filter. Place the following code in
front of the while loop that’s collapsing whitespace:

my $pid = open(STDOUT, "[-");
die "cannot fork: $!" unless defined $pid;
unless ($pid) { # child

while (<STDIN>) {

s/ $//;

print;

54 | Chapter1: Strings

exit;

1.24 Program: psgrep

Many programs, including ps, netstat, lsof, Is -1, find -Is, and tcpdump, can produce
more output than can be conveniently summarized. Logfiles also often grow too long
to be easily viewed. You could send these through a filter like grep to pick out only
certain lines, but regular expressions and complex logic don’t mix well; just look at
the hoops we jump through in Recipe 6.18.

What we’d really like is to make full queries on the program output or logfile. For
example, to ask ps something like, “Show me all processes that exceed 10K in size
but which aren’t running as the superuser” or “Which commands are running on
pseudo-ttys?”

The psgrep program does this—and infinitely more—because the specified selection
criteria are not mere regular expressions; they’re full Perl code. Each criterion is
applied in turn to every line of output. Only lines matching all arguments are out-
put. The following is a list of things to find and how to find them.

Lines containing “sh” at the end of a word:
% psgrep '/sh\b/'
Processes whose command names end in “sh”:
% psgrep 'command =~ /sh$/'
Processes running with a user ID below 10:
% psgrep 'uid < 10'
Login shells with active ttys:
% psgrep 'command =~ /*-/' 'tty ne "?"'
Processes running on pseudo-ttys:
% psgrep 'tty =~ /*[p-t]/'
Non-superuser processes running detached:
% psgrep 'uid 8& tty eq "?"'
Huge processes that aren’t owned by the superuser:
% psgrep 'size > 10 * 2**¥10' 'uid != 0'

The last call to psgrep produced the following output when run on our system. As
one might expect, only netscape and its spawn qualified.

FLAGS UID PID PPID PRI NI SIZE RSS WCHAN STA TTY TIME COMMAND
0 101 9751 1 0 0 14932 9652 do_select S p1 0:25 netscape
100000 101 9752 9751 O O 10636 812 do_select S p1 0:00 (dns helper)

Example 1-6 shows the psgrep program.

Program: psgrep | 55

Example 1-6. psgrep

#!/usx/bin/perl -w
psgrep - print selected lines of ps output by
compiling user queries into code
use strict;
each field from the PS header
my @fieldnames = gqw(FLAGS UID PID PPID PRI NICE SIZE
RSS WCHAN STAT TTY TIME COMMAND);

determine the unpack format needed (hard-coded for Linux ps)
my $fmt = cut2fmt(8, 14, 20, 26, 30, 34, 41, 47, 59, 63, 67, 72);
my %fields; # where the data will store
die << Thanatos unless @ARGV;
usage: $0 criterion ...

Each criterion is a Perl expression involving:

@fieldnames

All criteria must be met for a line to be printed.
Thanatos
Create function aliases for uid, size, UID, SIZE, etc.
Empty parens on closure args needed for void prototyping.
for my $name (@fieldnames) {

no strict 'refs';

*$name = *{1c $name} = sub () { $fields{$name} };
}
my $code = "sub is_desirable { " . join(" and ", @ARGV) . " } ";
unless (eval $code.1) {

die "Error in code: $@\n\t$code\n";

}
open(PS, "ps wwaxl |") || die "cannot fork: $!";
print scalar <PS>; # emit header line

while (<PS>) {
@fields{@fieldnames} = trim(unpack($fmt, $));
print if is_desirable(); # line matches their criteria
}
close(PS) || die "ps failed!";
convert cut positions to unpack format
sub cut2fmt {
my(@positions) = @ ;
my $template = "'';
my $lastpos = 1;
for my $place (@positions) {
$template .= "A" . ($place - $lastpos) . " ";
$lastpos = $place;
}
$template .= "A*";
return $template;
}
sub trim {
my @strings = @_;
for (@strings) {
s/™M\s+//;
s/\s+$//;
}

return wantarray ? @strings : $strings[o];

56

| Chapter1: Strings

Example 1-6. psgrep (continued)

the following was used to determine column cut points.
sample input data follows
#123456789012345678901234567890123456789012345678901234567890123456789012345

1 2 3 4 5 6 7
Positioning:
8 14 20 26 30 34 41 47 59 63 67 72
\ \ \ o \ \ I
__END_
FLAGS UID PID PPID PRI NI SIZE RSS WCHAN STA TTY TIME COMMAND
100 0 1 0o 0 o0 760 432 do_select S ? 0:02 init
140 o 187 1 0 o0 784 452 do_select S ? 0:02 syslogd
100100 101 428 1 0 0 1436 944 do_exit S 1 0:00 /bin/login
100140 99 30217 402 0 0 1552 1008 posix_lock S ? 0:00 httpd
0 101 593 428 0 0 1780 1260 copy thread S 1 0:00 -tcsh
100000 101 30639 9562 17 O 924 496 R p1 0:00 ps axl
0 101 25145 9563 O 0 2964 2360 idetape rea S p2 0:06 trn
100100 0 10116 9564 0 0 1412 928 setup_frame T p3 0:00 ssh -C www
100100 0 26560 26554 0 0 1076 572 setup_frame T p2 0:00 less
100000 101 19058 9562 O 0 1396 900 setup_frame T p1 0:02 nvi /tmp/a

The psgrep program integrates many techniques presented throughout this book.
Stripping strings of leading and trailing whitespace is found in Recipe 1.19. Convert-
ing cut marks into an unpack format to extract fixed fields is in Recipe 1.1. Matching
strings with regular expressions is the entire topic of Chapter 6.

The multiline string in the here document passed to die is discussed in Recipes 1.15
and 1.16. The assignment to @fields{@fieldnames} sets many values at once in the
hash named %fields. Hash slices are discussed in Recipes 4.8 and 5.11.

The sample program input contained beneath __END__ is described in Recipe 7.12.
During development, we used canned input from the DATA filehandle for testing pur-
poses. Once the program worked properly, we changed it to read from a piped-in ps
command but left a remnant of the original filter input to aid in future porting and
maintenance. Launching other programs over a pipe is covered in Chapter 16,

including Recipes 16.10 and 16.13.

The real power and expressiveness in psgrep derive from Perl’s use of string argu-
ments not as mere strings but directly as Perl code. This is similar to the technique in
Recipe 9.9, except that in psgrep, the user’s arguments are wrapped with a routine
called is_desirable. That way, the cost of compiling strings into Perl code happens
only once, before the program whose output we’ll process is even begun. For exam-
ple, asking for UIDs under 10 creates this string to eval:

eval "sub is desirable { uid < 10 } " . 1;

The mysterious ".1" at the end is so that if the user code compiles, the whole eval
returns true. That way we don’t even have to check $@ for compilation errors as we
do in Recipe 10.12.

Program: psgrep | 57

Specitying arbitrary Perl code in a filter to select records is a breathtakingly powerful
approach, but it’s not entirely original. Perl owes much to the awk programming lan-
guage, which is often used for such filtering. One problem with awk is that it can’t
easily treat input as fixed-size fields instead of fields separated by something.
Another is that the fields are not mnemonically named: awk uses $1, $2, etc. Plus,
Perl can do much that awk cannot.

The user criteria don’t even have to be simple expressions. For example, this call ini-
tializes a variable $id to user nobody’s number to use later in its expression:
% psgrep 'no strict "vars";

BEGIN { $id = getpwnam("nobody") }

uid == $id '
How can we use unquoted words without even a dollar sign, like uid, command, and size,
to represent those respective fields in each input record? We directly manipulate the
symbol table by assigning closures to indirect typeglobs, which creates functions with
those names. The function names are created using both uppercase and lowercase
names, allowing both "UID < 10" and "uid > 10". Closures are described in Recipe 11.4,
and assigning them to typeglobs to create function aliases is shown in Recipe 10.14.

One twist here not seen in those recipes is empty parentheses on the closure. These
allowed us to use the function in an expression anywhere we’d use a single term, like
a string or a numeric constant. It creates a void prototype so the field-accessing func-
tion named uid accepts no arguments, just like the built-in function time. If these
functions weren’t prototyped void, expressions like "uid < 10" or "size/2 > rss"
would confuse the parser because it would see the unterminated start of a wildcard
glob and of a pattern match, respectively. Prototypes are discussed in Recipe 10.11.

The version of psgrep demonstrated here expects the output from Red Hat Linux’s
ps. To port to other systems, look at which columns the headers begin at. This
approach isn’t relevant only to ps or only to Unix systems; it’s a generic technique for
filtering input records using Perl expressions, easily adapted to other record layouts.
The input format could be in columns, space separated, comma separated, or the
result of a pattern match with capturing parentheses.

The program could even be modified to handle a user-defined database with a small
change to the selection functions. If you had an array of records as described in Rec-
ipe 11.9, you could let users specify arbitrary selection criteria, such as:

sub id() { $_->{1p} 1}

sub title() { $ ->{TITLE} }
sub executive() { title =~ /(?:vice-)?president/i }

user search criteria go in the grep clause

@slowburners = grep { id<10 &3 !executive } @employees;
For reasons of security and performance, this kind of power is seldom found in data-
base engines like those described in Chapter 14. SQL doesn’t support this, but given
Perl and small bit of ingenuity, it’s easy to roll it up on your own.

58 | Chapter1: Strings

CHAPTER 2
Numbers

Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.

—7John von Neumann (1951)

2.0 Introduction

Numbers, the most basic data type of almost any programming language, can be sur-
prisingly tricky. Random numbers, numbers with decimal points, series of numbers,
and conversion between strings and numbers all pose trouble.

Perl works hard to make life easy for you, and the facilities it provides for manipulat-
ing numbers are no exception to that rule. If you treat a scalar value as a number,
Perl converts it to one. This means that when you read ages from a file, extract digits
from a string, or acquire numbers from any of the other myriad textual sources that
Real Life pushes your way, you don’t need to jump through the hoops created by
other languages’ cumbersome requirements to turn an ASCII string into a number.

Perl tries its best to interpret a string as a number when you use it as one (such as in a
mathematical expression), but it has no direct way of reporting that a string doesn’t
represent a valid number. Perl quietly converts non-numeric strings to zero, and it
will stop converting the string once it reaches a non-numeric character—so "A7" is
still 0, and "7A" is just 7. (Note, however, that the -w flag will warn of such improper
conversions.) Sometimes, such as when validating input, you need to know whether
a string represents a valid number. We show you how in Recipe 2.1.

Recipe 2.15 shows how to get a number from strings containing hexadecimal, octal, or
binary representations of numbers such as "oxff", "0377", and "0b10110". Perl auto-
matically converts numeric literals of these non-decimal bases that occur in your pro-
gram code (so $a = 3 + oxff will set $a to 258) but not data read by that program (you
can’t read "ff" or even "0xff" into $b and then say $a = 3 + $b to make $a become 258).

As if integers weren’t giving us enough grief, floating-point numbers can cause even
more headaches. Internally, a computer represents numbers with decimal points as

59

floating-point numbers in binary format. Floating-point numbers are not the same as
real numbers; they are an approximation of real numbers, with limited precision.
Although infinitely many real numbers exist, you only have finite space to represent
them, usually about 64 bits or so. You have to cut corners to fit them all in.

When numbers are read from a file or appear as literals in your program, they are
converted from their textual representation—which is always in base 10 for num-
bers with decimal points in them—into an internal, base-2 representation. The only
fractional numbers that can be exactly represented using a finite number of digits in
a particular numeric base are those that can be written as the sum of a finite number
of fractions whose denominators are integral powers of that base.

For example, 0.13 is one tenth plus three one-hundredths. But that’s in base-10 nota-
tion. In binary, something like 0.75 is exactly representable because it’s the sum of
one half plus one quarter, and 2 and 4 are both powers of two. But even so simple a
number as one tenth, written as 0.1 in base-10 notation, cannot be rewritten as the
sum of some set of halves, quarters, eighths, sixteenths, etc. That means that, just as
one third can’t be exactly represented as a non-repeating decimal number, one tenth
can’t be exactly represented as a non-repeating binary number. Your computer’s
internal binary representation of 0.1 isn’t exactly 0.1; it’s just an approximation!
$ perl -e 'printf "%.60f\n", 0.1'
0.100000000000000005551115123125782702118158340454101562500000
Recipes 2.2 and 2.3 demonstrate how to make your computer’s floating-point repre-
sentations behave more like real numbers.

Recipe 2.4 gives three ways to perform one operation on each element of a set of con-
secutive integers. We show how to convert to and from Roman numerals in Recipe 2.5.

Random numbers are the topic of several recipes. Perl’s rand function returns a float-
ing-point value between 0 and 1, or between 0 and its argument. We show how to
get random numbers in a given range, how to make random numbers more random,
and how to make rand give a different sequence of random numbers each time you
run your program.

We round out the chapter with recipes on trigonometry, logarithms, matrix multipli-
cation, complex numbers, and the often-asked question: “How do you put commas
in numbers?”

2.1 Checking Whether a String Is
a Valid Number

Problem

You want to check whether a string represents a valid number. This is a common
problem when validating input, as in CGI scripts, configuration files, and command-
line arguments.

60 | Chapter2: Numbers

Solution

Compare it against a regular expression that matches the kinds of numbers you’re
interested in:
if ($string =~ /PATTERN/) {
is a number

} else {
is not

}
Or use the patterns provided by the CPAN module Regexp::Common:

if ($string =~ m{*$RE{num}{real}$}) {
is a real number

} else {
is not

}

Discussion

This problem gets to the heart of what we mean by a number. Even things that
sound simple, like integer, make you think hard about what you will accept; for
example, “Is a leading + for positive numbers optional, mandatory, or forbidden?”
The many ways that floating-point numbers can be represented could overheat your
brain.

Decide what you will and will not accept. Then, construct a regular expression to
match those things alone. Here are some precooked solutions (the Cookbook’s
equivalent of just-add-water meals) for most common cases:

warn "has nondigits"” if /\D/;

warn "not a natural number" unless /"\d+$/; # rejects -3
warn "not an integer" unless /~-2\d+$/; # rejects +3
warn "not an integer" unless /7[+-]12\d+$/;

warn "not a decimal number" unless /”-?\d+\.?\d*$/; # rejects .2

warn "not a decimal number" unless /7-?(?:\d+(?:\.\d*)?|\.\d+)$/;

warn "not a C float"
unless /AM([+-12)(2=\d|\ \d)\d*(\\d*) 2 ([Ee]([+-]2\d+))?$/;
These lines do not catch the IEEE notations of “Infinity” and “NaN”, but unless
you’re worried that IEEE committee members will stop by your workplace and beat
you over the head with copies of the relevant standards documents, you can proba-
bly forget about these strange forms.

If your number has leading or trailing whitespace, those patterns won’t work. Either
add the appropriate logic directly, or call the trim function from Recipe 1.19.

The CPAN module Regexp::Common provides a wealth of canned patterns that test
whether a string looks like a number. Besides saving you from having to figure out
the patterns on your own, it also makes your code more legible. By default, this mod-
ule exports a hash called %RE that you index into, according to which kind of regular

Checking Whether a String Is a Valid Number | 61

expression you’re looking for. Be careful to use anchors as needed; otherwise, it will
search for that pattern anywhere in the string. For example:

use Regexp::Common;

$string = "Gandalf departed from the Havens in 3021 TA.";

print "Is an integer\n" if $string =~ / » $RE{num}{int} $ /x;

print "Contains the integer $1\n" if $string =~ / ($RE{num}{int}) /x;

The following examples are other patterns that the module can use to match numbers:

$RE{num}{int}{-sep=>",2"}
$RE{num}{int}{-sep=>"."}{-group=>4} match 1.2345.6789
$RE{num}{int}{-base => 8} match 014 but not 99

match 1234567 or 1,234,567
#
#
$RE{num}{int}{-sep=>", "' }{-group=3} # match 1,234,594
#
#
#
#

$RE{num}{int}{-sep=>",?"}{-group=3} match 1,234 or 1234
$RE{num}{real} match 123.456 or -0.123456
$RE{num}{roman} match xvii or MCMXCVIII
$RE{num}{square} match 9 or 256 or 12321

Some of these patterns, such as square, were not available in early module versions.
General documentation for the module can be found in the Regexp::Common

manpage, but more detailed documentation for just the numeric patterns is in the
Regexp::Common::number manpage.

Some techniques for identifying numbers don’t involve regular expressions. Instead,
these techniques use functions from system libraries or Perl to determine whether a
string contains an acceptable number. Of course, these functions limit you to the
definition of “number” offered by your libraries and Perl.

If you’re on a POSIX system, Perl supports the POSIX::strtod function. Its semantics
are cumbersome, so the following is a getnum wrapper function for more convenient
access. This function takes a string and returns either the number it found or undef
for input that isn’t a C float. The is numeric function is a frontend to getnum for
when you just want to ask, “Is this a float?”

sub getnum {

use POSIX quw(strtod);
my $str = shift;

$str =~ s/M\s+//; # remove leading whitespace
$str =~ s/\s+$//; # remove trailing whitespace
$! = 0;

my($num, $unparsed) = strtod($str);

if (($str eq '") || ($unparsed !=0) || $!) {
return;

} else {
return $num;

}

}

sub is numeric { defined scalar &getnum }

The Scalar::Util module, newly standard as of Perl v5.8.1, exports a function called
looks like number() that uses the Perl compiler’s own internal function of the same
name (see perlapi(1)). It returns true for any base-10 number that is acceptable to

62 | Chapter2: Numbers

Perl itself, such as 0, 0.8, 14.98, and 6.02e23—but not 0xb1010, 077, 0x392, or
numbers with underscores in them. This means that you must check for alternate
bases and decode them yourself if you want to permit users to enter such numbers,
as in Example 2-1.

Example 2-1. Decode numbers

#!/usr/bin/perl -w
use Scalar::Util qw(looks like number);
print "$0: hit “D (your eof character) to exit\n";
for (55) {
my ($on, $n); # original string and its numeric value

print "Pick a number, any number: ";
$on = $n = <STDIN>;
last if !defined $n;
chomp($on,$n);
$n =~ s/_//g; # allow 186_282.398 280_685
$n = oct($n) if $n =~ /~0/; # allow OxFF, 037, 0b1010
if (looks like number($n)) {
printf "Decimal double of $on is %g\n", 2*$n;
} else {
print "That doesn't look like a number to Perl.\n";
}

}
print "\nBye.\n";

See Also

The regular expression syntax in perlre(1) and Chapter 5 of Programming Perl; your
system’s strtod(3) manpage; the perlapi(1) manpage; the documentation for the
CPAN module Regexp::Common, including the Regexp::Common::number
manpage; the documentation for the standard POSIX and Scalar::Util modules (also
in Chapter 32 of Programming Perl)

2.2 Rounding Floating-Point Numbers

Problem

You want to round a floating-point value to a certain number of decimal places. This
problem arises from the same inaccuracies in representation that make testing for
equality difficult (see Recipe 2.3), as well as in situations where you must reduce the
precision of your answers for readability.

Solution

Use the Perl function sprintf, or printf if you’re just trying to produce output:

round off to two places
$rounded = sprintf("%.2f", $unrounded);

Rounding Floating-Point Numbers | 63

Or you can use other rounding functions described in the Discussion.

Discussion

Whether visible or not, rounding of some sort is virtually unavoidable when work-
ing with floating-point numbers. Carefully defined standards (namely, IEEE 754, the
standard for binary floating-point arithmetic) coupled with reasonable defaults
within Perl often manage to eliminate or at least hide these round-off errors.

In fact, Perl’s implicit rounding on output is usually good enough so that it rarely
surprises. It’s almost always best to leave the numbers unrounded until output, and
then, if you don’t like Perl’s default rounding, use printf or sprintf yourself with a
format that makes the rounding explicit. The %f, %e, and %g formats all let you spec-
ify how many decimal places to round their argument to. Here’s an example show-
ing how all three behave; in each case, we’re asking for a field that’s 12 spaces wide,
but with a precision of no more than four digits to the right of the decimal place.

for $n (0.0000001, 10.1, 10.00001, 100000.1) {
printf "%12.4e %12.4f %12.4g\n", $n, $n, $n;

}

This produces the following output:
1.0000e-07 0.0000 1e-07
1.0100e+01 10.1000 10.1
1.0000e+01 10.0000 10
1.0000e+05 1000001000 1e+05

If that were all there were to the matter, rounding would be pretty easy. You’d just
pick your favorite output format and be done with it.

However, it’s not that easy: sometimes you need to think more about what you really
want and what’s really happening. As we explained in the Introduction, even a sim-
ple number like 10.1 or 0.1 can only be approximated in binary floating-point. The
only decimal numbers that can be exactly represented as floating-point numbers are
those that can be rewritten as a finite sum of one or more fractions whose denomina-
tors are all powers of two. For example:

$a = 0.625; #1/2 + 1/8

$b = 0.725; # 725/1000, or 29/40
printf "$ is %.30g\n", $ for $a, $b;

prints out:

0.625 is 0.625

0.725 is 0.724999999999999977795539507497
The number in $a is exactly representable in binary, but the one in $b is not. When
Perl is told to print a floating-point number but not told the precision, as occurs for
the interpolated value of $ in the string, it automatically rounds that number to
however many decimal digits of precision that your machine supports. Typically, this

64 | Chapter2: Numbers

is like using an output format of "%.15g", which, when printed, produces the same
number as you assigned to $b.

Usually the round-off error is so small you never even notice it, and if you do, you
can always specify how much precision you’d like in your output. But because the
underlying approximation is still a little bit off from what a simple print might show,
this can produce unexpected results. For example, while numbers such as 0.125 and
0.625 are exactly representable, numbers such as 0.325 and 0.725 are not. So let’s
suppose you’d like to round to two decimal places. Will 0.325 become 0.32 or 0.33?
Will 0.725 become 0.72 or 0.73?
$a = 0.325; #1/2 + 1/8

$b = 0.725; # 725/1000, or 29/40
printf "%s is %.2f or %.30g\n", ($_) x 3 for $a, $b;

This produces:

0.325 is 0.33 or 0.325000000000000011102230246252
0.725 is 0.72 or 0.724999999999999977795539507497
Since 0.325’s approximation is a bit above that, it rounds up to 0.33. On the other

hand, 0.725’s approximation is really a little under that, so it rounds down, giving
0.72 instead.

But what about if the number is exactly representable, such 1.5 or 7.5, since those
are just whole numbers plus one-half? The rounding rule used in that case is proba-
bly not the one you learned in grade school. Watch:

for $n (-4 .. +4) {

$n += 0.5;
printf "%4.1f %2.0f\n", $n, $n;

}
That produces this:

-3.5 -4
2.5 -2
-1.5 -2
-0.5 -0
0.5 0
1.5 2
2.5 2
3.5 4
4.5 4

What’s happening is that the rounding rule preferred by numerical analysts isn’t
“round up on a five,” but instead “round toward even.” This way the bias in the
round-off error tends to cancel itself out.

Three useful functions for rounding floating-point values to integral ones are int,
ceil, and floor. Built into Perl, int returns the integral portion of the floating-point
number passed to it. This is called “rounding toward zero.” This is also known as
integer truncation because it ignores the fractional part: it rounds down for positive

Rounding Floating-Point Numbers | 65

numbers and up for negative ones. The POSIX module’s floor and ceil functions
also ignore the fractional part, but they always round down and up to the next inte-
ger, respectively, no matter the sign.

use POSIX gw(floor ceil);
printf "%8s %8s %8s %8s %8s\n",

gqw(number even zero down up);
for $n (-6 .. +6) {

$n += 0.5;

printf "%8g %8.0f %8s %8s %8s\n",

$n, $n, int($n), floor($n), ceil($n);

}

This produces the following illustrative table; each column heading shows what hap-
pens when you round the number in the specified direction.

number even zero down up
-5.5 -6 -5 -6 -5
-4.5 -4 -4 -5 -4
-3.5 -4 -3 -4 -3
-2.5 -2 -2 -3 -2
-1.5 -2 -1 -2 -1
-0.5 -0 0 -1 0
0.5 0 0 0 1
1.5 2 1 1 2
2.5 2 2 2 3
3.5 4 3 3 4
4.5 4 4 4 5
5.5 6 5 5 6
6.5 6 6 6 7

If you add up each column, you’ll see that you arrive at rather different totals:
6.5 6 6 0 13

What this tells you is that your choice of rounding style—in effect, your choice of
round-off error—can have tremendous impact on the final outcome. That’s one rea-
son why you’re strongly advised to wait until final output for any rounding. Even
still, some algorithms are more sensitive than others to accumulation of round-off
error. In particularly delicate applications, such as financial computations and ther-
monuclear missiles, prudent programmers will implement their own rounding func-
tions instead of relying on their computers’ built-in logic, or lack thereof. (A good
textbook on numerical analysis is also recommended.)

See Also

The sprintf and int functions in perlfunc(1) and Chapter 29 of Programming Perl;
the floor and ceil entries in the documentation for the standard POSIX module
(also in Chapter 32 of Programming Perl); we introduce the sprintf technique in
Recipe 2.3

66 | Chapter2: Numbers

2.3 Comparing Floating-Point Numbers

Problem

Floating-point arithmetic isn’t exact. You want to compare two floating-point num-
bers and know whether they’re equal when carried out to a certain number of deci-
mal places. Most of the time, this is the way you should compare floating-point
numbers for equality.

Solution

Use sprintf to format the numbers to a certain number of decimal places, then com-
pare the resulting strings:
equal(NUM1, NUM2, PRECISION) : returns true if NUM1 and NUM2 are
equal to PRECISION number of decimal places
sub equal {
my ($A, $B, $dp) = @_;
return sprintf("%.${dp}g", $A) eq sprintf("%.${dp}g", $B);
}

Alternatively, store the numbers as integers by assuming the decimal place.

Discussion

You need the equal routine because computers’ floating-point representations are
just approximations of most real numbers, as we discussed in the Introduction to
this chapter. Perl’s normal printing routines display numbers rounded to 15 decimal
places or so, but its numeric tests don’t round. So sometimes you can print out num-
bers that look the same (after rounding) but do not test the same (without rounding).

This problem is especially noticeable in a loop, where round-off error can silently
accumulate. For example, you’d think that you could start a variable out at zero, add
one-tenth to it ten times, and end up with one. Well, you can’t, because a base-2
computer can’t exactly represent one-tenth. For example:

for ($num = $i = 0; $i < 10; $i++) { $num += 0.1 }
if ($num 1= 1) {

printf "Strange, $num is not 1; it's %.45f\n", $num;
}

prints out:
Strange, 1 is not 1; it's 0.999999999999999888977697537484345957636833191

The $num is interpolated into the double-quoted string using a default conversion for-
mat of "%.15g" (on most systems), so it looks like 1. But internally, it really isn’t. If
you had checked only to a few decimal places, for example, five:

lequal($num, 1, 5)
then you’d have been okay.

Comparing Floating-Point Numbers | 67

If you have a fixed number of decimal places, as with currency, you can often side-
step the problem by storing your values as integers. Storing $3.50 as 350 instead of 3.5
removes the need for floating-point values. Reintroduce the decimal point on output:

$wage = 536; # $5.36/hour
$week = 40 * $wage; # $214.40
printf("One week's wage is: \$%.2f\n", $week/100);

One week's wage is: $214.40

It rarely makes sense to compare more than 15 decimal places, because you proba-
bly only have that many digits of precision in your computer’s hardware.

See Also

The sprintf function in perlfunc(l) and Chapter 29 of Programming Perl; the entry
on $OFMT in the perlvar(1l) manpage and Chapter 28 of Programming Perl; the docu-
mentation for the standard Math::BigFloat module (also in Chapter 32 of Program-
ming Perl); we use sprintf in Recipe 2.2; Volume 2, Section 4.2.2 of The Art of
Computer Programming

2.4 Operating on a Series of Integers

Problem

You want to perform an operation on all integers between X and Y, such as when
you’re working on a contiguous section of an array or wherever you want to process
all numbers” within a range.

Solution

Use a for loop, or .. in conjunction with a foreach loop:

foreach ($X .. $Y) {
#$ 1is set to every integer from X to Y, inclusive

}

foreach $i ($X .. $Y) {
$1 is set to every integer from X to Y, inclusive
}

for ($1 = $X; $1 <= $Y; $i++) {
$1 is set to every integer from X to Y, inclusive
}

for ($i = $X; $i <= $¥; $1 += 7) {

* Okay, integers. It’s hard to find all the reals. Just ask Cantor.

68 | Chapter2: Numbers

$i is set to every integer from X to Y, stepsize = 7

Discussion

The first two approaches use a foreach loop in conjunction with the $X .. $Y con-
struct, which creates a list of integers between $X and $Y. Now, if you were just
assigning that range to an array, this would use up a lot of memory whenever $X and
$Y were far apart. But in a foreach loop, Perl notices this and doesn’t waste time or
memory allocating a temporary list. When iterating over consecutive integers, the
foreach loop will run faster than the equivalent for loop.

Another difference between the two constructs is that the foreach loop implicitly
localizes the loop variable to the body of the loop, but the for loop does not. That
means that after the for loop finishes, the loop variable will contain the value it held
upon the final iteration. But in the case of the foreach loop, that value will be inac-
cessible, and the variable will hold whatever it held—if anything—prior to entering
the loop. You can, however, use a lexically scoped variable as the loop variable:

foreach my $i ($X .. $Y) { ...}
for (my $i=$X; $i <= $Y; $i++) { ... }

The following code shows each technique. Here we just print the numbers we
generate:

print "Infancy is: ";

foreach (0 .. 2) {
print "$_";

}

print "\n";

print "Toddling is: ";

foreach $i (3 .. 4) {
print "$i ";

}

print "\n";

print "Childhood is: “;

for ($1 = 5; $1 <= 12; $i++) {
print "$i ";

}

print "\n";

Infancy is: 0 1 2

Toddling is: 3 4

Childhood is: 5 6 7 8 9 10 11 12
See Also

The for and foreach operators in perlsyn(1) and the “For Loops” and “Foreach
Loops” sections of Chapter 4 of Programming Perl

Operating on a Series of Integers | 69

2.5 Working with Roman Numerals

Problem

You want to convert between regular numbers and Roman numerals. You need to do
this with items in outlines, page numbers on a preface, and copyrights for movie
credits.

Solution
Use the Roman module from CPAN:

use Roman;
$roman = roman($arabic); # convert to roman numerals
$arabic = arabic($roman) if isroman($roman); # convert from roman numerals

Discussion

The Roman module provides both Roman and roman for converting Arabic (“normal”)
numbers to their Roman equivalents. Roman produces uppercase letters, whereas
roman gives lowercase ones.

The module only deals with Roman numbers from 1 to 3999, inclusive. The Romans
didn’t represent negative numbers or zero, and 5000 (which 4000 is represented in
terms of) uses a symbol outside the ASCII character set.

use Roman;

$roman_fifteen = roman(15); # "xv
print "Roman for fifteen is $roman_fifteen\n";
$arabic_fifteen = arabic($roman_fifteen);

print "Converted back, $roman fifteen is $arabic_ fifteen\n";

Roman for fifteen is xv
Converted back, xv is 15

Or to print the current year:

use Time::localtime;
use Roman;
printf "The year is now %s\n", Roman(1900 + localtime->year);

The year is now MMIII

Now, if you happen to have Unicode fonts available, you’ll find that code points
U+2160 through U+2183 represent Roman numerals, including those beyond the
typical ASCII values.

use charnames ":full";

print "2003 is ", "\N{ROMAN NUMERAL ONE THOUSAND}" x 2, "\N{ROMAN NUMERAL THREE}\n";
2003 is MMII

However, the Roman module doesn’t yet have an option to use those characters.

70 | Chapter2: Numbers

Believe it or not, there’s even a CPAN module that lets you use Roman numerals in
arithmetic.

use Math::Roman gw(roman);
print $a = roman('I'); # I
print $a += 2000; # MMI
print $a -= "III"; # MCMXCVIII
print $a -= "MCM"; # XCVIII

See Also

The Encyclopaedia Britannica article on “Mathematics, History Of”; the documenta-
tion with the CPAN modules Roman and Math::Roman; Recipe 6.23

2.6 Generating Random Numbers

Problem

You want to make random numbers in a given range, inclusive, such as when you
randomly pick an array index, simulate rolling a die in a game of chance, or generate
a random password.

Solution

Use Perl’s rand function:

$random = int(rand($Y-$X+1)) + $X;

Discussion

This code generates and prints a random integer between 25 and 75, inclusive:

$random = int(rand(51)) + 25;
print "$random\n";

The rand function returns a fractional number, from (and including) 0 up to (but not
including) its argument. We give it an argument of 51 to get a number that can be 0
or more, but never 51 or more. We take the integer portion of this to get a number
from 0 to 50, inclusive (50.99999.... will be turned into 50 by int). We then add 25
to it to get a number from 25 to 75, inclusive.

A common application of this is the random selection of an element from an array:
$elt = $array[rand @array J;

That’s just like saying:
$elt = $array[int(rand(o+@array)) I;

Because rand is prototyped to take just one argument, it implicitly imposes scalar
context on that argument, which, on a named array, is the number of elements in

Generating Random Numbers | 71

that array. The function then returns a floating-point number smaller than its argu-
ment and greater than or equal to zero. A floating-point number used as an array
subscript implicitly undergoes integer truncation (rounding toward zero), producing
in the end an evenly distributed, randomly selected array element to assign to $elt.

Generating a random password from a sequence of characters is similarly easy:

@chars = ("A" .. "Z", "a" .. "z", 0 .. 9, gw(! @ $ % " & *));
$password = join("", @chars[map { rand @chars } (1 .. 8)]);

We use map to generate eight random indices into @chars, extract the corresponding
characters with a slice, and join them together to form the random password. This
isn’t a good random number, though, as its security relies on the choice of seed,
which (in older versions of Perl) is based on the time the program started. See Recipe
2.7 for a way to better seed your random number generator.

See Also

The int, rand, map, and join functions in perlfunc(l) and Chapter 29 of Program-
ming Perl; we explore random numbers further in Recipes 2.7, 2.8, and 2.9; we use
random numbers in Recipe 1.13

2.7 Generating Repeatable Random
Number Sequences

Problem

Every time you run your program, you get a different sequence of (pseudo-)random
numbers. But you want a reproducible sequence, useful when running a simulation,
so you need Perl to produce the same set of random numbers each time.

Solution

Use Perl’s srand function:

srand EXPR; # use a constant here for repeated sequences

Discussion

Making random numbers is hard. The best that computers can do, without special
hardware, is generate “pseudo-random” numbers, which are evenly distributed in
their range of values. These are generated using a mathematical formula, which
means that given the same seed (starting point), two programs will produce identical
pseudo-random numbers.

72 | Chapter2: Numbers

The srand function creates a new seed for the pseudo-random number generator. If
given an argument, it uses that number as the seed. If no argument is given, srand
uses a value that’s reasonably difficult to guess as the seed.

If you call rand without first calling srand yourself, Perl calls srand for you, choosing
a “good” seed. This way, every time you run your program you’ll get a different set
of random numbers. Ancient versions of Perl did not call srand, so the same pro-
gram always produced the same sequence of pseudo-random numbers every time the
program was run. Certain sorts of programs don’t want a different set of random
numbers each time; they want the same set. When you need that behavior, call srand
yourself, supplying it with a particular seed:

srand(42); # pick any fixed starting point

Don’t call srand more than once in a program, because if you do, you’ll start the
sequence again from that point. Unless, of course, that’s what you want.

Just because Perl tries to use a good default seed does not necessarily guarantee that
the numbers generated are cryptographically secure against the most intrepid crack-
ers. Textbooks on cryptography are usually good sources of cryptographically secure
random number generators.

See Also

The srand function in perlfunc(l) and Chapter 29 of Programming Perl; Recipes 2.6
and 2.8; Bruce Schneier’s excellent Applied Cryptography (John Wiley & Sons)

2.8 Making Numbers Even More Random

Problem

You want to generate numbers that are more random than Perl’s random numbers.
Limitations of your C library’s random number generator seeds can sometimes cause
problems. The sequence of pseudo-random numbers may repeat too soon for some
applications.

Solution

Use a different random number generator, such as those provided by the Math::Ran-
dom and Math:: TrulyRandom modules from CPAN:

use Math::TrulyRandom;
$random = truly random value();

use Math::Random;
$random = random uniform();

Making Numbers Even More Random | 73

Discussion

The Perl build process tries to find the best C-library routine to use for generating
pseudo-random numbers, looking at rand(3), random(3), and drand48(3). (This can
be changed manually at build time, however.) The standard library functions are get-
ting pretty good, but some ancient implementations of the rand function return only
16-bit random numbers or have other algorithmic weaknesses, and may therefore
not be sufficiently random for your purposes.

The Math::TrulyRandom module uses inadequacies of your system’s timers to gener-
ate the random numbers. This takes a while, so it isn’t useful for generating a lot of
random numbers.

The Math::Random module uses the randlib library to generate random numbers. It
also includes a wide range of related functions for generating random numbers
according to specific distributions, such as binomial, poisson, and exponential.

See Also

The srand and rand functions in perlfunc(l) and Chapter 29 of Programming Perl,
Recipes 2.6 and 2.7; the documentation for the CPAN modules Math::Random and
Math:: TrulyRandom

2.9 Generating Biased Random Numbers

Problem

You want to pick a random value where the probabilities of the values are not equal
(the distribution is not even). You might be trying to randomly select a banner to dis-
play on a web page, given a set of relative weights saying how often each banner is to
be displayed. Alternatively, you might want to simulate behavior according to a nor-
mal distribution (the bell curve).

Solution

If you want a random value distributed according to a specific function—e.g., the
Gaussian (Normal) distribution—consult a statistics textbook to find the appropri-
ate function or algorithm. This subroutine generates random numbers that are nor-
mally distributed, with a standard deviation of 1 and a mean of 0:
sub gaussian_rand {
my ($ul, $u2); # uniformly distributed random numbers

my $w; # variance, then a weight
my ($g1, $g2); # gaussian-distributed numbers

do {
$ul = 2 * rand() - 1;

74 | Chapter2: Numbers

}

$u2 = 2 * rand() - 1;
$w = $ul*$ul + $u2*u2;
} while ($w >= 1 || $w == 0);

$w = sqrt((-2 * log($w)) / $w);

$g2 = $ul * $w;

$g1 = $u2 * $w;

return both if wanted, else just one
return wantarray ? ($gi, $g2) : $gi;

If you have a list of weights and values you want to randomly pick from, follow this
two-step process: first, turn the weights into a probability distribution with weight_
to_dist, and then use the distribution to randomly pick a value with weighted rand:

weight to dist: takes a hash mapping key to weight and returns
a hash mapping key to probability
sub weight_to_dist {

}

my %weights = @ ;
my %dist = ();
my $total = 0;

my ($key, $weight);
local $;

foreach (values %weights) {
$total += $_;
}

while (($key, $weight) = each %weights) {
$dist{$key} = $weight/$total;
}

return %dist;

weighted rand: takes a hash mapping key to probability, and
returns the corresponding element
sub weighted rand {

my %dist = @_;
my ($key, $weight);

while (1) { # to avoid floating point inaccuracies
my $rand = rand;
while (($key, $weight) = each %dist) {
return $key if ($rand -= $weight) < 0;
}

Discussion

The gaussian_rand function implements the polar Box Muller method for turning
two independent, uniformly distributed random numbers between 0 and 1 (such as
rand returns) into two numbers with a mean of 0 and a standard deviation of 1 (i.e., a

Generating Biased Random Numbers | 75

Gaussian distribution). To generate numbers with a different mean and standard
deviation, multiply the output of gaussian rand by the new standard deviation, and
then add the new mean:

gaussian_rand as shown earlier

$mean = 25;

$sdev = 2;

$salary = gaussian_rand() * $sdev + $mean;
printf("You have been hired at \$%.2f\n", $salary);

The Math::Random module implements this and other distributions for you:

use Math::Random qw(random normal);
$salary = random_normal(1, $mean, $sdev);

The weighted_rand function picks a random number between 0 and 1. It then uses the
probabilities generated by weight to dist to see which element the random number
corresponds to. Because of the vagaries of floating-point representation, accumulated
errors in representation might mean we don’t find an element to return. This is why
we wrap the code in a while to pick a new random number and try again.

Also, the CPAN module Math::Random has functions to return random numbers
from a variety of distributions.

See Also

The rand function in perlfunc(1) and Chapter 29 of Programming Perl; Recipe 2.6;
the documentation for the CPAN module Math::Random

2.10 Doing Trigonometry in Degrees,
Not Radians

Problem

You want your trigonometry routines to operate in degrees instead of Perl’s native
radians.

Solution

Convert between radians and degrees (27 radians equals 360 degrees):
use constant PI => (4 * atan2 (1, 1));
sub deg2rad {

my $degrees = shift;
return ($degrees / 180) * PI;

76 | Chapter2: Numbers

sub rad2deg {
my $radians = shift;
return ($radians / PI) * 180;

}
Alternatively, use the standard Math::Trig module:

use Math::Trig;

$radians = deg2rad($degrees);
$degrees = rad2deg($radians);
Discussion

If you’re doing a lot of trigonometry, look into using either the standard Math:: Trig or
POSIX modules. They provide many more trigonometric functions than are defined in
the Perl core. Otherwise, the first solution will define the rad2deg and deg2rad func-
tions. The value of 7 isn’t built directly into Perl, but you can calculate it to as much
precision as your floating-point hardware provides. In the Solution, the PI function is
a constant created with use constant. Instead of having to remember that w is 3.
14159265358979 or so, we use the built-in function call, resolved at compile time,
which, besides sparing us from memorizing a long string of digits, is also guaranteed
to provide as much accuracy as the platform supports.

If you’re looking for the sine in degrees, use this:

deg2rad and rad2deg defined either as above or from Math::Trig
sub degree sine {

my $degrees = shift;

my $radians = deg2rad($degrees);

my $result = sin($radians);

return $result;

See Also

The sin, cos, and atan2 functions in perlfunc(l) and Chapter 29 of Programming
Perl; the documentation for the standard POSIX and Math::Trig modules (also in
Chapter 32 of Programming Perl)

2.11 (alculating More Trigonometric Functions

Problem

You want to calculate values for trigonometric functions like sine, tangent, or arc-
cosine.

Calculating More Trigonometric Functions | 77

Solution

Perl provides only sin, cos, and atan2 as standard functions. From these, you can
derive tan and all other trig functions (if you’re intimately familiar with esoteric trig
identities):

sub tan {
my $theta = shift;

return sin($theta)/cos($theta);
}

The POSIX module provides a wider range of trig functions:

use POSIX;

$y = acos(3.7);

The standard Math::Trig module provides a complete set of functions and supports
operations on or resulting in complex numbers:

use Math::Trig;

$y = acos(3.7);

Discussion

The tan function will cause a division-by-zero exception when $theta is w/2, 3n/2,
and so on, because the cosine is O for these values. Similarly, tan and many other
functions from Math:: Trig may generate the same error. To trap these, use eval:

eval {

$y = tan($pi/2);
} or return undef;

See Also

The sin, cos, and atan2 functions in perlfunc(l) and Chapter 29 of Programming
Perl; the documentation for the standard Math::Trig module; we talk about trigo-
nometry in the context of imaginary numbers in Recipe 2.14; we talk about the use
of eval to catch exceptions in Recipe 10.12

2.12 Taking Logarithms

Problem

You want to take a logarithm in various bases.

78 | Chapter2: Numbers

Solution
For logarithms to base e, use the built-in log:
$log e = log(VALUE);
For logarithms to base 10, use the POSIX module’s 1og10 function:

use POSIX gw(log10);
$log 10 = log10(VALUE);

For other bases, use the mathematical identity:

where x is the number whose logarithm you want, n is the desired base, and e is the
natural logarithm base.
sub log base {

my ($base, $value) = @ ;
return log($value)/log($base);

Discussion

The log base function lets you take logarithms to any base. If you know the base
you’ll want in advance, it’s more efficient to cache the log of the base instead of
recalculating it every time.

log base as defined earlier

$answer = log base(10, 10_000);

print "log10(10,000) = $answer\n";

log10(10,000) = 4
The Math::Complex module does the caching for you via its logn() routine, so you
can write:

use Math::Complex;

printf "log2(1024) = %1f\n", logn(1024, 2); # watch out for argument order!

log2(1024) = 10.000000
even though no complex number is involved here. This is not very efficient, but there
are plans to rewrite Math::Complex in C for speed.

See Also

The log function in perlfunc(1) and Chapter 29 of Programming Perl; the documenta-
tion for the standard POSIX and Math::Complex modules (also in Chapter 32 of
Programming Perl)

Taking Logarithms | 79

2.13 Multiplying Matrices

Problem

You want to multiply a pair of two-dimensional arrays. Mathematicians and engi-
neers often need this.

Solution

Use the PDL modules, available from CPAN. PDL is the Perl Data Language—
modules that give fast access to compact matrix and mathematical functions:

use PDL;
$a and $b are both pdl objects
$c = $a x $b;

Alternatively, apply the matrix multiplication algorithm to your two-dimensional
array:

sub mmult {
my ($m1,$m2) = @_;
my ($mirows,$micols) = matdim($m1);
my ($m2rows,$m2cols) = matdim($m2);

unless ($micols == $m2rows) { # raise exception
die "IndexError: matrices don't match: $micols != $m2rows";
}

my $result = [];
my ($i, $3, $k);

for $i (range($mirows)) {
for $j (range($m2cols)) {
for $k (range($micols)) {
$result->[$1][$] += $mi->[$1][$k] * $m2->[$k][$i1;
}

}
}

return $result;

sub range { 0 .. ($_[0] - 1) }

sub veclen {
my $ary ref = $ [0];
my $type = ref $ary ref;
if ($type ne "ARRAY") { die "$type is bad array ref for $ary ref" }
return scalar(@$ary_ref);

sub matdim {
my $matrix = $ [0];

80 | Chapter2: Numbers

my $rows = veclen($matrix);
my $cols = veclen($matrix->[0]);
return ($rows, $cols);

Discussion

If you have the PDL library installed, you can use its lightning-fast manipulation of
numbers. This requires far less memory and CPU than Perl’s array manipulation.
When using PDL objects, many numeric operators (such as + and *) are overloaded
and work on an element-by-element basis (e.g., * is the so-called scalar multiplica-
tion operator). To get true matrix multiplication, use the overloaded x operator.

use PDL;
$a = pdl

[
[3,2 3],
[5)9)8]J

I
$c = $a x $b; # x overload

If you don’t have the PDL library, or don’t feel like pulling it in for a small problem,
you can always do the work yourself the good old-fashioned way.

mmult() and other subroutines as shown earlier

$x = [
[3,2,31],
[5 9,81,

I

sy = [
[4 7],
[9,31],
[8 11,

I

$z = mmult($x, $y);

See Also
The documentation with the CPAN module PDL

Multiplying Matrices | 81

2.14 Using Complex Numbers

Problem

Your application must manipulate complex numbers, as are often needed in engi-
neering, science, and mathematics.

Solution

Either keep track of the real and imaginary components yourself:

$c = $a * $b manually
$c_real = ($a_real * $b_real) - ($a_imaginary * $b_imaginary);
$c_imaginary = ($a_real * $b_imaginary) + ($b_real * $a_imaginary);

or use the Math::Complex module (part of the standard Perl distribution):

$c = $a * $b using Math::Complex
use Math::Complex;

$c = $a * $b;

Discussion

Here’s how you’d manually multiply 3+51 and 2-2i:
$a_real = 3; $a_imaginary = 5; # 3 + 5i;
$b real = 2; $b_imaginary = -2; #2 - 2i;

$c_real = ($a_real * $b real) - ($a_imaginary * $b_imaginary);
$c_imaginary = ($a_real * $b_imaginary) + ($b_real * $a_imaginary);
print "c = ${c_real}+${c_imaginary}i\n";
c = 16+4i

and with Math::Complex:

use Math::Complex;

$a = Math::Complex->new(3,5); # or Math::Complex->new(3,5);
$b = Math::Complex->new(2,-2);
$c = $a * $b;

print "c = $c\n";

c = 16+41

You may create complex numbers via the cplx constructor or via the exported con-
stant i:

use Math::Complex;

$c = cplx(3,5) * cplx(2,-2); # easier on the eye

$d = 3 + 4*i; #3 + 4i

printf "sqrt($d) = %s\n", sqrt($d);

sqrt(3+4i) = 2+i

82 | Chapter2: Numbers

The Math::Trig module uses the Math::Complex module internally because some
functions can break out from the real axis into the complex plane—for example, the
inverse sine of 2.

See Also

The documentation for the standard Math::Complex module (also in Chapter 32 of
Programming Perl)

2.15 Converting Binary, Octal, and Hexadecimal
Numbers

Problem

You want to convert a string (e.g., "0b10110", "0x55", or "0755") containing a binary,
octal, or hexadecimal number to the correct number.

Perl understands numbers specified in binary (base-2), octal (base-8), and hexadeci-
mal (base-16) notation only when they occur as literals in your programs. If they
come in as data—such as by reading from files or environment variables, or when
supplied as command-line arguments—no automatic conversion takes place.

Solution
Use Perl’s hex function if you have a hexadecimal string like "2e" or "ox2e":
$number = hex($hexadecimal); # hexadecimal only ("2e" becomes 47)

Use the oct function if you have a hexadecimal string like "0x2e", an octal string like
"047", or a binary string like "0b101110":

$number = oct($hexadecimal); # "ox2e" becomes 47

$number = oct($octal); # "057" becomes 47

$number = oct($binary); # "0b101110" becomes 47
Discussion

The oct function converts octal numbers with or without the leading "0"; for exam-
ple, "0350" or "350". Despite its name, oct does more than convert octal numbers: it
also converts hexadecimal ("0x350") numbers if they have a leading "0x" and binary
("0b101010") numbers if they have a leading "ob". The hex function converts only
hexadecimal numbers, with or without a leading "ox": "ox255", "3A", "ff", or
"deadbeef". (Letters may be in upper- or lowercase.)

Here’s an example that accepts an integer in decimal, binary, octal, or hex, and
prints that integer in all four bases. It uses the oct function to convert the data from

Converting Binary, Octal, and Hexadecimal Numbers | 83

binary, octal, and hexadecimal if the input begins with a 0. It then uses printf to
convert into all four bases as needed.

print "Gimme an integer in decimal, binary, octal, or hex: “;

$num = <STDIN>;

chomp $num;

exit unless defined $num;

$num = oct($num) if $num =~ /~0/; # catches 077 0b10 0x20

printf "%d %#x %#o %#b\n", ($num) x 4;
The # symbol between the percent and the three non-decimal bases makes printf
produce output that indicates which base the integer is in. For example, if you enter
the number 255, the output would be:

255 Oxff 0377 0b11111111
But without the # sign, you would only get:
255 ff 377 11111111

The following code converts Unix file permissions. They’re always given in octal, so
we use oct instead of hex.

print "Enter file permission in octal: ";
$permissions = <STDIN>;

die "Exiting ...\n" unless defined $permissions;

chomp $permissions;

$permissions = oct($permissions); # permissions always octal
print "The decimal value is $permissions\n”;

See Also

The “Scalar Value Constructors” section in perldata(l) and the “Numeric Literals”
section of Chapter 2 of Programming Perl; the oct and hex functions in perlfunc(1)
and Chapter 29 of Programming Perl

2.16 Putting Commas in Numbers

Problem

You want to output a number with commas in the right places. People like to see
long numbers broken up in this way, especially in reports.

Solution

Reverse the string so you can use backtracking to avoid substitution in the fractional
part of the number. Then use a regular expression to find where you need commas,
and substitute them in. Finally, reverse the string back.

sub commify {
my $text = reverse $_[0];

84 | Chapter2: Numbers

$text =~ s/(\d\d\d) (?=\d) (?!\d*\.)/$1,/g;
return scalar reverse $text;

Discussion

It’s a lot easier in regular expressions to work from the front than from the back.
With this in mind, we reverse the string and make a minor change to the algorithm
that repeatedly inserts commas three digits from the end. When all insertions are
done, we reverse the final string and return it. Because reverse is sensitive to its
implicit return context, we force it to scalar context.

This function can easily be adjusted to accommodate the use of periods instead of
commas, as are used in many countries.

Here’s an example of commify in action:

more reasonable web counter :-)

use Math::TrulyRandom;

$hits = truly random value(); # negative hits!

$output = "Your web page received $hits accesses last month.\n";
print commify($output);

Your web page received -1,740,525,205 accesses last month.

See Also

perllocale(1); the reverse function in perlfunc(l) and Chapter 29 of Programming
Perl; the section “Adding Commas to a Number with Lookaround” in Chapter 2 of
Mastering Regular Expressions, Second Edition

2.17 Printing Correct Plurals

Problem

You’re printing something like "It took $time hours", but "It took 1 hours" is
ungrammatical. You would like to get it right.

Solution
Use printf and the conditional operator (X ? Y : Z) to alter the noun or verb:
printf "It took %d hour%s\n", $time, $time == 1 2 "" : "s";
printf "%d hour%s %s enough.\n", $time,
Stime == 12 " : "s")
$time == 1 ? "is" : "are";

Or use the Lingua::EN::Inflect module from CPAN, as described in the following
Discussion.

Printing Correct Plurals | 85

Discussion

The only reason inane messages like "1 file(s) updated" appear is because their
authors are too lazy to bother checking whether the count is 1 or not.

If your noun changes by more than an "-s", you’ll need to change the printf

accordingly:
printf "It took %d centur¥s", $time, $time == 1 ? "y" : "ies";

This is good for simple cases, but you’ll tire of writing it. This leads you to write
funny functions like this:

sub noun_plural {
local § = shift;
order really matters here!
s/ss$/sses/ |
s/([psclh)$/${1}es/ [
s/z$/zes/ [
s/ff$/ffs/ |
s/t$/ves/ [
s/ey$/eys/ [
s/y$/ies/ [
s/ix$/ices/ [
s/([sx])$/$1es/ [
s/$/s/ |

die "can't get here";
return $;

}

*verb_singular = \&noun_plural; # make function alias

As you find more exceptions, your function will become increasingly convoluted.
When you need to handle such morphological changes, turn to the flexible solution
provided by the Lingua::EN::Inflect module from CPAN.

use Lingua::EN::Inflect gqw(PL classical);

classical(1); # why isn't this the default?
while (<DATA>) { # each line in the data

for (split) { # each word on the line

print "One $_, two ", PL($_), ".\n";

}
}
plus one more
$ = 'secretary general';

print "One $_, two ", PL($_), ".\n";

__END__

fish fly ox

species genus phylum
cherub radius jockey
index matrix mythos
phenomenon formula

That produces the following:

86 | Chapter2: Numbers

One fish, two fish.

One fly, two flies.

One ox, two oxen.

One species, two species.

One genus, two genera.

One phylum, two phyla.

One cherub, two cherubim.

One radius, two radii.

One jockey, two jockeys.

One index, two indices.

One matrix, two matrices.

One mythos, two mythoi.

One phenomenon, two phenomena.
One formula, two formulae.

One secretary general, two secretaries general.

Without calling classical, these lines would have come out different than in the pre-
vious output:

One phylum, two phylums.

One cherub, two cherubs.

One radius, two radiuses.

One index, two indexes.

One matrix, two matrixes.

One formula, two formulas.
This is just one of the many things the module can do. It also handles inflections or
conjugations for other parts of speech, provides number-insensitive comparison
functions, figures out whether to use a or an, and plenty more.

See Also

The “Conditional Operator” in perlop(1) and Chapter 3 of Programming Perl; the
documentation with the CPAN module Lingua::EN::Inflect

2.18 Program: Calculating Prime Factors

The following program takes one or more integer arguments and determines the
prime factors. It uses Perl’s native numeric representation, unless those numbers use
floating-point representation and thus lose accuracy. Otherwise (or if the program’s -b
switch is used), it uses the standard Math::BigInt library, thus allowing for huge num-
bers. However, it only loads this library if necessary. That’s why we use require and
import instead of use, which would unconditionally load the library at compile time
instead of conditionally at runtime. This is not an efficient way to crack the huge inte-
gers used for cryptographic purposes.

Call the program with a list of numbers, and it will show you the prime factors of
those numbers:

% bigfact 8 9 96 2178
8 2**3

Program: Calculating Prime Factors | 87

9 3%%2
96 2%%5 3
2178 2 3%%2 11%%2

You can give it very large numbers:

% bigfact 239322000000000000000000
+239322000000000000000000 2**19 3 5**18 +39887

% bigfact 25000000000000000000000000
+25000000000000000000000000 2**24 5**26

The program is shown in Example 2-2.

Example 2-2. bigfact

#!/usr/bin/perl

bigfact - calculate prime factors
use strict;

use integer;

our ($opt b, $opt d);
use Getopt::Std;

@ARGV 8& getopts('bd") or die "usage: $0 [-b] number ...";
load_biglib() if $opt_b;

ARG: foreach my $orig (@ARGV) {
my ($n, %factors, $factor);
$n = $opt b ? Math::BigInt->new($orig) : $orig;
if ($n + 0 ne $n) { # don't use -w for this
printf STDERR "bigfact: %s would become %s\n", $n, $n+0 if $opt_d;
load biglib();
$n = Math::BigInt->new($orig);
}

printf "%-10s ", $n;

Here $sqi will be the square of $i. We will take advantage
of the fact that ($i + 1) ** 2 == $1 ** 2 + 2 * $i + 1.
for (my ($1, $sqi) = (2, 4); $sqi <= $n; $sqi += 2 * $1 ++ + 1) {
while ($n % $i == 0) {
$n /= $i;
print STDERR "<$i>" if $opt d;
$factors {$i} ++;

}

if ($n != 1 8& $n != $orig) { $factors{$n}++ }

if (! %factors) {
print "PRIME\n";
next ARG;

}

for $factor (sort { $a <=> $b } keys %factors) {
print "$factor";

88 | Chapter2: Numbers

Example 2-2. bigfact (continued)

if ($factors{$factor} > 1) {
print "**$factors{$factor}";

}

print " ";
}
print "\n";

}

this simulates a use, but at runtime
sub load biglib {
require Math::BigInt;
Math::BigInt->import(); #immaterial?

Program: Calculating Prime Factors | 89

CHAPTER 3
Dates and Times

It is inappropriate to require that a time represented as
seconds since the Epoch precisely represent the number
of seconds between the referenced time and the Epoch.

—IEEE Std 1003.1b-1993 (POSIX) Section B.2.2.2

3.0 Introduction

Times and dates are important things to be able to manipulate. “How many users
logged in last month?”, “How many seconds should T sleep if I want to wake up at
midday?”, and “Has this user’s password expired yet?” are common questions whose
answers involve surprisingly non-obvious manipulations.

Perl represents points in time as intervals, measuring seconds past a point in time
called the Epoch. On Unix and many other systems, the Epoch was 00:00 Jan 1,
1970, UTC (Universal Corrected Time)."

When we talk about dates and times, we often interchange two different concepts:
points in time (dates and times) and intervals between points in time (weeks,
months, days, etc.). Epoch seconds represent intervals and points in the same units,
so you can do basic arithmetic on them.

However, people are not used to working with Epoch seconds. We are more used to
dealing with individual year, month, day, hour, minute, and second values. Further-
more, the month can be represented by its full name or its abbreviation. The day can
precede or follow the month. Because of the difficulty of performing calculations
with a variety of formats, we typically convert human-supplied strings or lists to
Epoch seconds, calculate, and then convert back to strings or lists for output.

Epoch seconds are an absolute number of seconds, so they don’t take into account
time zones or daylight saving times. When converting to or from distinct values,

* UTC is the preferred way to specify what used to be called GMT, or Greenwich Mean Time.

90

always consider whether the time represented is UTC or local. Use different conver-
sion functions depending on whether you need to convert from UTC to local time or
vice versa.

Perl’s time function returns the number of seconds that have passed since the
Epoch—more or less.” POSIX requires that time not include leap seconds, a peculiar
practice of adjusting the world’s clock by a second here and there to account for the
slowing down of the Earth’s rotation due to tidal angular-momentum dissipation.
(See the sci.astro FAQ, section 3, at http://sciastro.astronomy.net/sci.astro.3.FAQ.) To
convert Epoch seconds into distinct values for days, months, years, hours, minutes,
and seconds, use the localtime and gmtime functions. In list context, these functions
return a nine-element list, as shown in Table 3-1.

Table 3-1. Values (and their ranges) returned from localtime and gmtime

Variable Values Range

$sec seconds 0-60

$min minutes 0-59

$hour hours 0-23

$mday day of month 1-31

$mon month of year 0-11,0==January

$year years since 1900 1-138 (or more)

$wday day of week 0-6, 0 == Sunday

$yday day of year 0-365

$isdst Oor1 true if daylight saving is in effect

The values for seconds range from 0-60 to account for leap seconds; you never know
when a spare second will leap into existence at the urging of various standards bodies.

From now on, we’ll refer to a list of day, month, year, hour, minute, and seconds as
DMYHMS, for no better reason than that writing and reading “distinct day, month,
year, hour, minute, and seconds values” is wearisome. The abbreviation is not meant
to suggest an order of return values.

Perl does not return a two-digit year value. It returns the year minus 1900, which just
happens to be a two-digit number through 1999. Perl doesn’t intrinsically have a
Year 2000 problem, unless you make one yourself. (Your computer, and Perl, may
have a 2038 problem, though, if we’re still using 32 bits by that time.) Add 1900 to
get the full year value instead of using the construct "20$year", or your programs will
refer to the year as something like "20103". We can’t pin down the year value’s range,
because it depends on how big an integer your operating system uses for Epoch sec-
onds. Small integers mean a small range; big (64-bit) integers mean a very big range.

* Well, less actually. To be precise, 22 seconds less as of this writing.

Introduction | 91

In scalar context, localtime and gmtime return the date and time formatted as an
ASCII string:

Fri Apr 11 09:27:08 1997

The standard Time::tm module provides a named interface to these values. The stan-
dard Time::localtime and Time:gmtime modules override the list-returning
localtime and gmtime functions, replacing them with versions that return Time::tm
objects. Compare these two pieces of code:

using arrays

print "Today is day ", (localtime)[7],
Today is day 117 of the current year.

" of the current year.\n";

using Time::tm objects

use Time::localtime;

$tm = localtime;

print "Today is day ", $tm->yday, " of the current year.\n";

Today is day 117 of the current year.
To go from a list to Epoch seconds, use the standard Time::Local module. It pro-
vides the functions timelocal and timegm, both of which take a nine-element list and
return an integer. The list’s values have the same meaning and ranges as those
returned by localtime and gmtime.

Epoch seconds values are limited by the size of an integer. If you have a 32-bit signed
integer holding your Epoch seconds, you can only represent dates (in UTC) from Fri
Dec 13 20:45:52 1901 to Tue Jan 19 03:14:07 2038 (inclusive). By 2038, it is assumed,
computers will change to use larger integers for Epoch seconds. We hope. For opera-
tions on dates outside this range, you must use another representation or work from
distinct year, month, and day values.

The Date::Calc and Date::Manip modules on CPAN both work from these distinct
values, but be warned: years don’t necessarily have 1900 subtracted from them the
way the year value returned by localtime does, nor do months and weeks always
start at 0. As always, consult the manpage of the appropriate module to make sure
you’re giving it what it expects and getting back from it what you expect. There’s lit-
tle more embarrassing than realizing you’ve calculated your company payroll based
on a calendar that’s 1,900 years in the past.

3.1 Finding Today’s Date

Problem

You need to find the year, month, and day values for today’s date.

92 | Chapter3: Datesand Times

Solution

Use localtime, which returns values for the current date and time if given no argu-
ments. You can either use localtime and extract the information you want from the
list it returns:

($DAY, $MONTH, $YEAR) = (localtime)[3,4,5];
or use Time::localtime, which overrides localtime to return a Time::tm object:

use Time::localtime;
$tm = localtime;
($DAY, $MONTH, $YEAR) = ($tm->mday, $tm->mon, $tm->year);

Discussion

Here’s how you’d print the current date as “YYYY MM DD”, using the non-overrid-
den localtime:

($day, $month, $year) = (localtime)[3,4,5];

printf("The current date is %04d %02d %02d\n", $year+1900, $month+1, $day);

The current date is 2003 03 06
To extract the fields we want from the list returned by localtime, we take a list slice.
We could also have written it as:

($day, $month, $year) = (localtime)[3..5];
This is how we’d print the current date as “YYYY-MM-DD” (in approved ISO 8601
fashion), using Time::localtime:

use Time::localtime;

$tm = localtime;

printf("The current date is %04d-%02d-%02d\n", $tm->year+1900,

($tm->mon)+1, $tm->mday);

The current date is 2003-03-06
The object interface might look out of place in a short program. However, when you
do a lot of work with the distinct values, accessing them by name makes code much
easier to understand.

A more obfuscated way that does not involve temporary variables is:

printf("The current date is %04d-%02d-%02d\n",
sub {($_[5]+1900, $ [4]+1, $ [3])}->(localtime));

There is also strftime from the POSIX module discussed in Recipe 3.8:

use POSIX gw(strftime);
print strftime "%Y-%m-%d\n", localtime;

The gmtime function works just as localtime does, but gives the answer in UTC
instead of your local time zone.

Finding Today'sDate | 93

See Also

The localtime and gmtime functions in perlfunc(1) and Chapter 29 of Programming
Perl; the documentation for the standard Time::localtime module

3.2 Converting DMYHMS to Epoch Seconds

Problem

You want to convert a date, a time, or both with distinct values for day, month, year,
etc. to Epoch seconds.

Solution

Use the timelocal or timegm functions in the standard Time::Local module, depend-
ing on whether the date and time is in the current time zone or in UTC.
use Time::Llocal;

$TIME = timelocal($sec, $min, $hours, $mday, $mon, $year);
$TIME = timegm($sec, $min, $hours, $mday, $mon, $year);

Discussion

The built-in function localtime converts an Epoch seconds value to distinct DMY-
HMS values; the timelocal subroutine from the standard Time::Local module con-
verts distinct DMYHMS values to an Epoch seconds value. Here’s an example that
shows how to find Epoch seconds for a time in the current day. It gets the day,
month, and year values from localtime:

$hours, $minutes, and $seconds represent a time today,

in the current time zone

use Time::Local;

$time = timelocal($seconds, $minutes, $hours, (localtime)[3,4,5]);
If you’re passing month and year values to timelocal, it expects values with the same
range as those which localtime returns. Namely, months start at 0, and years have
1900 subtracted from them.

The timelocal function assumes the DMYHMS values represent a time in the cur-
rent time zone. Time::Local also exports a timegm subroutine that assumes the DMY-
HMS values represent a time in the UTC time zone. Unfortunately, there is no
convenient way to convert from a time zone other than the current local time zone or
UTC. The best you can do is convert to UTC and add or subtract the time zone off-
set in seconds.

This code illustrates both the use of timegm and how to adjust the ranges of months
and years:

$day is day in month (1-31)
$month is month in year (1-12)

94 | Chapter3: Datesand Times

$year is four-digit year e.g., 1967

$hours, $minutes and $seconds represent UTC (GMT) time

use Time::Local;

$time = timegm($seconds, $minutes, $hours, $day, $month-1, $year-1900);
As explained in the introduction, Epoch seconds cannot hold values before Fri Dec
13 20:45:52 1901 or after Tue Jan 19 03:14:07 2038. Don’t convert such dates to Epoch
seconds—use a Date:: module from CPAN, and do your calculations with that
instead.

See Also

The documentation for the standard Time::Local module (also in Chapter 32 of Pro-
gramming Perl); convert in the other direction using Recipe 3.3

3.3 Converting Epoch Seconds to DMYHMS

Problem

You have a date and time in Epoch seconds, and you want to calculate individual
DMYHMS values from it.

Solution

Use the localtime or gmtime functions, depending on whether you want the date and
time in UTC or your local time zone.

($seconds, $minutes, $hours, $day of month, $month, $year,

$wday, $yday, $isdst) = localtime($time);

The standard Time::timelocal and Time::gmtime modules override the localtime
and gmtime functions to provide named access to the individual values.

use Time::localtime; # or Time::gmtime

$tm = localtime($TIME); # or gmtime($TIME)

$seconds = $tm->sec;
...

Discussion

The localtime and gmtime functions return strange year and month values; the year
has 1900 subtracted from it, and 0 is the month value for January. Be sure to correct
the base values for year and month, as this example does:

($seconds, $minutes, $hours, $day of month, $month, $year,
$wday, $yday, $isdst) = localtime($time);

printf("Dateline: %02d:%02d:%02d-%04d/%02d/%02d\n",
$hours, $minutes, $seconds, $year+1900, $month+1,
$day_of month);

Converting Epoch Seconds to DMYHMS | 95

We could have used the Time::localtime module to avoid the temporary variables:

use Time::localtime;

$tm = localtime($time);

printf("Dateline: %02d:%02d:%02d-%04d/%02d/%02d\n",
$tm->hour, $tm->min, $tm->sec, $tm->year+1900,
$tm->mon+1, $tm->mday);

See Also

The localtime function in perlfunc(1l) and Chapter 29 of Programming Perl; the doc-
umentation for the standard Time::localtime and Time::gmtime modules; convert in
the other direction using Recipe 3.2

3.4 Adding to or Subtracting from a Date

Problem

You have a date and time and want to find the date and time of some period in the
future or past.

Solution
Simply add or subtract Epoch seconds:

$when = $now + $difference;

$then = $now - $difference;
If you have distinct DMYHMS values, use the CPAN Date::Calc module. If you're
doing arithmetic with days only, use Add Delta Days ($offset is a positive or nega-
tive integral number of days):

use Date::Calc gw(Add Delta Days);

($y2, $m2, $d2) = Add Delta Days($y, $m, $d, $offset);
If you are concerned with hours, minutes, and seconds (in other words, times as well
as dates), use Add_Delta DHMS:

use Date::Calc gw(Add Delta DHMS);

($year2, $month2, $day2, $h2, $m2, $s2) =

Add Delta DHMS($year, $month, $day, $hour, $minute, $second,
$days_offset, $hour offset, $minute offset, $second offset);

Discussion

Calculating with Epoch seconds is easiest, disregarding the effort to get dates and times
into and out of Epoch seconds. This code shows how to calculate an offset (55 days, 2
hours, 17 minutes, and 5 seconds, in this case) from a given base date and time:

$birthtime = 96176750; # 18/Jan/1973, 3:45:50 am
$interval = 5 + # 5 seconds

96 | Chapter3: Datesand Times

17 * 60 + # 17 minutes
2 * 60 * 60 + # 2 hours
55 * 60 * 60 * 24; # and 55 days
$then = $birthtime + $interval,;
print "Then is ", scalar(localtime($then)), "\n";
Then is Wed Mar 14 06:02:55 1973
We could have used Date::Calc’s Add Delta DHMS function and avoided the conver-
sion to and from Epoch seconds:
use Date::Calc gw(Add Delta DHMS);
($year, $month, $day, $hh, $mm, $ss) = Add Delta DHMS(
1973, 1, 18, 3, 45, 50, # 18/Jan/1973, 3:45:50 am
55, 2, 17, 5); # 55 days, 2 hrs, 17 min, 5 sec
print "To be precise: $hh:$mm:$ss, $month/$day/$year\n”;
To be precise: 6:2:55, 3/14/1973
As usual, we need to know the range of values the function expects. Add_Delta DHMS
takes a full year value—that is, one that hasn’t had 1900 subtracted from it. The
month value for January is 1, not 0. Date::Calc’s Add_Delta Days function expects the
same kind of values:
use Date::Calc qw(Add Delta Days);
($year, $month, $day) = Add Delta Days(1973, 1, 18, 55);
print "Nat was 55 days old on: $month/$day/$year\n";
Nat was 55 days old on: 3/14/1973

See Also
The documentation for the CPAN module Date::Calc

3.5 Difference of Two Dates

Problem

You need to find the number of days between two dates or times.

Solution

If your dates are in Epoch seconds and fall in the range Fri Dec 13 20:45:52 1901 to
Tue Jan 19 03:14:07 2038 (inclusive), subtract one from the other and convert the
seconds to days:

$seconds = $recent - $earlier;

If you have distinct DMYMHS values or are worried about the range limitations of
Epoch seconds, use the Date::Calc module from CPAN. It can calculate the differ-
ence between dates:

use Date::Calc qw(Delta Days);
$days = Delta Days($year1, $monthi, $day1l, $year2, $month2, $day2);

Difference of Two Dates | 97

It also calculates the difference between a pair of dates and times:

use Date::Calc qw(Delta DHMS);
($days, $hours, $minutes, $seconds) =
Delta DHMS($yeari, $monthi, $dayl, $houri, $minutel, $secondsi, # earlier
$year2, $month2, $day2, $hour2, $minute2, $seconds2); # later

Discussion

One problem with Epoch seconds is how to convert the large integers back to forms
that people can read. The following example shows one way of converting an Epoch
seconds value back to its component numbers of weeks, days, hours, minutes, and
seconds:

$bree
$nat

361535725; # 16 Jun 1981, 4:35:25
96201950; # 18 Jan 1973, 3:45:50

$difference = $bree - $nat;
print "There were $difference seconds between Nat and Bree\n";
There were 265333775 seconds between Nat and Bree

$seconds = $difference % 60;
$difference = ($difference - $seconds) / 60;
$minutes $difference % 60;
$difference = ($difference - $minutes) / 60;
$hours $difference % 24;
$difference = ($difference - $hours) / 24;
$days $difference % 7;
$weeks = ($difference - $days) !/ 7;

print "($weeks weeks, $days days, $hours:$minutes:$seconds)\n";
(438 weeks, 4 days, 23:49:35)

Date::Calc’s functions can ease these calculations. The Delta Days function returns
the number of days between two dates. It takes the two dates as a list: year, month,
day. The dates are given chronologically—earliest first.

use Date::Calc gw(Delta Days);

@bree = (1981, 6, 16); # 16 Jun 1981

@nat = (1973, 1, 18); # 18 Jan 1973

$difference = Delta Days(@nat, @bree);

print "There were $difference days between Nat and Bree\n";
There were 3071 days between Nat and Bree

The Delta DHMS function returns a four-element list corresponding to the number of
days, hours, minutes, and seconds between the two dates you give it.

use Date::Calc gw(Delta DHMS);

@bree = (1981, 6, 16, 4, 35, 25); # 16 Jun 1981, 4:35:25

@nat = (1973, 1, 18, 3, 45, 50); # 18 Jan 1973, 3:45:50

@diff = Delta DHMS(@nat, @bree);

print "Bree came $diff[0] days, $diff[1]:$diff[2]:$diff[3] after Nat\n";
Bree came 3071 days, 0:49:35 after Nat

98 | Chapter3: Datesand Times

See Also
The documentation for the CPAN module Date::Calc

3.6 DayinaWeek/Month/Year
or Week Number

Problem

You have a date, either in Epoch seconds or as distinct year, month, etc. values. You
want to find out what week of the year, day of the week, day of the month, or day of
the year that the date falls on.

Solution

If you have Epoch seconds, the day of the year, day of the month, and day of the
week are returned by localtime. The week of the year is easily calculated from the
day of the year (but see the following discussion, as standards differ).

($MONTHDAY, $WEEKDAY, $YEARDAY) = (localtime $DATE)[3,6,71;

$WEEKNUM = int($YEARDAY / 7) + 1;
If you have distinct DMYHMS values, you can either convert them to Epoch seconds
values as in Recipe 3.2 and then use the previous solution, or else use the Day_of Week,
Week_Number, and Day_of Year functions from the CPAN module Date::Calc:

use Date::Calc qw(Day_of Week Week Number Day of Year);

you have $year, $month, and $day
$day is day of month, by definition.

$wday = Day_of Week($year, $month, $day);

$wnum = Week Number($year, $month, $day);

$dnum = Day_of Year($year, $month, $day);
Discussion

The Day of Week, Week Number, and Day of Year functions all expect years that
haven’t had 1900 subtracted from them and months where January is 1, not 0. The
return value from Day of Week can be 1 through 7 (corresponding to Monday
through Sunday) or 0 in case of an error (an invalid date, for example).

use Date::Calc gw(Day of Week Week Number Day of Week to Text);

$year = 1981;
$month = 6; # (June)
$day = 16;

$wday = Day_of Week($year, $month, $day);
print "$month/$day/$year was a ", Day of Week to Text($wday), "\n";
see comment above

Day in a Week/Month/Year or Week Number | 99

$wnum = Week Number($year, $month, $day);
print "in the $wnum week.\n";

6/16/1981 was a Tuesday

in week number 25.

The governing standard bodies of particular countries may have rules about when
the first week of the year starts. For example, in Norway the first week must have at
least 4 days in it (and weeks start on Mondays). If January 1 falls on a week with 3 or
fewer days, it is counted as week 52 (or 53) of the previous year. In America, the first
Monday of the year is usually the start of the first workweek. Given such rules, you
may have to write your own algorithm, or at least look at the %G, %L, %W, and %U for-
mats to the UnixDate function in Date::Manip.

See Also

The localtime function in perlfunc(l) and Chapter 29 of Programming Perl; the doc-
umentation for the CPAN module Date::Calc

3.7 Parsing Dates and Times from Strings

Problem

You read in a date or time specification in an arbitrary format but need to parse that
string into distinct year, month, etc. values.

Solution

If your date is already numeric, or in a rigid and easily parsed format, use a regular
expression (and possibly a hash mapping month names to numbers) to extract indi-
vidual day, month, and year values, and then use the standard Time::Local module’s
timelocal and timegm functions to turn that into an Epoch seconds value.

use Time::Local;

$date is "2003-02-13" (YYYY-MM-DD form).

($yyyy, $mm, $dd) = ($date =~ /(\d+)-(\d+)-(\d+)/);

calculate epoch seconds at midnight on that day in this timezone
$epoch_seconds = timelocal(o, 0, 0, $dd, $mm-1, $yyyy);

For a more flexible solution, use the ParseDate function provided by the CPAN mod-
ule Date::Manip, and then use UnixDate to extract the individual values.

use Date::Manip qw(ParseDate UnixDate);
$date = ParseDate($STRING);
if (!¢date) {

bad date
} else {

@VALUES = UnixDate($date, @FORMATS);
}

100 | Chapter3: Datesand Times

Discussion

The flexible ParseDate function accepts many formats. It even converts strings such
as “today”, “2 weeks ago Friday”, “2nd Sunday in 1996”, and “last Sunday in
December”, plus it understands the date and time format used in mail and news
headers. It returns the decoded date in its own format: a string of the form “YYYYM-
MDDHH:MM:SS”. You could compare two such strings to compare the dates they
represent, but arithmetic is difficult. We therefore use the UnixDate function to
extract the year, month, and day values in a preferred format.

UnixDate takes a date (as returned by ParseDate) and a list of formats. It applies each
format to the string and returns the result. A format is a string describing one or
more elements of the date and time and the way that the elements are to be format-
ted. For example, %Y is the format for the year in four-digit form. Here’s an example:
use Date::Manip qw(ParseDate UnixDate);
while (<>) {
$date = ParseDate($);
if (1$date) {
warn "Bad date string: $ \n";
next;
} else {

($year, $month, $day) = UnixDate($date, "%Y", "%m", "%d");
print "Date was $month/$day/$year\n";

See Also

The documentation for the CPAN module Date::Manip; we use this in Recipe 3.11

3.8 Printing a Date

Problem

You need to print a date and time shown in Epoch seconds format in human-
readable form.

Solution

Call localtime or gmtime in scalar context, which takes an Epoch seconds value and
returns a string of the form Tue July 22 05:15:20 2003:

$STRING = localtime($EPOCH SECONDS);

PrintingaDate | 101

Alternatively, the strftime function in the standard POSIX module supports a more
customizable output format and takes individual DMYHMS values:
use POSIX gw(strftime);
$STRING = strftime($FORMAT, $SECONDS, $MINUTES, $HOUR,
$DAY_OF MONTH, $MONTH, $YEAR, $WEEKDAY,
$YEARDAY, $DST);
The CPAN module Date::Manip has a UnixDate routine that works like a specialized
form sprintf designed to handle dates. Pass it a Date::Manip date value. Using
Date::Manip in lieu of POSIX::strftime has the advantage of not requiring a POSIX-
compliant system.

use Date::Manip qw(UnixDate);
$STRING = UnixDate($DATE, $FORMAT);

Discussion

The simplest solution is built into Perl already: the localtime function. In scalar con-
text, it returns the string formatted in a particular way:

Wed July 16 23:58:36 2003
This makes for simple code, although it restricts the format of the string:

use Time::Local;

$time = timelocal(50, 45, 3, 18, 0, 73);

print "Scalar localtime gives: ", scalar(localtime($time)), "\n";
Scalar localtime gives: Thu Jan 18 03:45:50 1973

Of course, localtime requires the date and time in Epoch seconds. The POSIX::
strftime function takes individual DMYMHS values plus a format and returns a
string. The format is similar to a printf format: % directives specify fields in the out-
put string. A full list of these directives is available in your system’s documentation
for strftime. The strftime function expects the individual values representing the
date and time to be in the same range as those returned by localtime:

use POSIX gw(strftime);

use Time::Local;

$time = timelocal(so0, 45, 3, 18, 0, 73);

print "strftime gives: ", strftime("%A %D", localtime($time)), "\n";

strftime gives: Thursday 01/18/73
All values are shown in their national representation when using POSIX::strftime. So,
if you run it in France, your program would print "Sunday" as "Dimanche". Be warned:
Perl’s interface to the POSIX function strftime assumes the date falls in the current
time zone.

If you don’t have access to POSIX’s strftime function, there’s always the trusty Date::
Manip CPAN module, described in Recipe 3.6.

use Date::Manip qw(ParseDate UnixDate);
$date = ParseDate("18 Jan 1973, 3:45:50");
$datestr = UnixDate($date, "%a %b %e %H:%M:%S %z %Y"); # as scalar

102 | Chapter3: Datesand Times

print "Date::Manip gives: $datestr\n";
Date: :Manip gives: Thu Jan 18 03:45:50 GMT 1973

See Also

The gmtime and localtime functions in perlfunc(1) and Chapter 29 of Programming
Perl; perllocale(1); your system’s strftime(3) manpage; the documentation for the
POSIX module (also in Chapter 32 of Programming Perl); the documentation for the
CPAN module Date::Manip

3.9 High-Resolution Timers

Problem

You need to measure time with a finer granularity than the full seconds that time
returns.

Solution

The Time::HiRes module, which is included standard starting with the v5.8 release
of Perl, encapsulates this functionality for most systems:

use Time::HiRes gw(gettimeofday);

$to = gettimeofday();

do your operation here

$t1 = gettimeofday();

$elapsed = $t1 - $to;

$elapsed is a floating point value, representing number
of seconds between $t0 and $t1

Discussion

Here’s some code that uses Time::HiRes to time how long the user takes to press the
Return key:

use Time::HiRes qw(gettimeofday);
print "Press return when ready: ";
$before = gettimeofday();

$1line = <STDIN>;

$elapsed = gettimeofday() - $before;

print "You took $elapsed seconds.\n";

Press return when ready:

You took 0.228149 seconds.
The module’s gettimeofday function returns a two-element list representing seconds
and microseconds when called in list context, or a single floating-point number com-
bining the two when called in scalar context. You can also import its time function to

High-Resolution Timers | 103

replace the standard core version by that name; this always acts like scalar
gettimeofday.

The module also provides usleep and ualarm functions, which are alternate versions
of the standard Perl sleep and alarm functions that understand granularities of
microseconds instead of just seconds. They take arguments in microseconds; alterna-
tively, you can import the module’s sleep and alarm functions, which take floating-
point arguments in seconds, to replace the standard versions, which take integer
arguments in seconds. For access to your system’s low-level itimer routines (if you
have them), setitimer and getitimer are also provided.

If your system doesn’t support that module, you might try to poke around by hand
using syscall. Compare Time::HiRes to the equivalent syscall code. (This example
is included principally so that you can see an example of Perl’s abstruse and archaic
syscall function.)

require 'sys/syscall.ph';

initialize the structures returned by gettimeofday
$TIMEVAL_T = "LL";
$done = $start = pack($TIMEVAL T, (0,0));

prompt
print "Press return when ready: ";

read the time into $start
syscall(8SYS gettimeofday, $start, 0) != -1
|| die "gettimeofday: $!";

read a line
$1line = <>;

read the time into $done
syscall(8SYS_gettimeofday, $done, 0) != -1
|| die "gettimeofday: $!";

expand the structure
@start = unpack($TIMEVAL T, $start);
@done = unpack($TIMEVAL T, $done);

fix microseconds
for ($done[1], $start[1]) { $ /= 1 000 000 }

calculate time difference
$delta_time = sprintf "%.4f", ($done[0] + $done[1])

($start[o] + $start[1]);

print "That took $delta_time seconds\n";
Press return when ready:
That took 0.3037 seconds

104 | Chapter3: Datesand Times

It’s longer because it’s doing system calls in Perl, whereas Time::HiRes does them in
C providing a single function. It’s complex because directly accessing system calls
peculiar to your operating system requires understanding the underlying C structures
that the system call takes and returns. Some programs that come with the Perl distri-
bution try to automatically calculate the formats to pack and unpack for you, if fed the
appropriate C header file. In the example, sys/syscall.ph is a Perl library file generated
with h2ph, which converts the sys/syscall.h header file into sys/syscall.ph, defining
(among other things) 8SYS_gettimeofday as a subroutine that returns the system call
number of gettimeofday.

Here’s another example of Time::HiRes, showing how you could use it to bench-
mark a sort (if you didn’t care to use the standard Benchmark module):

use Time::HiRes qw(gettimeofday);
take mean sorting time

$size = 2000;

$number_of times = 100;

$total time = 0;

for ($1 = 0; $i < $number of times; $i++) {
my (@array, $j, $begin, $time);
populate array
@array = ();
for ($j=0; $j < $size; $j++) { push(@array, rand) }

sort it
$begin = gettimeofday;
@array = sort { $a <=> $b } @array;
$time = gettimeofday-$begin;
$total time += $time;
}

printf "On average, sorting %d random numbers takes %.5f seconds\n",
$size, ($total time/$number of times);
On average, sorting 2000 random numbers takes 0.01033 seconds

See Also

The documentation for the Time::HiRes and Benchmark modules; the syscall func-
tion in perlfunc(1) and Chapter 29 of Programming Perl; your system’s syscall(2)
manpage

3.10 Short Sleeps

Problem

You need to sleep for less than a second.

ShortSleeps | 105

Solution

Use the select() function, if your system supports it:
select(undef, undef, undef, $time to sleep);

Some systems don’t support a four-argument select. The Time::HiRes module pro-
vides a sleep function that takes a floating-point number of seconds:

use Time::HiRes gw(sleep);
sleep($time_to_sleep);

Discussion

Here’s an example of select. It’s a simpler version of the program in Recipe 1.6.
Think of it as your very own 300-baud terminal.
while (<>) {
select(undef, undef, undef, 0.25);
print;

}
Using Time::HiRes, we’d write it as:

use Time::HiRes qw(sleep);
while (<>) {

sleep(0.25);

print;

See Also

The documentation for the CPAN modules Time::HiRes and Benchmark; the sleep
and select functions in perlfunc(l) and Chapter 29 of Programming Perl; we use the
select function for short sleeps in the slowcat program in Recipe 1.6

3.11 Program: hopdelta

Have you ever wondered why it took so long for someone’s mail to get to you? With
postal mail, you can’t trace how long each intervening post office let your letter
gather dust in their back office. But with electronic mail, you can. The message car-
ries in its header Received: lines showing when each intervening mail transport agent
along the way got the message.

The dates in the headers are hard to read. You have to read them backwards, bot-
tom to top. They are written in many varied formats, depending on the whim of each
transport agent. Worst of all, each date is written in its own local time zone. It’s hard
to eyeball "Tue, 26 May 1998 23:57:38 -0400" and "Wed, 27 May 1998 05:04:03 +0100"
and realize these two dates are only 6 minutes and 25 seconds apart.

106 | Chapter3: Datesand Times

The ParseDate and DateCalc functions in the Date::Manip module from CPAN can
help this:

use
$d1
$d2

Date::Manip qw(ParseDate DateCalc);
= ParseDate("Sun, 09 Mar 2003 23:57:38 -0400");
= ParseDate("Mon, 10 Mar 2003 05:04:03 +0100");

print DateCalc($d1l, $d2);
+0:0:0:0:0:6:25

That’s a nice format for a program to read, but it’s still not what the casual reader
wants to see. The hopdelta program, shown in Example 3-1, takes a mailer header
and tries to analyze the deltas (difference) between each hop (mail stop). Its output is
shown in the local time zone.

Example 3-1. hopdelta

#!/usx/bin/perl
hopdelta - feed mail header, produce lines

#

showing delay at each hop.

use strict;
use Date::Manip qw (ParseDate UnixDate);

print header; this should really use format/write due to
printf complexities
printf "%-20.20s %-20.20s %-20.20s %s\n",

"Sender", "Recipient", "Time", "Delta";

$/ ="' # paragraph mode
$ =<5 # read header
s/\n\s+/ /g; # join continuation lines

calculate when and where this started

my($start_from) = /~From.*\@(["\s>]*)/m;

my($start date) = /"Date:\s+(.*)/m;

my $then = getdate($start_date);

printf "%-20.20s %-20.20s %s\n", 'Start', $start from, fmtdate($then);

my $prevfrom = $start from;

now process the headers lines from the bottom up
for (reverse split(/\n/)) {

my

($delta, $now, $from, $by, $when);

next unless /"Received:/;
s/\bon (.*?) (id.*)/; $1/s; # gmail header, I think
unless (($when) = /;\s+(.*)$/) { # where the date falls

}

warn "bad received line: $_";
next;

($from) = /from\s+(\S+)/;
($from) = /\N((.*?)\)/ unless $from; # some put it here

$from

~ s/\)$//; # someone was too greedy

($by) = /by\s+(\S+\.\S+)/; # who sent it on this hop

Program: hopdelta | 107

Example 3-1. hopdelta (continued)

now random mungings to get their string parsable
for ($when) {
s/ (for|via) .*$//;
s/([+-1\d\d\d\d) \(\S+\)/$1/;
s/id \S+;\s*//;
}
next unless $now = getdate($when); # convert to Epoch
$delta = $now - $then;

printf "%-20.20s %-20.20s %s ", $from, $by, fmtdate($now);
$prevfrom = $by;
puttime($delta);
$then = $now;
}

exit;

convert random date strings into Epoch seconds
sub getdate {

my $string = shift;
$string =~ s/\s+\(.*\)\s*$//; # remove nonstd tz
my $date = ParseDate($string);

my $epoch secs = UnixDate($date,"%s");
return $epoch_secs;

}

convert Epoch seconds into a particular date string
sub fmtdate {
my $epoch = shift;
my ($sec,$min, $hour, $mday, $mon, $year) = localtime($epoch);
return sprintf "%02d:%02d:%02d %04d/%02d/%02d",
$hour, $min, $sec,
$year + 1900, $mon + 1, $mday,

}

take seconds and print in pleasant-to-read format
sub puttime {

my($seconds) = shift;

my($days, $hours, $minutes);

$days = pull count($seconds, 24 * 60 * 60);
$hours = pull count($seconds, 60 * 60);
$minutes = pull count($seconds, 60);

's', $seconds);

'm', $minutes);

'h', $hours);

'd', $days);

put_field
put field
put field
put_field

o~~~ —~

print "\n";

108 | Chapter3: Datesand Times

Example 3-1. hopdelta (continued)

usage: $count = pull count(seconds, amount)
remove from seconds the amount quantity, altering caller's version.
return the integral number of those amounts so removed.
sub pull count {
my($answer) = int($_[0] / $_[1]);
$ [0] -= $answer * $ [1];
return $answer;

}

usage: put_field(char, number)
output number field in 3-place decimal format, with trailing char
suppress output unless char is 's' for seconds
sub put field {
my ($char, $number) = @ ;
printf " %3d%s", $number, $char if $number || $char eq 's';

}

=end

Sender Recipient Time Delta
Start wall.org 09:17:12 1998/05/23

wall.org mail.brainstorm.net 09:20:56 1998/05/23 44s 3m
mail.brainstorm.net jhereg.perl.com 09:20:58 1998/05/23 2s

Program: hopdelta | 109

CHAPTER 4
Arrays

Works of art, in my opinion, are the only objects in the
material universe to possess internal order, and that is
why, though I don’t believe that only art matters, I do
believe in Art for Art’s sake.

—E.M. Forster

4.0 Introduction

If you are asked about the contents of your pockets, or the names of the first three
Greek letters, or how to get to the highway, you recite a list: you name one thing
after another in a particular order. Lists are part of your conception of the world.
With Perl’s powerful list- and array-handling primitives, you can translate this world
view directly into code.

In this chapter, we’ll use the terms list and array as the Perl language thinks of them.
Take ("alpha", "beta", "gamma"); that’s a list of the names of the first three Greek let-
ters, in order. To store that list into a variable, use an array, as in @greeks = ("alpha",
"beta", "gamma"). Both are ordered groups of scalar values; the difference is that an
array is a named variable, one whose array length can be directly changed, whereas a
list is a more ephemeral notion. You might think of an array as a variable and a list as
the values it contains.

This distinction may seem arbitrary, but operations that modify the length of these
groupings (like push and pop) require a proper array and not merely a list. Think of
the difference between $a and 4. You can say $a++ but not 4++. Likewise, you can say
pop(@a) but not pop (1,2,3).

The most important thing to glean from this is that Perl’s lists and arrays are both
ordered groupings of scalars. Operators and functions that work on lists or arrays are
designed to provide faster or more convenient access to the elements than manual
access would provide. Since few actually deal with modifying the array’s length, you
can usually use arrays and lists interchangeably.

110

You can’t use nested parentheses to create a list of lists. If you try that in Perl, your
lists get flattened, meaning that both these lines are equivalent:

@nested = ("this", "that", "the", "other");

@nested = ("this", "that", ("the", "other"));
Why doesn’t Perl (usefully) just support nested lists directly? Although partially for
historical reasons, this easily allows for operations (like print or sort) that work on
arbitrarily long lists of arbitrary contents.

What happens if you want a more complex data structure, such as an array of arrays
or an array of hashes? Remember that scalars aren’t restricted to containing just
numbers or strings; they can also hold references. Complex (multilevel) data struc-
tures in Perl are always put together using references. Therefore, what appear to be
“two-dimensional arrays” or “arrays of arrays” are always implemented as arrays of
array references, in the same way that two-dimensional arrays in C can be arrays of
pointers to arrays.

Most recipes in this chapter don’t care what you keep in your arrays; for example,
the problem of merging two arrays is the same whether the arrays contains strings,
numbers, or references. Some problems are intrinsically tied to the contents of your
arrays; recipes for those are in Chapter 11. This chapter’s recipes deal with generic
arrays.

Let’s have some more terminology. The scalar items in an array or list are called ele-
ments, which you access by specifying their position, or index. Indices in Perl start at 0.
So, given this list:

@greeks = ("alpha", "beta", "gamma");

"alpha" is in the first position, but you’d access it as $greeks[0]. "beta" is in the sec-
ond position, but you’d access it as $greeks[1]. This structure is doubly justified: the
contrariness of computers, whose first representable number is 0, and the contrari-
ness of language designers, who chose 0 because it is an offset into the array, not the
ordinal number of the element.

4.1 Specifying a List in Your Program

Problem

You want to include a list in your program. This is how you initialize arrays.

Solution

You can write out a comma-separated list of elements:
@ = ("quick", "brown", "fox");
If you have a lot of single-word elements, use the gqw() operator:

@a = gw(Meddle not in the affairs of wizards.);

Specifying a Listin Your Program | 111

If you have a lot of multiword elements, use a here document and extract lines:

@lines = (<< "END_OF_HERE_DOC" =~ /™\s*(.+)/gm);
I sit beside the fire and think
of all that I have seen,
of meadow-flowers and butterflies
and summers that have been;
END_OF HERE_DOC

Discussion

The first technique is the one most commonly used, often because only small arrays
are normally initialized as program literals. Initializing a large array would fill your pro-
gram with values and make it hard to read, so such arrays either tend to be initialized
in a separate library file (see Chapter 12), or else have their values read in from a file:

@bigarray = ();

open(FH, "<", "myinfo") or die "Couldn't open myinfo: $!";
while (<FH>) {

chomp;

push(@bigarray, $);

close(FH);

The second technique uses gqw(), one of several pseudo-functions in Perl used for
quoting without having to resort to actual quotation marks. This one splits its string
argument on whitespace to produce a list of words, where “words” in this instance
means strings that don’t contain any whitespace. The initial argument is not subject
to interpolation of variables or (most) backslash escape sequences.

@banner = ('Costs', 'only', '$4.95");

@banner = qw(Costs only $4.95);

@banner = split("' ', 'Costs only $4.95');
You can use gw() only when each whitespace-separated argument is to be a distinct
element in the return list. Be careful not to give Columbus four ships instead of three:

@ships = qw(Niha Pinta Santa Maria); # WRONG

@ships = ('Nifia', 'Pinta’, 'Santa Maria'); # right
The third solution takes a here document, which is a single, multiline string, and
applies a global pattern match to that string. The pattern /*\s*(.+)/ says to skip any
whitespace at the start of the line, then capture everything through the end of each
line. The /g modifier means to apply that match globally, and the /m modifier says to
permit * to match not just at the beginning of the string, but also immediately after a
newline, which, in a multiline string, is just what you need. Applying that technique
to the ships example yields:

@ships = (<< "END_OF FLOTILLA" =~ /~\s*(.+)/gm);

Nina
Pinta

Santa Maria
END_OF FLOTILLA

112 | Chapter4: Arrays

See Also

The “List Value Constructors” section of perldata(1); the “List Values and Arrays”
section of Chapter 2 of Programming Perl; the “Quote and Quote-Like Operators”
section of perlop(1); the s/// operator in perlop(1) and Chapter 5 of Programming Perl

4.2 Printing a List with Commas

Problem

You’d like to print out a list containing an unknown number of elements, placing an
“and” before the last element and commas between each element if there are more
than two.

Solution

Use this function, which returns the formatted string:

sub commify series {
(@_==0) 2"
(@_==1) ?$_[0]
(@ ==2) ? join(" and ", @) :
join(", ", @_[0 .. ($#_-1)], "and $_[-1]");

Discussion

It often looks odd to print out arrays:

@array = ("red", "yellow", "green");

print "I have ", @array, " marbles.\n";

print "I have @array marbles.\n";

I have redyellowgreen marbles.

I have red yellow green marbles.
What you really want it to say is, "I have red, yellow, and green marbles". The func-
tion given in the solution generates strings in that format. The word "and" is placed
between the last two list elements. If there are more than two elements in the list, a
comma is placed between every element.

Example 4-1 gives a complete demonstration of the function, with one addition: if
any element in the list already contains a comma, a semicolon is used for the separa-
tor character instead.

Example 4-1. commify_series
#!/usr/bin/perl -w
commify_series - show proper comma insertion in list output

@lists is an array of (references to anonymous) arrays
@lists = (

Printing a List with Commas | 113

Example 4-1. commify_series (continued)

['just one thing'],

[
[
[
[
[
(

gw(Mutt Jeff) 1,

gw(Peter Paul Mary)],

'To our parents', 'Mother Theresa', 'God'],

pastrami', 'ham and cheese', 'peanut butter and jelly', 'tuna'],
recycle tired, old phrases', 'ponder big, happy thoughts'],
recycle tired, old phrases’,

'ponder big, happy thoughts',
'sleep and dream peacefully'],

)s

foreach $aref (@lists) {

print "The list is:

}

. commify series(@$aref) . ".\n";

demo for single list
@list = qw(one two three);

print "The last list is:

. commify series(@list) . ".\n";

sub commify series {
my $sepchar = grep(/,/ => @) ? ";" = ",";
(@ _ -)?uu

(
}

(@ ==1)? % [0]
@ ==2) ? join(" and ", @)

join("$sepchar ", @ [0 .. ($#_-1)], "and .$_[-1]");

Here’s the output from the program:

The list is:
The list is:
The list is:
The list is:
The list is:
The list is:
The list is:

just one thing.

Mutt and Jeff.

Peter, Paul, and Mary.

To our parents, Mother Theresa, and God.

pastrami, ham and cheese, peanut butter and jelly, and tuna.
recycle tired, old phrases and ponder big, happy thoughts.
recycle tired, old phrases; ponder

big, happy thoughts; and sleep and dream peacefully.
The last list is: one, two, and three.

As you see, we don’t follow the ill-advised practice of omitting the final comma from
a series under any circumstances. To do so introduces unfortunate ambiguities and
unjustifiable exceptions. The examples shown would have claimed that we were the
offspring of Mother Teresa and God, and would have had us eating sandwiches

made of jelly and tuna fish mixed together atop the peanut butter.

See Also

Fowler’s Modern English Usage; we explain the nested list syntax in Recipe 11.1; the
grep function in perlfunc(l) and Chapter 29 of Programming Perl; the conditional
operator ("?:") is discussed in perlop(1) and in the “Conditional Operator” section

of Chapter 3 of Programming Perl

114 | Chapter4: Arrays

4.3 Changing Array Size

Problem

You want to enlarge or truncate an array. For example, you might truncate an array
of employees that’s already sorted by salary to list the five highest-paid employees.
Or, if you know how big your array will get and that it will grow piecemeal, it’s more
efficient to grab memory for it in one step by enlarging just once than to keep pushing
values onto the end.

Solution

Assign to $#ARRAY:

grow or shrink @ARRAY
$#ARRAY = $NEW_LAST ELEMENT INDEX NUMBER;

Assigning to an element past the end automatically extends the array:

$ARRAY[$NEW_LAST ELEMENT INDEX NUMBER] = $VALUE;

Discussion

$#ARRAY is the number of the last valid index in @ARRAY. If we assign it a number
smaller than its current value, we truncate the array. Truncated elements are lost for-
ever. If we assign $#ARRAY a number larger than its current value, the array grows.
New elements have the undefined value.

$#ARRAY is not @ARRAY, though. Although $#ARRAY is the last valid index in the array,
@ARRAY (in scalar context, as when treated as a number) is the number of elements.
$#ARRAY is one less than @ARRAY because array indices start at 0.

Here’s some code that uses both. We have to say scalar @array in the print because
Perl gives list context to (most) functions’ arguments, but we want @array in scalar
context.
sub what_about_that_array {
print "The array now has ", scalar(@people), " elements.\n";

print "The index of the last element is $#people.\n";
print "Element #3 is “$people[3]'.\n";

}

@people = qw(Crosby Stills Nash Young);
what_about_that array();

prints:

The array now has 4 elements.
The index of the last element is 3.
Element #3 is “Young'.

Changing Array Size | 115

whereas:

$#people--;
what_about that array();

prints:

The array now has 3 elements.
The index of the last element is 2.
Element #3 is "'.

Element #3 disappeared when we shortened the array. If we’d turned on warnings
(either with the -w command-line option to Perl or with use warnings inside the pro-
gram), Perl would also have warned “use of uninitialized value” because $people[3]
is undefined.

$#tpeople = 10_000;
what_about that array();

prints:

The array now has 10001 elements.
The index of the last element is 10000.
Element #3 is "'.

The "Young" element is now gone forever. Instead of assigning to $#people, we could
have said:

$people[10_000] = undef;

although this isn’t exactly the same. If you have a three-element array, as in:
@colors = qw(red blue green);

and you undef its last element:
undef $colors[2]; # green is gone

you still have a three-element array; its last element is just undefined. If you pop the
array, either via the function or manually by changing $#colors:

$last _color = $colors[$#colors--];

then the array grows shorter by one element.
Perl arrays are not sparse. In other words, if you have a 10,000th element, you must
have the 9,999 other elements, too. They may be undefined, but they still take up

memory. For this reason, $array[time()], or any other construct that uses a very
large integer as an array index, is a really bad idea. Use a hash instead.

See Also

The discussion of the $#ARRAY notation in perldata(1), also explained in the “List Val-
ues and Arrays” section of Chapter 2 of Programming Perl

116 | Chapter4: Arrays

4.4 Implementing a Sparse Array

Problem

An array with large, unoccupied expanses between occupied elements wastes mem-
ory. How do you reduce that overhead?

Solution

Use a hash instead of an array.

Discussion

If you assign to the millionth element of an array, Perl allocates a million and one
slots to store scalars. Only the last element contains interesting data, leaving earlier
ones each set to undef at a cost of four (or more) bytes per unoccupied slot.

In recent versions of Perl, if you grow an array by assigning either past the end or
directly to $#ARRAY, you can distinguish these implicit undefs from those that would
result from assigning undef there by using exists instead of defined, just as you
would with a hash.

$#tfoo = 5;
@ar = ((undef) x 5) ;

printf "foo element 3 is%s defined\n",

defined $foo[3] ? "" : "n't";
printf "foo element 3 does%s exist\n",
exists $foo[3] 2 "" : "n't";
printf "bar element 3 is%s defined\n",
defined $bar[3] ? "" : "n't";
printf "bar element 3 does¥s exist\n",
exists $bar[3] ? "" : "n't";

foo element 3 isn't defined

foo element 3 doesn't exist

bar element 3 isn't defined

bar element 3 does exist
However, you still waste a lot of space. That’s because Perl’s array implementation
reserves a contiguous vector, one for each element up to the highest occupied position.

$real array[1 000 000] = 1; # costs 4+ megabytes

A hash works differently: you pay only for what you really use, not for unoccupied
positions. Although a hash element costs somewhat more than an array element
because you need to store both the value and its key, with sparse arrays, the savings
can be astonishing.

$fake_array{ 1 000 000 } = 1; # costs 28 bytes

Implementing a Sparse Array | 117

What'’s the trade-off? Because a hash’s keys aren’t ordered, a little more work is
needed to sort the numeric keys so you can handle their values in the same order as
you would if they were stored as a real array. With an array, you’d just do this to
process elements in index order:

foreach $element (@real array) {
do something with $element
}

or this to process indices in ascending order:

foreach $idx (0 .. $#real array) {
do something with $real array[$idx]
}
Using a hash representation, you should instead do either this to process elements in
index order:

foreach $element (@fake array{ sort {$a <=> $b} keys %fake array }) {
do something with $element
}

or this to process indices in ascending order:

foreach $idx (sort {$a <=> $b} keys %fake array) {
do something with $fake array{$idx}
}

If you don’t care about handling elements in a particular order, however, you don’t
need to go through all that. Just process the values according to their internal order,
either like this:

foreach $element (values %fake array) {
do something with $element
}

or like this:

process indices in internal hash order
foreach $idx (keys %fake_array) {
do something with $fake array{$idx}

}
If you’re determined to use an array, two fairly specialized cases occasionally arise in
which you can save substantial amounts of memory by using an alternate storage
scheme. Both cases also apply to arrays that are densely populated, not just those
that are mostly empty.

The first case shows up when you grow an array by repeatedly appending new ele-
ments until its subscripts become large. Because of how Perl reallocates memory for
growing arrays, this can use up to four times the memory you really need. If you hap-
pen to know how big the array will (or might) eventually become, you can avoid this
reallocation overhead either by storing the large subscripts first instead of the small
ones:

for ($i = 10 000; $i >= 0; $i--) { $real array[$i] =1 }

118 | Chapter4: Arrays

or by presizing the array by assigning to the special $#ARRAY notation:
$#real_array = 10_000;

The second special case comes up when each array element holds nothing but a sin-
gle one-bit value—essentially either a true or a false. For example, suppose you are
keeping track of numbered USENET news articles, and you only need to know
whether a given article number has been read. For situations like this, use a bit vec-
tor instead of a real array:

my $have read = '';
for ($i = 10 000; $i >= 0; $i--) { vec($have read, $i, 1) = 1 }

Then you can check to see whether a given article has been read this way:

if (vec($have read, $artno, 1)) { }

See Also

The vec function in perlfunc(1) and in Chapter 29 of Programming Perl

4.5 Iterating Over an Array

Problem
You want to repeat a procedure for every element in a list.

Often you use an array to collect information you’re interested in; for instance, login
names of users who have exceeded their disk quota. When you finish collecting the
information, you want to process it by doing something with every element in the
array. In the disk quota example, you might send each user a stern mail message.

Solution

Use a foreach loop:

foreach $item (LIST) {
do something with $item
}

Discussion

Let’s say we’ve used @bad_users to compile a list of users who are over their allotted
disk quotas. To call some complain subroutine for each user, we’d use:

foreach $user (@bad users) {
complain($user);
}

Iterating Overan Array | 119

Rarely is this recipe so simply applied. Instead, we often use functions to generate the
list:

foreach $var (sort keys %ENV) {

print "$var=$ENV{$vari\n";

}
Here we’re using sort and keys to build a sorted list of environment variable names.
If you use the list more than once, you’ll obviously keep it around by saving in an
array. But for one-shot processing, it’s often tidier to process the list directly.

Not only can we add complexity to this formula by building up the list in the
foreach, we can also add complexity by doing more work inside the code block. A
common application of foreach is to gather information on every element of a list
and then, based on that information, decide whether to do something. For instance,
returning to the disk quota example:

foreach $user (@all users) {

$disk _space = get usage($user); # find out how much disk space in use

if ($disk space > $MAX QUOTA) { # if it's more than we want ...
complain($user); # ... then object vociferously

}

}

More complicated program flow is possible. The code can call last to jump out of
the loop, next to move on to the next element, or redo to jump back to the first state-
ment inside the block. Use these to say “no point continuing with this one, I know
it’s not what I’'m looking for” (next), “I've found what I'm looking for, there’s no
point in my checking the rest” (last), or “I've changed some things, I’d better run
this loop’s calculations again” (redo).

The variable set to each value in the list is called a loop variable or iterator variable. 1f
no iterator variable is supplied, the global variable $_is used. $_ is the default vari-
able for many of Perl’s string, list, and file functions. In brief code blocks, omitting $_
improves readability. (In long ones, though, too much implicit use hampers readabil-
ity.) For example:

foreach (“who™) {
if (/tchrist/) {

print;
}
}
or combining with a while loop:
while (<FH>) { # $_ is set to the line just read
chomp; # $ has a trailing \n removed, if it had one
foreach (split) { #$ 1is split on whitespace, into @_
then $_ is set to each chunk in turn
$ = reverse; # the characters in $ are reversed
print; #$_ is printed
}
}

120 | Chapter4: Arrays

Perhaps all these uses of $ are starting to make you nervous. In particular, the
foreach and the while both give values to $. You might fear that at the end of the
foreach, the full line as read into $_ with <FH> would be forever gone.

Fortunately, your fears would be unfounded, at least in this case. Perl won’t perma-
nently clobber $ ’s old value, because the foreach’s iterator variable (here, $) is
automatically preserved during the loop. It saves away any old value on entry and
restores it upon exit.

However, there is some cause for concern. If the while had been the inner loop and
the foreach the outer one, your fears would have been realized. Unlike a foreach
loop, the while (<FH>) construct clobbers the value of the global $ without first
localizing it! So any routine—or block for that matter—that uses this construct with
$_should declare local $_.

If a lexical variable (one declared with my) is in scope, the temporary variable will be
lexically scoped, private to that loop. Otherwise, it will be a dynamically scoped glo-
bal variable. To avoid strange magic at a distance, write this more obviously and
more clearly as:

foreach my $item (@array) {

print "i = $item\n";

}
The foreach looping construct has another feature: each time through the loop, the
iterator variable becomes not a copy of but rather an alias for the current element.
This means that when you change that iterator variable, you really change each ele-
ment in the list:

@array = (1,2,3);

foreach $item (@array) {
$item--;
}

print "@array\n";
012

multiply everything in @a and @b by seven
@ = (.5 3); @ =(0,1);
foreach $item (@a, @b) {
$item *= 7;
}
print "@a @b\n";
3.52107

You can’t change a constant, though, so this is illegal:

foreach $n (1, 2, 3) {
$n F*= 2;
}
This aliasing means that using a foreach loop to modify list values is both more read-
able and faster than the equivalent code using a three-part for loop and explicit
indexing would be. This behavior is a feature, not a bug, that was introduced by

Iterating Overan Array | 121

design. If you didn’t know about it, you might accidentally change something. Now
you know about it.

For example, to trim leading and trailing whitespace in a hash, we take advantage of
how the values function works: the elements of its return list really are the values of
the hash, and changing these changes the original hash. Because we use s/// directly
on the list returned by the values function without copying these into a variable, we
change the real hash itself.
trim whitespace in the scalar, the array, and in all
the values in the hash
foreach ($scalar, @array, values %hash) {
s/™M\s+//;
s/\s+$//;
}
For reasons hearkening back to the equivalent construct in the Unix Bourne shell,
the for and foreach keywords are interchangeable:

for $item (@array) { # same as foreach $item (@array)
do something

}

for (@array) { # same as foreach $_(@array)
do something

}

This style often indicates that its author writes or maintains shell scripts, perhaps for
Unix system administration. As such, their life is probably hard enough, so don’t
speak too harshly of them. Remember, TMTOWTDI. This is just one of those ways.

If you aren’t fluent in Bourne shell, you might find it clearer to express “for each
$thing in this @1ist” by saying foreach, to make your code look less like the shell and
more like English. (But don’t try to make your English look like your code!)

See Also

The “For Loops,” “Foreach Loops,” and “Loop Control” sections of perlsyn(l) and
Chapter 4 of Programming Perl; the “Temporary Values via local” section of perlsub(1);
the “Scoped Declarations” section of Chapter 4 of Programming Perl; we talk about
local in Recipe 10.13; we talk about my in Recipe 10.2

4.6 Iterating Over an Array by Reference

Problem

You have a reference to an array, and you want to use a loop to work with the array’s
elements.

122 | Chapter4: Arrays

Solution

Use foreach or for to loop over the dereferenced array:

iterate over elements of array in $ARRAYREF
foreach $item (@$ARRAYREF) {

do something with $item
}

for ($i = 0; $1i <= $H#$ARRAYREF; $i++) {
do something with $ARRAYREF->[$1i]
}

Discussion

The solutions assume you have a scalar variable containing the array reference. This
lets you do things like this:

@fruits = ("Apple", "Blackberry");
$fruit_ref = \@fruits;
foreach $fruit (@$fruit ref) {

print "$fruit tastes good in a pie.\n";

}
Apple tastes good in a pie.
Blackberry tastes good in a pie.

We could have rewritten the foreach loop as a for loop like this:

for ($i=0; $i <= $#$fruit ref; $i++) {
print "$fruit_ref->[$i] tastes good in a pie.\n";
}
Frequently, though, the array reference is the result of a more complex expression.
Use the @{ EXPR } notation to turn the result of the expression back into an array:
$namelist{felines} = \@rogue cats;
foreach $cat (@{ $namelist{felines} }) {

print "$cat purrs hypnotically..\n";
}

print "--More--\nYou are controlled.\n";
Again, we can replace the foreach with a for loop:

for ($i=0; $i <= $#{ $namelist{felines} }; $i++) {
print "$namelist{felines}[$i] purrs hypnotically.\n";
}

See Also
perlref(1) and perllol(1); Chapter 8 of Programming Perl; Recipe 11.1; Recipe 4.5

I[terating Over an Array by Reference | 123

4.7 Extracting Unique Elements from a List

Problem

You want to eliminate duplicate values from a list, such as when you build the list
from a file or from the output of another command. This recipe is equally applicable
to removing duplicates as they occur in input and to removing duplicates from an
array you’ve already populated.

Solution

Use a hash to record which items have been seen, then keys to extract them. You can
use Perl’s idea of truth to shorten and speed up your code.

Straightforward
%seen = ();
@unig = ();

foreach $item (@list) {
unless ($seen{$item}) {
if we get here, we have not seen it before
$seen{$item} = 1;
push(@uniq, $item);

}

Faster

%seen = ();
foreach $item (@list) {
push(@uniq, $item) unless $seen{$item}++;

}

Similar but with user function

%seen = ();
foreach $item (@list) {
some_func($item) unless $seen{$item}++;

}

Faster but different

%seen = ();
foreach $item (@list) {
$seen{$item}++;

}

@uniq = keys %seen;

Faster and even more different

%seen = ();
@uniq = grep { ! $seen{$_} ++ } @list;

124 | Chapter4: Arrays

Discussion

The question at the heart of the matter is “Have I seen this element before?” Hashes
are ideally suited to such lookups. The first technique (“Straightforward”) builds up
the array of unique values as we go along, using a hash to record whether something
is already in the array.

The second technique (“Faster”) is the most natural way to write this sort of thing in
Perl. It creates a new entry in the hash every time it sees an element that hasn’t been
seen before, using the ++ operator. This has the side effect of making the hash record
the number of times the element was seen. This time we only use the hash for its
property of working like a set.

The third example (“Similar but with user function”) is similar to the second but
rather than storing the item away, we call some user-defined function with that item
as its argument. If that’s all we’re doing, keeping a spare array of those unique val-
ues is unnecessary.

The next mechanism (“Faster but different”) waits until it’s done processing the list
to extract the unique keys from the %seen hash. This may be convenient, but the orig-
inal order has been lost.

The final approach (“Faster and even more different”) merges the construction of the
%seen hash with the extraction of unique elements. This preserves the original order
of elements.

Using a hash to record the values has two side effects: processing long lists can take a
lot of memory, and the list returned by keys is unordered.

Here’s an example of processing input as it is read. We use “who™ to gather informa-
tion on the current user list, then extract the username from each line before updat-
ing the hash:

generate a list of users logged in, removing duplicates

ducnt = ();

for (“who™) {
s/\s.*\n//; # kill from first space till end-of-line, yielding username
$ucnt{$_}++; # record the presence of this user

}

extract and print unique keys
@users = sort keys %ucnt;

print "users logged in: @users\n";

See Also

The “Foreach Loops” section of perlsyn(1) and Chapter 4 of Programming Perl; the
keys function in perlfunc(1) and Chapter 29 of Programming Perl; the “Hashes” sec-
tion of Chapter 2 of Programming Perl; Chapter 5; we use hashes in a similar fashion
in Recipes 4.8 and 4.9

Extracting Unique Elements fromalist | 125

4.8 Finding Elements in One Array

but Not Another

Problem

You want to find elements that are in one array but not another.

Solution

You want to find elements in @A that aren’t in @8. Build a hash of the keys of @B to use
as a lookup table. Then check each element in @A to see whether it is in @B.

Straightforward implementation

assume @A and @B are already loaded
%seen = (); # lookup table to test membership of B
@aonly = (); # answer

build lookup table
foreach $item (@B) { $seen{$item} = 1 }

find only elements in @A and not in @B
foreach $item (@A) {
unless ($seen{$item}) {
it's not in %seen, so add to @aonly
push(@aonly, $item);

More idiomatic version

my %seen; # lookup table
my @aonly; # answer

build lookup table
@seen{@B} = ();

foreach $item (@A) {
push(@aonly, $item) unless exists $seen{$item};
}

Loopless version

my @A = ...;
my @ = ...;

my %seen;
@seen {@A} = ();
delete @seen {@B};

my @aonly = keys %seen;

126

| Chapter4: Arays

Discussion

As with nearly any problem in Perl that asks whether a scalar is in one list or another,
this one uses a hash. First, process @ so that the %seen hash records each element
from @B by setting its value to 1. Then process @A one element at a time, checking
whether that particular element had been in @ by consulting the %seen hash.

The given code retains duplicate elements in @A. This can be fixed easily by adding
the elements of @A to %seen as they are processed:
foreach $item (@A) {
push(@aonly, $item) unless $seen{$item};
$seen{$item} = 1; # mark as seen
}
The first two solutions differ mainly in how they build the hash. The first iterates
through @B. The second uses a hash slice to initialize the hash. A hash slice is easiest
illustrated by this example:

$hash{"key1"} = 1;
$hash{"key2"} = 2;

which is equivalent to:
@hash{"key1", "key2"} = (1,2);
The list in the curly braces holds the keys; the list on the right holds the values. We

initialize %seen in the first solution by looping over each element in @ and setting the
appropriate value of %seen to 1. In the second, we simply say:

@seen{@B} = ();

This uses items in @8 as keys for %seen, setting each corresponding value to undef,
because there are fewer values on the right than places to put them. This works out
here because we check for existence of the key, not logical truth or definedness of the
value. If we needed true values, a slice could still shorten our code:

@seen{@B} = (1) x @B;

In the third solution, we make use of this property even further and avoid explicit
loops altogether. (Not that avoiding loops should be construed as being particularly
virtuous; we’re just showing you that there’s more than one way to do it.) The slice
assignment makes any element that was in @A a key, and the slice deletion removes
from the hash any keys that were elements of @B, leaving those that were only in @A.

A fairly common situation where this might arise is when you have two files and
would like to know which lines from the second file either were or weren’t in the
first. Here’s a simple solution based on this recipe:

open(OLD, $pathi) || die "can't open $pathi: $!";
@seen{ <OLD> } = ();
open(NEW, $path2) || die "can't open $path2: $!";

while (<NEW>) {
print if exists $seen{$_};
}

Finding Elements in One Array but Not Another | 127

This shows the lines in the second file that were already seen in the first one. Use
unless instead of if to show the lines in the second file that were not in the first.
Imagine two files, the first containing the lines:

red
yellow
green
blue

and the second containing:

green
orange
purple
black

yellow

The output using if would be:

green
yellow

and the output using unless would be:

orange
purple
black

You could even do this from the command line; given a suitable cat(1) program, it’s
easy:

% perl -e '@s{ cat OLD }=(); exists $s{$_} && print for “cat NEW™'
% perl -e '@s{ cat OLD }=(); exists $s{$ } || print for “cat NEW™'

You’d find that you just emulated these calls to the Unix fgrep(1) program:

% fgrep -Ff OLD NEW
% fgrep -vFf OLD NEW

See Also

Hash slices are explained in perldata(1) and the “Variables” section of Chapter 2 of
Programming Perl; Chapter 5; we use hashes in a similar fashion in Recipes 4.7 and 4.9

4.9 Computing Union, Intersection,
or Difference of Unique Lists

Problem

You have a pair of lists, each holding unduplicated items. You’d like to find out
which items are in both lists (intersection), one but not the other (difference), or
either (union).

128 | Chapter4: Arrays

Solution

The following solutions need the listed initializations:

@ = (1) 3, 5, 6) 7, 8))
@ = (2, 3,5 7, 9);

@union = @isect = @diff = ();
%union = %isect = ();
%count = ();

Simple solution for union and intersection
foreach $e (@a) { $union{$e} = 1 }

foreach $e (@b) {
if ($union{$e}) { $isect{$e} =1 }
$union{$e} = 1;

}

@union = keys %union;

@isect = keys %isect;

More idiomatic version
foreach $e (@a, @b) { $union{$e}++ 8& $isect{$e}++ }

@union = keys %union;
@isect = keys %isect;

Union, intersection, and symmetric difference

foreach $e (@a, @b) { $count{$e}++ }

@union = keys %count;
foreach $e (keys %count) {
if ($count{se} == 2) {
push @isect, $e;
} else {
push @diff, $e;
}

Indirect solution
@isect = @diff = @union = ();
foreach $e (@a, @b) { $count{$e}++ }
@union = keys %count;

foreach $e (keys %count) {
push @{ $count{$e} == 2 ? \@isect : \@diff }, $e;
}

Computing Union, Intersection, or Difference of Unique Lists

129

Discussion

The first solution most directly computes the union and intersection of two lists, nei-
ther containing duplicates. Two hashes are used to record whether a particular item
goes in the union or the intersection. We put every element of the first array in the
union hash, giving it a true value. Then, processing each element of the second array,
we check whether that element is already present in the union. If it is, we put it in the
intersection as well. In any event, it goes into the union. When we’re done, we
extract the keys of both the union and intersection hashes. The values aren’t needed.

The second solution (“More idiomatic version”) is essentially the same but relies on
familiarity with the Perl (and awk, C, C++, and Java) ++ and &3 operators. By plac-
ing the ++ after the variable, we first look at its old value before incrementing it. The
first time through it won’t be in the union, which makes the first part of the 88 false,
so the second part is consequently ignored. The second time that we encounter the
same element, it’s already present in the union, so we put it in the intersection.

The third solution uses just one hash to track how many times each element is seen.
Once both arrays have their elements recorded in the hash, we grab those keys and
put them in the union. Then we process those hash keys one at a time. Keys whose
values are 2 were in both arrays, so they go in the intersection array. Keys whose val-
ues are 1 were in just one of the two arrays, so they go in the difference array. Ele-
ments of the output arrays are not in the same order as those in the input arrays.

The last solution, like the previous one, uses just one hash to count how many times
each element is encountered. Here, though, we dynamically select one of two possi-
ble arrays by placing within the @{...} array-dereferencing block an expression
whose evaluation yields a reference to whichever array is demanded by the situation.

In this recipe we compute the symmetric difference, not the simple difference. These
are terms from set theory. A symmetric difference is the set of all elements that are
members of either @A or @B, but not both. A simple difference is the set of members of
@A but not @8, which we calculated in Recipe 4.8.

See Also

The “Hashes” section of Chapter 2 of Programming Perl; Chapter 5; we use hashes in
a similar fashion in Recipes 4.7 and 4.8

4.10 Appending One Array to Another

Problem

You want to join two arrays by appending all elements of one to the other.

130 | Chapter4: Arrays

Solution
Use push:

push
push(@ARRAY1, @ARRAY2);

Discussion

The push function is optimized for appending a list to the end of an array. You can
take advantage of Perl’s list flattening to join two arrays, but this results in signifi-
cantly more copying than push:

@ARRAY1 = (@ARRAY1, @ARRAY2);
Here’s an example of push in action:

@members = ("Time", "Flies");

@initiates = ("An", "Arrow");

push(@members, @initiates);

@members is now ("Time", "Flies", "An", "Arrow")

To insert the elements of one array into the middle of another, use the splice function:

splice(@members, 2, 0, "Like", @initiates);
print "@members\n";

splice(@members, 0, 1, "Fruit");
splice(@members, -2, 2, "A", "Banana");
print "@members\n";

This is the output:

Time Flies Like An Arrow
Fruit Flies Like A Banana

See Also

The splice and push functions in perlfunc(l) and Chapter 29 of Programming Perl;
the “List Values and Arrays” section of Chapter 2 of Programming Perl; the “List
Value Constructors” section of perldata(1)

4.11 Reversing an Array

Problem

You want to reverse an array.

Solution

Use the reverse function:

reverse @ARRAY into @REVERSED
@REVERSED = reverse @ARRAY;

Reversingan Array | 131

Or process with a foreach loop on a reversed list:

foreach $element (reverse @ARRAY) {
do something with $element

}

Or use a for loop, starting with the index of the last element and working your way
down:

for ($i = $H#ARRAY; $i >= 0; $i--) {
do something with $ARRAY[$i]
}

Discussion

Called in list context, the reverse function reverses elements of its argument list. You
can save a copy of that reversed list into an array, or just use foreach to walk through
it directly if that’s all you need. The for loop processes the array elements in reverse
order by using explicit indices. If you don’t need a reversed copy of the array, the for
loop can save memory and time on very large arrays.

If you’re using reverse to reverse a list that you just sorted, you should have sorted it
in the correct order to begin with. For example:

two-step: sort then reverse
@ascending = sort { $a cmp $b } @users;
@descending = reverse @ascending;

one-step: sort with reverse comparison
@descending = sort { $b cmp $a } @users;

See Also

The reverse function in perlfunc(l) and Chapter 29 of Programming Perl; we use
reverse in Recipe 1.7

4,12 Processing Multiple Elements of an Array

Problem

You want to pop or shift multiple elements at a time.

Solution

Use splice:
remove $N elements from front of @ARRAY (shift $N)
@FRONT = splice(@ARRAY, 0, $N);

remove $N elements from the end of the array (pop $N)
@END = splice(@ARRAY, -$N);

132 | Chapter4: Arrays

Discussion

The splice function allows you to add elements, delete elements, or both, at any
point in an array, not just at the ends. All other operations that modify an array’s
length can also be written as a splice:

Direct method Splice equivalent

push(@a, $x, $y) splice(@a, @a, 0, $x, $y)
pop(@a) splice(@a, -1)

shift(@a) splice(@a, 0, 1)
unshift(@a, $x, $y) splice(@a, 0, 0, $x, $y)
$a[$x] = $y splice(@a, $x, 1, $y)
(@a, @a = ()) splice(@a)

Unlike pop and unshift, though, which always delete and return just one element at a
time—and from the ends only—splice lets you specify the number of elements. This
leads to code like the examples in the Solution.

It’s often convenient to wrap these splices as functions:

sub shift2 (\@) {
return splice(@{$_[0]}, 0, 2);
}

sub pop2 (\@) {
return splice(@{$ _[0]}, -2);
}

This makes their behavior more apparent when you use them:

@friends = qw(Peter Paul Mary Jim Tim);
($this, $that) = shift2(@friends);

$this contains Peter, $that has Paul, and
@friends has Mary, Jim, and Tim

@beverages = gqw(Dew Jolt Cola Sprite Fresca);

@pair = pop2(@beverages);

$pair[0] contains Sprite, $pair[1] has Fresca,

and @beverages has (Dew, Jolt, Cola)
The splice function returns the elements it removed from the array, so shift2
replaces the first two elements in @ARRAY with nothing (i.e., deletes them) and returns
the two elements deleted. In pop2, the two elements at end of the array are removed
and returned.

These two functions are prototyped to take an array reference as their argument to
better mimic the built-in shift and pop functions. The caller doesn’t pass in an
explicit reference using a backslash. Instead, the compiler, having seen the array refer-
ence prototype, arranges to pass the array by reference anyway. Advantages to this
approach include efficiency, transparency, and compile-time parameter checking.
One disadvantage is that the thing passed in must look like a real array with a leading

Processing Multiple Elements of an Array | 133

@ sign, not just a scalar containing an array reference. If it did, you’d have to prepend
an @, making it less transparent:

$line[5] = \@list;

@got = pop2(@f $line[5] });
This is another example of where a proper array and not a mere list is called for. The
\@ prototype requires that whatever goes in that argument slot be an array. $line[5]
isn’t an array, but an array reference. That’s why we need the “extra” @ sign.

See Also

The splice function in perlfunc(1) and Chapter 29 of Programming Perl; the “Proto-
types” sections of perlsub(1) and Chapter 6 of Programming Perl; we use splice in
Recipe 4.10

4.13 Finding the First List Element That
Passes a Test

Problem

You want the first element in the list (or its index) that passes a test. Alternatively,
you want to know whether any element passes the test. The test can be simple iden-
tity (“Is this element in the list?”)” or more complex (“I have a list of Employee
objects, sorted from highest salary to lowest. Which manager has the highest sal-
ary?”). Simple cases normally require only the value of the element, but when the
array itself will be altered, you probably need to know the index number of the first
matching element.

Solution

To find a matching value, use foreach to loop over every element, and call last as
soon as you find a match:
my ($match, $found, $item);

foreach $item (@array) {
if (CRITERION) {

$match = $item; # must save
$found = 1;
last;

}
}
if ($found) {

do something with $match
} else {

* But why didn’t you use a hash then?

134 | Chapter4: Arrays

unfound
}
To find a matching index, use for to loop a variable over every array index, and call
last as soon as you find a match:
my ($1i, $match idx);
for ($i = 0; $i < @array; $i++) {
if (CRITERION) {

$match_idx = $i; # save the index
last;

}

if (defined $match idx) {

found in $array[$match_idx]
} else {

unfound

}
The List::Util module, shipped standard with Perl as of v5.8 but available on CPAN
for earlier versions, provides an even easier approach:

use List::Util gw(first);
$match = first { CRITERION } @list

Discussion

Lacking (until recently) a built-in mechanism to do this, we must write our own code
to go through the list and test each element. We use foreach and for, and call last to
ensure that we stop as soon as we find a match. Before we use last to stop looking,
though, we save the value or index.

A common approach is to try to use grep here. But grep always tests all elements and
finds all matches, so it’s inefficient if you want only the first match. However, grep
might still be faster. That’s because there will be less source code if you use grep
rather than writing your own loop. That means fewer internal Perl operations, and it
is these that in practice often dominate runtimes.

Beyond a certain size of your data set, a loop that terminates early will still be
faster—assuming it has the chance to do so. Empirical evidence suggests that for will
be faster as long as you can exit before the first two-thirds of the list has been exam-
ined. It’s worthwhile to know how to do that.

We have to set $match when we want the value of the first matching element. We
can’t just test $item at the end of the loop, because foreach automatically localizes
the iterator variable and thereby prevents us from accessing the final loop value after
the loop ends. See Recipe 4.5.

Here’s an example. Assume that @all_emps holds a list of Employee objects, sorted in
descending order by salary. We wish to find the highest paid engineer, who will be

Finding the First List Element That PassesaTest | 135

the first engineer in the array. We only want to print the engineer’s name, so we
want the value, not the index.
foreach $employee (@all_emps) {
if ($employee->category() eq 'engineer') {
$top_engr = $employee;
last;
}
}
print "Highest paid engineer is: ", $highest engineer->name(), "\n";
When we’re searching and want only the index, we can save some code by remem-
bering that $i will not be an acceptable array index if we don’t find a match. This
mainly saves us code space, as not doing an assignment doesn’t really win much
compared to the time spent testing list elements. It’s more obscure, because it tests
if ($i < @ARRAY) to check whether we found a match, instead of the more obvious
defined test in the previous solution.
for ($1 = 0; $i < @ARRAY; $i++) {
last if CRITERION;

}
if ($i < @ARRAY) {
found and $i is the index
} else {
not found
}

The first function from List::Util encapsulates the logic from an entire loop into a
convenient, easy-to-use function. It acts just like a short-circuiting form of the built-
in grep function that stops as soon as a match is found. While running, each list ele-
ment is in a localized $_ variable. For example:

$first odd = first { $§ % 2 == 1 } @ARRAY;
Or rewriting the previous employee loop:

$top_engr = first { $ ->category() eq 'engineer' } @all emps;

See Also

The “For Loops,” “Foreach Loops,” and “Loop Control” sections of perlsyn(1) and
Chapter 4 of Programming Perl; the grep function in perlfunc(l) and Chapter 29 of
Programming Perl

4.14 Finding All Elements in an Array Matching
Certain Criteria

Problem

From a list, you want only the elements that match certain criteria.

136 | Chapter4: Arrays

This notion of extracting a subset of a larger list is common. It’s how you find all
engineers in a list of employees, all users in the “staff” group, or all the filenames
you’re interested in.

Solution

Use grep to apply a condition to all elements in the list and return only those for
which the condition was true:

@MATCHING = grep { TEST ($_) } @LIST;

Discussion

This could also be accomplished with a foreach loop:

@matching = ();
foreach (@list) {

push(@matching, $) if TEST ($_);
}

The Perl grep function is shorthand for all that looping and mucking about. It’s not
really like the Unix grep command; it doesn’t have options to return line numbers or
to negate the test, and it isn’t limited to regular-expression tests. For example, to
filter out just the large numbers from an array or to find out which keys in a hash
have very large values:

@bigs = grep { $_ > 1000 000 } @nums;
@pigs = grep { $users{$ } > 1e7 } keys %users;

Here’s something that sets @matching to lines from the who command that start with
"gnat ":

@matching = grep { /*gnat / } “who™;
Here’s another example:

@engineers = grep { $_->position() eq "Engineer" } @employees;

It extracts only those objects from the array @employees whose position method
returns the string Engineer.

You could have even more complex tests in a grep:

@secondary assistance = grep { $ ->income >= 26 000 &&
$ ->income < 30 000 }
@applicants;
But at that point you may decide it would be more legible to write a proper loop
instead.

See Also

The “For Loops,” “Foreach Loops,” and “Loop Control” sections of perlsyn(1) and
Chapter 4 of Programming Perl; the grep function in perlfunc(l) and Chapter 29 of
Programming Perl; your system’s who(1) manpage, if it exists; Recipe 4.13

Finding All Elements in an Array Matching Certain Criteria | 137

4.15 Sorting an Array Numerically

Problem

You want to sort a list of numbers, but Perl’s sort (by default) sorts in ASCII order.

Solution

Use Perl’s sort function and the <=> numerical comparison operator:

@sorted = sort { $a <=> $b } @unsorted;

Discussion

The sort function takes an optional code block, which lets you replace the default
alphabetic comparison with your own subroutine. This comparison function is
called each time sort has to compare two values. The values to compare are loaded
into the special package variables $a and $b, which are automatically localized.

The comparison function should return a negative number if $a ought to appear
before $b in the output list, 0 if they’re the same and their order doesn’t matter, or a
positive number if $a ought to appear after $b. Perl has two operators that behave
this way: <=> for sorting numbers in ascending numeric order, and cmp for sorting
strings in ascending alphabetic order. By default, sort uses cmp-style comparisons.

Here’s code that sorts the list of PIDs in @pids, lets the user select one, then sends it a
TERM signal followed by a KILL signal. We use a code block that compares $a to $b
with <=> to sort numerically:

@pids is an unsorted array of process IDs

foreach my $pid (sort { $a <=> $b } @pids) {
print "$pid\n";

print "Select a process ID to kill:\n";

chomp ($pid = <>);

die "Exiting ... \n" unless $pid && $pid =~ /"\d+$/;

kill('TERM',$pid);

sleep 2;

Kill('KILL',$pid);
If you use $a <=> $b or $a cmp $b, the list will be sorted in ascending order. For a
descending sort, all we have to do is swap $a and $b in the sort subroutine:

@descending = sort { $b <=> $a } @unsorted;

Comparison routines must be consistent; that is, they should always return the same
answer when called with the same values. Inconsistent comparison routines lead to
infinite loops or core dumps, especially in older releases of Perl.

You can also say sort SUBNAME LIST where SUBNAME is the name of a comparison sub-
routine returning -1, 0, or +1. In the interests of speed, the normal calling conventions

138 | Chapter4: Arrays

are bypassed, and the values to be compared magically appear for the duration of the
subroutine in the global package variables $a and $b. Because of the odd way Perl
calls this subroutine, it may not be recursive.

A word of warning: $a and $b are set in the package active in the call to sort, which
may not be the same as the one that the SUBNAME function passed to sort was com-
piled in! For example:

package Sort Subs;
sub revnum { $b <=> $a }

package Other Pack;
@ll = sort Sort Subs::revnum 4, 19, 8, 3;

This will silently fail (unless you have -w in effect, in which case it will vocally fail)
because the sort call sets the package variables $a and $b in its own package,
Other_Pack, but the revnum function uses its own package’s versions. This is
another reason why in-lining sort functions is easier, as in:

@all = sort { $b <=> $a } 4, 19, 8, 3;

For more on packages, see Chapter 10.

See Also

The cmp and <=> operators in perlop(1) and Chapter 3 of Programming Perl; the kill,
sort, and sleep functions in perlfunc(1) and Chapter 29 of Programming Perl; Rec-
ipe 4.16

4.16 Sorting a List by Computable Field

Problem

You want to sort a list by something more complex than a simple string or numeric
comparison.

This is common when working with objects (“sort by the employee’s salary”) or
complex data structures (“sort by the third element in the array that this is a refer-
ence to”). It’s also applicable when you want to sort by more than one key; for
instance, sorting by birthday and then by name when multiple people share the same

birthday.

Solution
Use the customizable comparison routine in sort:
@ordered = sort { compare() } @unordered;

You can speed this up by precomputing the field.

Sorting a List by Computable Field | 139

@precomputed = map { [compute(),$] } @unordered;
@ordered_precomputed = sort { $a->[0] <=> $b->[0] } @precomputed;
@ordered = map { $ ->[1] } @ordered precomputed;

And, finally, you can combine the three steps:
@ordered = map { $ ->[1] }
sort { $a->[0] <=> $b->[0] }

map { [compute(), $_] }
@unordered;

Discussion

The use of a comparison routine was explained in Recipe 4.15. As well as using built-
in operators like <=>, you can construct more complex tests:

@ordered = sort { $a->name cmp $b->name } @employees;
You often see sort used like this in part of a foreach loop:

foreach $employee (sort { $a->name cmp $b->name } @employees) {
print $employee->name, " earns \$", $employee->salary, "\n";
}

If you’re going to do a lot of work with elements in a particular order, it’s more effi-
cient to sort once and work from that:
@sorted employees = sort { $a->name cmp $b->name } @employees;

foreach $employee (@sorted employees) {
print $employee->name, " earns \$", $employee->salary, "\n";
}

load %bonus
foreach $employee (@sorted employees) {
if ($bonus{ $employee->ssn }) {
print $employee->name, " got a bonus!\n";
}
}

We can put multiple comparisons in the routine and separate them with ||. || is a
short-circuit operator: it returns the first true value it finds. This means we can sort
by one kind of comparison, but if the elements are equal (the comparison returns 0),
we can sort by another. This has the effect of a sort within a sort:

@sorted = sort { $a->name cmp $b->name

$b->age <ll $a->age } @employees;
This first considers the names of the two employees to be compared. If they’re not
equal, || stops and returns the result of the cmp (effectively sorting them in ascend-
ing order by name). If the names are equal, though, || keeps testing and returns the
result of the <=> (sorting them in descending order by age). The result is a list that is
sorted by name and by age within groups of the same name.

Let’s look at a real-life example of sorting. First we fetch all system users, repre-
sented as User::pwent objects. Then we sort them by name and print the sorted list:

140 | Chapter4: Arrays

use User::pwent qw(getpwent);

@users = ();

fetch all users

while (defined($user = getpwent)) {
push(@users, $user);

@users = sort { $a->name cmp $b->name } @users;
foreach $user (@users) {
print $user->name, "\n";
}
We can have more than simple comparisons, or combinations of simple compari-
sons. This code sorts a list of names by comparing the second letters of the names. It
gets the second letters by using substr:

@sorted = sort { substr($a,1,1) cmp substr($b,1,1) } @names;
and here we sort by string length:
@sorted = sort { length $a <=> length $b } @strings;

The sort function calls the code block each time it needs to compare two elements,
so the number of comparisons grows dramatically with the number of elements
we're sorting. Sorting 10 elements requires (on average) 46 comparisons, but sorting
1,000 elements requires 14,000 comparisons. A time-consuming operation like a
split or a subroutine call for each comparison can easily make your program crawl.

Fortunately, we can remove this bottleneck by running the operation once per ele-
ment prior to the sort. Use map to store the results of the operation in an array whose
elements are anonymous arrays containing both the computed field and the original
field. Then we sort this array of arrays on the precomputed field and use map to get
the sorted original data. This map-sort-map concept is useful and common, so let’s
look at it in depth.

Let’s apply map-sort-map to the sorting by string length example:

@temp =map { [length $, $ 1 } @strings;

@temp = sort { $a->[0] <=> $b->[0] } @temp;

@sorted = map { $ ->[1] } @temp;
The first line creates a temporary array of strings and their lengths, using map. The
second line sorts the temporary array by comparing the precomputed lengths. The
third line turns the sorted temporary array of strings and lengths back into a sorted
array of strings. This way, we calculate the length of each string only once.

Because the input to each line is the output of the previous line (the @temp array we
make in line 1 is fed to sort in line 2, and that output is fed to map in line 3), we can
combine it into one statement and eliminate the temporary array:
@sorted = map { $ ->[1] }
sort { $a->[0] <=> $b->[0]
map { [length $_, $_ 1}
@strings;

}

Sorting a List by Computable Field | 141

The operations now appear in reverse order. When you meet a map-sort-map, you
should read it from the bottom up to determine the function:

@strings
The last part is the data to be sorted. Here it’s just an array, but later we’ll see
that this can be a subroutine or even backticks. Anything that returns a list is fair
game.

map
The map closer to the bottom builds the temporary list of anonymous arrays. This
list contains the precomputed fields (length $) and also records the original ele-
ment ($_) by storing both in an anonymous array. Look at this map line to find
out how the fields are computed.

sort
The sort line sorts the list of anonymous arrays by comparing the precomputed
fields. It won’t tell you much, other than whether the list is sorted in ascending
or descending order.

map
The map at the top of the statement turns the sorted list of anonymous arrays
back into a list of the sorted original elements. It will generally be the same for
every map-sort-map.

Here’s a more complicated example, which sorts by the first number that appears on
each line in @fields:

@temp =map { [7(\d+)/, $_ 1 } efields;
@sorted temp = sort { $a->[0] <=> $b->[0] } @temp;
@sorted fields = map { $ ->[1] } @sorted temp;

The regular expression mumbo jumbo in the first line extracts the first number from
the line being processed by map. We use the regular expression /(\d+)/ in a list con-
text to extract the number.

We can remove the temporary arrays in that code, giving us:

@sorted fields = map { $_->[1] }
sort { $a->[0] <=> $b->[0] }
map { [/(\d¥)/, $_ 1}
@fields;

This final example compactly sorts colon-separated data, as from Unix’s passwd file.
It sorts the file numerically by the fourth field (group id), then numerically by the
third field (user id), and then alphabetically by the first field (username).

print map { $_->[0] } # whole line
sort {
$a->[1] <=> $b->[1] # gid
[
$a->[2] <=> $b->[2] # uid
[
$a->[3] cmp $b->[3] # login

142 | Chapter4: Arrays

map { [$_, (split /:/)[3,2,0]]}
“cat /etc/passwd’;

See Also

The sort function in perlfunc(1) and Chapter 29 of Programming Perl; the cmp and
<=> operators in perlop(1) and Chapter 3 of Programming Perl; Recipe 4.15

4.17 Implementing a Circular List

Problem

You want to create and manipulate a circular list.

Solution

Use unshift and pop (or push and shift) on a normal array.

Procedure

unshift(@circular, pop(@circular)); # the last shall be first
push(@circular, shift(@circular)); # and vice versa

Discussion

Circular lists are commonly used to repeatedly process things in order; for example,
connections to a server. The code shown previously isn’t a true computer science cir-
cular list, with pointers and true circularity. Instead, the operations provide for mov-
ing the last element to the first position, and vice versa.

sub grab and rotate (\@) {
my $listref = shift;
my $element = $listref->[0];
push(@$listref, shift @$listref);
return $element;

}

@processes = (1, 2, 3, 4, 5);

while (1) {
$process = grab and rotate(@processes);
print "Handling process $process\n”;
sleep 1;

See Also

The unshift and push functions in perlfunc(1) and Chapter 29 of Programming Perl;
Recipe 13.13

Implementing a CircularList | 143

4.18 Randomizing an Array

Problem

You want to randomly shuffle the elements of an array. The obvious application is
writing a card game, where you must shuffle a deck of cards, but it is equally applica-
ble to any situation where you want to treat elements of an array in a random order.

Solution

Use the shuffle function from the standard List::Util module, which returns the ele-
ments of its input list in a random order.

use List::Util qw(shuffle);
@array = shuffle(@array);

Discussion
Shuffling is a surprisingly tricky process. It’s easy to write a bad shuffle:
sub naive_shuffle { # DON'T DO THIS
for (my $i = 0; $1 < @ ; $i++) {
my $j = int rand @_; # pick random element

($_[$1], $_[$3]) = ($_[$3], $_[$i]); # swap 'em
}
}
This algorithm is biased; the list’s possible permutations don’t all have the same
probability of being generated. The proof of this is simple: take the case where we’re
passed a three-element list. We generate three random numbers, each of which can
have three possible values, yielding 27 possible outcomes. There are only six permu-
tations of the three-element list, though. Because 27 isn’t evenly divisible by 6, some
outcomes are more likely than others.

The List::Util module’s shuffle function avoids this bias to produce a more ran-
domly shuffled result.

If all you want to do is pick one random element from the array, use:

$value = $array[int(rand(@array)) I;

See Also

The rand function in perlfunc(1) and Chapter 29 of Programming Perl; for more on
random numbers, see Recipes 2.6, 2.7, and 2.8; Recipe 4.20 provides another way to
select a random permutation

4.19 Program: words

Have you ever wondered how programs like Is generate columns of sorted output
that you read down the columns instead of across the rows? For example:

144 | Chapter4: Arrays

awk cp ed login mount rmdir sum

basename csh egrep 1s mt sed sync
cat date fgrep mail mv sh tar
chgrp dd grep mkdir ps sort touch
chmod df kill mknod pwd stty vi
chown echo In more m su

Example 4-2 does this.

Example 4-2. words

#!/usr/bin/perl -w
words - gather lines, present in columns

use strict;

my ($item, $cols, $rows, $maxlen);
my ($xpixel, $ypixel, $mask, @data);

getwinsize();

first gather up every line of input,
remembering the longest line length seen
$maxlen = 1;
while (<>) {
my $mylen;
s/\s+$//;
$maxlen = $mylen if (($mylen = length) > $maxlen);
push(@data, $);
}

$maxlen += 1; # to make extra space

determine boundaries of screen
$cols = int($cols / $maxlen) || 1;
$rows = int(($#data+$cols) / $cols);

pre-create mask for faster computation
$mask = sprintf("%%-%ds ", $maxlen-1);

subroutine to check whether at last item on line
sub EOL { ($item+1) % $cols == 0 }

now process each item, picking out proper piece for this position
for ($item = 0; $item < $rows * $cols; $item++) {
my $target = ($item % $cols) * $rows + int($item/$cols);
my $piece = sprintf($mask, $target < @data ? $data[$target] : "");
$piece =~ s/\s+$// if EOL(); +# don't blank-pad to EOL
print $piece;
print "\n" if EOL();
}

finish up if needed
print "\n" if EOL();

Program: words

145

Example 4-2. words (continued)

not portable -- linux only
sub getwinsize {
my $winsize = "\0" x 8;
my $TIOCGWINSZ = 0x40087468;
if (ioctl(STDOUT, $TIOCGWINSZ, $winsize)) {
($rows, $cols, $xpixel, $ypixel) = unpack('S4", $winsize);
} else {
$cols = 80;
}
}

The most obvious way to print out a sorted list in columns is to print each element of
the list, one at a time, padded out to a particular width. Then when you’re about to
hit the end of the line, generate a newline. But that only works if you’re planning on
reading each row from left to right. If you instead expect to read it down each col-
umn, this approach won’t do.

The words program is a filter that generates output going down the columns. It reads
all input, keeping track of the length of the longest line seen. Once everything has
been read in, it divides the screen width by the length of the longest input record
seen, yielding the expected number of columns.

Then the program goes into a loop that executes once per input record, but the out-
put order isn’t in the obvious order. Imagine you had a list of nine items:

The words program does the necessary calculations to print out elements (1,4,7) on
one line, (2,5,8) on the next, and (3,6,9) on the last.

To figure out the current window size, this program does an ioctl call. This works
fine—on the system it was written for. On any other system, it won’t work. If that’s
good enough for you, then good for you. Recipe 12.17 shows how to find this on
your system using the ioctl.ph file, or with a C program. Recipe 15.4 shows a more
portable solution, but that requires installing a CPAN module.

See Also
Recipe 15.4

4.20 Program: permute

Have you ever wanted to generate all possible permutations of an array or to execute
some code for every possible permutation? For example:

146 | Chapter4: Arrays

% echo man bites dog | permute
dog bites man
bites dog man
dog man bites
man dog bites
bites man dog
man bites dog

The number of permutations of a set is the factorial of the size of the set. This num-
ber grows extremely fast, so you don’t want to run it on many permutations:

Set Size Permutations
1

2

6

24

120

720

5040

40320

362880
3628800
39916800
479001600

13 6227020800
14 87178291200
15 1307674368000

O 0o~y YUl B W N B

B e
N B O

Doing something for each alternative takes a correspondingly large amount of time.
In fact, factorial algorithms exceed the number of particles in the universe with very
small inputs. The factorial of 500 is greater than ten raised to the thousandth power!

use Math::BigInt;
sub factorial {
my $n = shift;
my $s = 1;
$s *= $n-- while $n > 0;
return $s;
}
print factorial(Math::BigInt->new("500"));
+1220136... (1035 digits total)

The two solutions that follow differ in the order of the permutations they return.

The solution in Example 4-3 uses a classic list permutation algorithm used by Lisp
hackers. It’s relatively straightforward but makes unnecessary copies. It’s also hard-
wired to do nothing but print out its permutations.

Example 4-3. tsc-permute

#!/usr/bin/perl -n

tsc_permute: permute each word of input

pernute([split], [1);

sub permute {
my @items = @{ $_ ;
my @perms = @{ $_[1] };

Program: permute | 147

Example 4-3. tsc-permute (continued)

unless (@items) {
print "@perms\n";
} else {
my (@newitems,@newperms,$i);
foreach $i (0 .. $#titems) {
@newitems = @items;
@newperms = @perms;
unshift(@newperms, splice(@newitems, $i, 1));
permute(\@newitems, \@newperms);

}

The solution in Example 4-4, provided by Mark-Jason Dominus, is faster (by around
25%) and more elegant. Rather than precalculate all permutations, his code generates
the nth particular permutation. It is elegant in two ways. First, it avoids recursion
except to calculate the factorial, which the permutation algorithm proper does not use.
Second, it generates a permutation of integers rather than permute the actual data set.

He also uses a time-saving technique called memoizing. The idea is that a function
that always returns a particular answer when called with a particular argument mem-
orizes that answer. That way, the next time it’s called with the same argument, no
further calculations are required. The factorial function uses a private array @fact to
remember previously calculated factorial values as described in Recipe 10.3. This
technique is so useful that there’s a standard module that will handle the value cach-
ing for you. If you just had a regular factorial function that didn’t have its own cach-
ing, you could add caching to the existing function this way:

use Memoize;
memoize("factorial");

You call n2perm with two arguments: the permutation number to generate (from 0 to
factorial(N), where N is the size of your array) and the subscript of the array’s last
element. The n2perm function calculates directions for the permutation in the n2pat
subroutine. Then it converts those directions into a permutation of integers in the
pat2perm subroutine. The directions are a list like (0 2 0 1 0), which means: “Splice
out the Oth element, then the second element from the remaining list, then the Oth ele-
ment, then the first, then the Oth.”

Example 4-4. mjd-permute

#!/usx/bin/perl -w

mjd_permute: permute each word of input

use strict;

sub factorial($); # forward reference to declare prototype

while (<>) {
my @data = split;
my $num_permutations = factorial(scalar @data);
for (my $i=0; $i < $num permutations; $i++) {

148 | Chapter4: Arrays

Example 4-4. mjd-permute (continued)

my @permutation = @data[n2perm($i, $#data)];
print "@permutation\n";

}

Utility function: factorial with memoizing
BEGIN {
my @fact = (1);
sub factorial($) {
my $n = shift;
return $fact[$n] if defined $fact[$n];
$fact[$n] = $n * factorial($n - 1);

}
}
n2pat($N, $len) : produce the $N-th pattern of length $len
sub n2pat {
my $i = 1;

my $N = shift;

my $len = shift;

my @pat;

while ($i <= $len + 1) { # Should really be just while ($N) { ...
push @pat, $N % $i;
$N = int($N/$1);
$i++;

}

return @pat;

}

pat2perm(@pat) : turn pattern returned by n2pat() into
permutation of integers. XXX: splice is already O(N)
sub pat2perm {

my @pat =0_;

my @source = (0 .. $#pat);

my @perm;

push @perm, splice(@source, (pop @pat), 1) while @pat;

return @perm;

}

n2perm($N, $len) : generate the Nth permutation of $len objects
sub n2perm {
pat2perm(n2pat(@_));

See Also

unshift and splice in perlfunc(l) or Chapter 29 of Programming Perl; the sections
discussing closures in perlsub(1) and perlref(1) and Chapter 8 of Programming Perl;
Recipe 2.6; Recipe 10.3

Program: permute | 149

CHAPTER 5
Hashes

Doing linear scans over an associative array is like
trying to club someone to death with a loaded Uzi.

—Larry Wall

5.0 Introduction

People and parts of computer programs interact in all sorts of ways. Single scalar
variables are like hermits, living a solitary existence whose only meaning comes from
within the individual. Arrays are like cults, where multitudes marshal themselves
under the name of a charismatic leader. In the middle lies the comfortable, intimate
ground of the one-to-one relationship that is the hash. (Older documentation for
Perl often called hashes associative arrays, but that’s a mouthful. Other languages
that support similar constructs sometimes use different terms for them; you may
hear about hash tables, tables, dictionaries, mappings, or even alists, depending on the
language.)

Unfortunately, this isn’t a relationship of equals. The relationship encoded in a hash
is that of the genitive case or the possessive, like the word “of” in English, or like
“’s”. We could encode that the boss of Nat is Tim. Hashes only give convenient ways
to access values for Nat’s boss; you can’t ask whose boss Tim is. Finding the answer
to that question is a recipe in this chapter.

Fortunately, hashes have their own special benefits, just like relationships. Hashes
are a built-in data type in Perl. Their use reduces many complex algorithms to sim-
ple variable accesses. They are also fast and convenient to build indices and quick
lookup tables.

Only use the % when referring to the hash as a whole, such as %boss. When referring to
the value associated with a particular key, that’s a single scalar value, so a $ is called
for—just as when referring to one element of an array, you also use a $. This means
that “the boss of Nat” would be written as $boss{"Nat"}. We can assign "Tim" to that:

$boss{"Nat"} = "Tim";

150

It’s time to put a name to these notions. The relationship embodied in a hash is a
good thing to use for its name. In the previous example you see a dollar sign, which
might surprise you since this is a hash, not a scalar. But we’re setting a single scalar
value in that hash, so use a dollar sign. Where a lone scalar has $ as its type identifier
and an entire array has @, an entire hash has %.

A regular array uses integers for indices, but the indices of a hash are always strings.
Its values may be any arbitrary scalar values, including references. With references as
values, you can create hashes that hold not merely strings or numbers, but also
arrays, other hashes, or objects. (Or rather, references to arrays, hashes, or objects.)

An entire hash can be initialized with a list, where elements of the list are key and
value pairs:
%age = ("Nat", 30,

"Jules", 31,
"Josh", 23);

This is equivalent to:

$age{"Nat"} = 30;
$age{"Jules"} = 31;
$age{"Josh"} 23;

To make it easier to read and write hash initializations, the => operator, sometimes
known as a comma arrow, was created. Mostly it behaves like a better-looking
comma. For example, you can write a hash initialization this way:
%food_color = (

"Apple" => "red",

"Banana" => "yellow",

"Lemon" => "yellow",

"Carrot" => "orange"

)s
(This particular hash is used in many examples in this chapter.) This initialization is
also an example of hash-list equivalence—hashes behave in some ways as though
they were lists of key-value pairs. We’ll use this in a number of recipes, including the
merging and inverting recipes.

Unlike a regular comma, the comma arrow has a special property: it quotes any word
preceding it, which means you can safely omit the quotes and improve legibility. Sin-
gle-word hash keys are also automatically quoted when they occur inside braces,
which means you can write $hash{somekey} instead of $hash{"somekey"}. You could
rewrite the preceding initialization of %food_color as:
%food_color = (

Apple => "red",

Banana => "yellow",

Lemon => "yellow",
Carrot => "orange"

)s

Introduction | 151

One important issue to be aware of regarding hashes is that their elements are stored
in an internal order convenient for efficient retrieval. This means that no matter what
order you insert your data, it will come out in an unpredictable disorder.

See Also

The perldata(1) manpage; the two sections on “Hashes” in the first and second chap-
ters of Programming Perl

5.1 Adding an Element to a Hash

Problem

You need to add an entry to a hash.

Solution

Simply assign to the hash key:
$HASH{$KEY} = $VALUE;

Discussion

Putting something into a hash is straightforward. In languages that don’t provide the
hash as an intrinsic data type, you have to worry about overflows, resizing, and colli-
sions in your hash table. In Perl, all that is taken care of for you with a simple assign-
ment. If that entry was already occupied (had a previous value), memory for that
value is automatically freed, just as when assigning to a simple scalar.

%food_color defined per the introduction
$food_color{Raspberry} = "pink";
print "Known foods:\n";
foreach $food (keys %food color) {
print "$food\n";
}

Known foods:
Banana
Apple
Raspberry
Carrot
Lemon

If you don’t want to overwrite an existing value, but somehow have one key refer-
ence multiple values, see Recipes 5.8 and 11.2.

152 | Chapter5: Hashes

See Also

The “List Value Constructors” section of perldata(1); the “List Values and Arrays”
section of Chapter 2 of Programming Perl; Recipe 5.2

5.2 Testing for the Presence of a Key in a Hash

Problem

You need to know whether a hash has a particular key, regardless of whatever value
may be associated with that key.

Solution

Use the exists function.

does %HASH have a value for $KEY ?
if (exists($HASH{$KEY})) {

it exists
} else {

it doesn't

}

Discussion

This code uses exists to check whether a key is in the %food_color hash:

%food color per the introduction
foreach $name ("Banana", "Martini") {
if (exists $food color{$name}) {
print "$name is a food.\n";
} else {
print "$name is a drink.\n";
}

}

Banana is a food.

Martini is a drink.
The exists function tests whether a key is in the hash. It doesn’t test whether the
value corresponding to that key is defined, nor whether the value is true or false. We
may be splitting hairs, but problems caused by confusing existence, definedness, and
truth can multiply like rabbits. Take this code:

tage = ();

$age{"Toddler"} = 3;
$age{"Unborn"} = 0;
$age{"Phantasm"} = undef;

foreach $thing ("Toddler", "Unborn", "Phantasm", "Relic") {
print "$thing: ";

Testing for the Presence of aKeyinaHash | 153

print "Exists if exists $age{$thing};
print "Defined " if defined $age{$thing};
print "True " if $age{$thing};
print "\n";

}

Toddler: Exists Defined True

Unborn: Exists Defined

Phantasm: Exists

Relic:
$age{"Toddler"} passes the existence, definedness, and truth tests. It exists because
we gave "Toddler" a value in the hash; it’s defined because that value isn’t undef; and
it’s true because the value isn’t one of Perl’s false values.

$age{"Unborn"} passes only the existence and definedness tests. It exists because we
gave "Unborn" a value in the hash, and it’s defined because that value isn’t undef. It
isn’t true, however, because 0 is one of Perl’s false values.

$age{"Phantasm"} passes only the existence test. It exists because we gave "Phantasm"
a value in the hash. But because that value was undef, it doesn’t pass the definedness
test. Because undef is also one of Perl’s false values, it doesn’t pass the truth test
either.

$age{"Relic"} passes none of the tests. We didn’t put a value for "Relic" into the
hash, so the existence test fails. Because we didn’t put a value in, $age{"Relic"} is
undef whenever we try to access it. We know from "Phantasm" that undef fails the
definedness and truth tests.

Sometimes it’s useful to store undef in a hash. This indicates “I’ve seen this key, but
it didn’t have a meaningful value associated with it.” Take, for instance, a program to
look up file sizes given a list of files as input. This version tries to skip files we’ve seen
before, but it doesn’t skip zero-length files, and it doesn’t skip files that we’ve seen
before but don’t exist.
%size = ();
while (<>) {
chomp;
next if $size{$ }; # WRONG attempt to skip
$size{$ } = -s $_;
}
If we change the incorrect line to call exists, we also skip files that couldn’t be
statted, instead of repeatedly trying (and failing) to look them up:

next if exists $size{$_};

See Also

The exists and defined functions in perlfunc(1) and Chapter 29 of Programming
Perl; the discussion of truth in the “Scalar Values” section of perldata(l), and the
“Boolean Context” section of Chapter 2 of Programming Perl

154 | Chapter5: Hashes

5.3 (Creating a Hash with Immutable
Keys or Values

Problem

You’d like to have a hash whose keys or values can’t be altered once set.

Solution

Use the appropriate functions from the standard Hash::Util module.

use Hash::Util gw{ lock keys unlock keys
lock_value unlock_value
lock _hash unlock hash };

To restrict access to keys already in the hash, so no new keys can be introduced:

lock_keys(%hash); # restrict to current keys
lock_keys(%hash, @klist); # restrict to keys from @klist

To forbid deletion of the key or modification of its value:
lock value(%hash, $key);
To make all keys and their values read-only:

lock hash(%hash);

Discussion

Suppose you’re using a hash to implement a record (or an object) with some pre-
determined set of keys, such as "NAME", "RANK", and "SERNO". You’d like to consider it
an error to access any keys besides the ones initially in the hash, such as "ANME", a
typo. Because Perl always creates hash elements on demand, this wouldn’t be caught
the way it would if you misspelled a variable name while under the use strict
pragma.

The Hash::Util module’s lock_keys function takes care of this for you. Once a hash is
marked as having locked keys, you can’t use any other keys than those. The keys
need not yet be in the hash, and they may still be deleted if they are. But no new keys
may be used.

Access to the values in those locked keys is not restricted by lock keys. However,
you may use the lock value function to render a value in a hash read-only. That hash
can also have its keys locked, but doesn’t need to if the goal is just to have one or
more values marked read-only.

If you want to lock down the entire hash, thereby restricting both its keys and its val-
ues, the lock_hash function will do.

Creating a Hash with Immutable Keys or Values | 155

See Also

The documentation for the Hash::Util module

5.4 Deleting from a Hash

Problem

You want to remove an entry from a hash so that it doesn’t show up with keys,
values, or each. If you were using a hash to associate salaries with employees, and an
employee resigned, you’d want to remove their entry from the hash.

Solution

Use the delete function:

remove $KEY and its value from %HASH
delete($HASH{$KEY});

Discussion

Sometimes people mistakenly try to use undef to remove an entry from a hash. undef
$hash{$key} and $hash{$key} = undef both make %hash have an entry with key $key
and value undef.

The delete function is the only way to remove a specific entry from a hash. Once
you’ve deleted a key, it no longer shows up in a keys list or an each iteration, and
exists will return false for that key.

This demonstrates the difference between undef and delete:

%food_color as per Introduction
sub print foods {
my @foods = keys %food color;
my $food;

print "Keys: @foods\n";
print "Values: ";

foreach $food (@foods) {
my $color = $food color{$food};

if (defined $color) {
print "$color ";
} else {
print "(undef) ";
}
}

print "\n";

156 | Chapter5: Hashes

print "Initially:\n";
print_foods();

print "\nWith Banana undef\n";
undef $food color{"Banana"};
print_foods();

print "\nWith Banana deleted\n";
delete $food color{"Banana"};
print foods();

Initially:
Keys: Banana Apple Carrot Lemon
Values: yellow red orange yellow

With Banana undef
Keys: Banana Apple Carrot Lemon
Values: (undef) red orange yellow

With Banana deleted
Keys: Apple Carrot Lemon
Values: red orange yellow

As you see, if we set $food_color{"Banana"} to undef, "Banana" still shows up as a key
in the hash. The entry is still there; we only succeeded in making the value undef. On
the other hand, delete actually removed it from the hash—"Banana" is no longer in
the list returned by keys.

delete can also take a hash slice, deleting all listed keys at once:

delete @food color{"Banana", "Apple", "Cabbage"};

See Also

The delete and keys functions in perlfunc(1) and in Chapter 29 of Programming Perl;
we use keys in Recipe 5.5

5.5 Traversing a Hash

Problem

You want to perform an action on each entry (i.e., each key-value pair) in a hash.

Solution

Use each with a while loop:

while(($key, $value) = each(%HASH)) {
do something with $key and $value

}

TraversingaHash | 157

Or use keys with a foreach loop, unless the hash is potentially very large:

foreach $key (keys %HASH) {
$value = $HASH{$key};
do something with $key and $value

Discussion

Here’s a simple example, iterating through the %food_color hash from the introduction:

%food color per the introduction
while(($food, $color) = each(%food color)) {
print "$food is $color.\n";

}

Banana is yellow.
Apple is red.
Carrot is orange.
Lemon is yellow.

foreach $food (keys %food color) {
my $color = $food color{$food};
print "$food is $color.\n";

}
Banana is yellow.
Apple is red.
Carrot is orange.
Lemon is yellow.
We didn’t really need the $color variable in the foreach example, because we use it

only once. Instead, we could have written:
print "$food is $food_color{$food}.\n"

Every time each is called on the same hash, it returns the “next” key-value pair. We
say “next” because the pairs are returned in the order the underlying lookup struc-
ture imposes on them, which appears to be no order at all. When each runs out of
hash elements, it returns the empty list (), whose assignment tests false and termi-
nates the while loop.

The foreach example uses keys, which constructs an entire list containing every key
from the hash before the loop even begins executing. The advantage to using each is
that it gets the keys and values one pair at a time. If the hash contains many keys, not
having to preconstruct a complete list of them can save substantial memory. The each
function, however, doesn’t let you control the order in which pairs are processed.

Using foreach and keys to loop over the list lets you impose an order. For instance, if
we wanted to print the food names in alphabetical order:

foreach $food (sort keys %food color) {
print "$food is $food color{$food}.\n";

}

Apple is red.

Banana is yellow.

158 | Chapter5: Hashes

Carrot is orange.
Lemon is yellow.

This is a common use of foreach. We use keys to obtain a list of keys in the hash,
and then we use foreach to iterate over them. The danger is that if the hash contains
a large number of elements, the list returned by keys will use a lot of memory. The
trade-off lies between memory use and the ability to process the entries in a particu-
lar order. We cover sorting in more detail in Recipe 5.10.

Because keys, values, and each all share the same internal data structures, be careful
about mixing calls to these functions or prematurely exiting an each loop. Each time
you call keys or values, the current location for each is reset. This code loops for-
ever, printing the first key returned by each:
while (($k,$v) = each %food color) {
print "Processing $k\n";

keys %food_color; # goes back to the start of %food_color
}

Modifying a hash while looping over it with each or foreach is, in general, fraught
with danger. The each function can behave differently with tied and untied hashes
when you add or delete keys from a hash. A foreach loops over a pregenerated list of
keys, so once the loop starts, foreach can’t know whether you’ve added or deleted
keys. Keys added in the body of the loop aren’t automatically appended to the list of
keys to loop over, nor are keys deleted by the body of the loop deleted from this list.

Example 5-1 reads a mailbox file and reports the number of messages from each per-
son. It uses the From: line to determine the sender. (It isn’t clever in this respect, but
we’re showing hash manipulation, not mail-file processing.) Supply the mailbox file-
name as a command-line argument, or use a "-" to indicate you’re piping the mail-
box to the program. (When Perl opens a file named "-" for reading using fewer than
three arguments to open, this means to use the current standard input.)

Example 5-1. countfrom

#!/usx/bin/perl
countfrom - count number of messages from each sender
$filename = $ARGV[O] || "-"; # "-" means standard input
open(FILE, "< $filename") or die "Can't open $filename : $!";
while(<FILE>) {
if (/*From: (.*)/) { $from{$1}++ }
}
foreach $person (sort keys %from) {
print "$person: $from{$person}\n”;

}

See Also

The each and keys functions in perlfunc(1) and in Chapter 29 of Programming Perl;
we talk about for and foreach in Recipe 4.6

TraversingaHash | 159

5.6 Printing a Hash

Problem

You want to print a hash, but neither print "%hash" nor print %hash does what you
want; the first is a literal, while the second just has the keys and values all scrunched
together.

Solution
One of several approaches is to iterate over every key-value pair in the hash using
Recipe 5.5 and print them:

while (($k,$v) = each %hash) {
print "$k => $v\n";
}

Or use map to generate a list of strings:
print map { "$_ => $hash{$_}\n" } keys %hash;

Or use the interpolation trick from Recipe 1.15 to interpolate the hash as a list:
print "@{[%hash 1}\n";

Or use a temporary array variable to hold the hash, and then print that:

{
my @temp = %hash;
print "@temp";

Discussion

The methods differ in the degree that their output is customizable (in order and for-
matting) and in their efficiency.

The first method, iterating over the hash, is flexible and space-efficient. You can for-
mat the output as you like it, and it requires only two scalar variables: the current
key and value. You can print the hash in key order (at the cost of building a list of
sorted keys) if you use a foreach loop:

foreach $k (sort keys %hash) {

print "$k => $hash{$k}\n";

}
The map function is just as flexible. You can still process the list in any order by sort-
ing the keys. You can customize the output to your heart’s content. But it builds up a
list of strings like "KEY =>VALUE\n" to pass to print.

The last two methods are interpolation tricks. By treating the hash as a list, you can’t
predict or control the output order of key-value pairs. Furthermore, the output will

160 | Chapter5: Hashes

consist of a list of keys and values, each separated by whatever string that $" hap-
pens to hold. You can’t put newlines between pairs or "=>" within them, as we could
with the other methods.

Another solution is to print the hash in a list context after temporarily localizing the
$, variable to a space.
{
local $, =" ";
print %hash;
}
This is like the solution of copying to an array and then doing double-quote interpo-
lation on that array, except it doesn’t duplicate the contents of the hash twice more
than you need (i.e., once for the array, then again for the string).

The Dumpvalue module, described in Recipe 11.11, can provide for pretty printed
output displays, plus much more. For example:

use Dumpvalue;

$dumper = Dumpvalue->new;

$dumper->dumpValue(\%food color);

'Apple’ => 'red’

'Banana’ => 'yellow'

'Carrot’ => 'orange'

‘Lemon’ => 'yellow'

See Also

The $" and $, variables in perlvar(1) and in the “Per-Filehandle Variables” section of
Chapter 28 of Programming Perl; the foreach, map, keys, sort, and each functions in
perlfunc(1) and Chapter 29 of Programming Perl; we give a technique for interpolat-
ing into strings in Recipe 1.15; we discuss the techniques for hash traversal in Recipe
5.5

5.7 Retrieving from a Hash in Insertion Order

Problem

The keys and each functions traverse the hash elements in a strange order, and you
want them in the order in which you inserted them.

Solution
Use the Tie::IxHash module.

use Tie::IxHash;

tie %HASH, "Tie::IxHash";

manipulate %HASH

@keys = keys %HASH; # @keys is in insertion order

Retrieving from a Hash in Insertion Order | 161

Discussion

Tie::IxHash makes keys, each, and values return the hash elements in the order they
were added. This often removes the need to preprocess the hash keys with a com-
plex sort comparison or maintain a distinct array containing the keys in the order
they were inserted into the hash.

Tie::IxHash also provides an object-oriented interface to splice, push, pop, shift,
unshift, keys, values, and delete, among