The Complete Guide to Scripting
Microsoft’'s Command Shell

Windows
PowerShell
Cookbook

o Lee Holmes
O,REILLY Foreword by Ed Wilson

Windows Administration

Windows PowerShell Cookbook

How do you use Windows PowerShell to navigate the filesystem,
manage files and folders, or retrieve a web page? This introduction
to the PowerShell language and scripting environment provides
more than 400 task-oriented recipes to help you solve all kinds of
problems. Intermediate to advanced system administrators will
find more than 100 tried-and-tested scripts they can copy and use
immediately.

Updated for PowerShell 3.0, this comprehensive cookbook
includes hands-on recipes for common tasks and administrative
jobs that you can apply whether you're on the client or server
version of Windows. You also get quick references to technologies
used in conjunction with PowerShell, including format specifiers
and frequently referenced registry keys to selected .NET, COM,
and WMI classes.

B Learn how to use PowerShell on Windows 8 and Windows
Server 2012

m Tour PowerShell’s core features, including the command
model, object-based pipeline, and ubiquitous scripting

m Master fundamentals such as the interactive shell, pipeline,
and object concepts

B Perform common tasks that involve working with files,
Internet-connected scripts, user interaction, and more

B Solve tasks in systems and enterprise management, such as
working with Active Directory and the filesystem

Lee Holmes is a developer on the Microsoft Windows PowerShell
team, and an authoritative source of information about PowerShell
since its earliest betas. Lee’s relationship with the PowerShell and
administration community (through newsgroups, mailing lists, and
blogs) gives him insight into problems faced by administrators and
PowerShell users alike.

“Lee is a key developer on
PowerShell and a cornerstone
of the PowerShell community,
His pragmatic problem solving
approach is the reason bis blog
entries are so widely read and
shared. It is this approach that
earns this book a slot on every
PowerShell user's bookshelf.”

—Jeffrey Snover
Architect, Windows PowerShell

“Lee’s book fills in one of the big-
gest gaps in the PowerShell
library. While there are many
books (including mine) that
lalk about PowerShell itself, this
is the first book that really
Jocuses on applying PowerShell,
providing a cookbook of practi-
cal solutions for real-world
problems. This is definitely one
of the two books that everyone
should have on their shelf.”

—Bruce Payette

Co-designer of the PowerShell
languages and author of the best-
selling Windows PowerShellin Action

Us $59.99 CAN $62.99

ISBN: 978-1-449-32068-3

NOPIOINRLLY v

7814491320683

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

THIRD EDITION

Windows PowerShell Cookbook

Lee Holmes

O’REILLY"

Beijing - Cambridge - Farnham - Kdln - Sebastopol - Tokyo

Windows PowerShell Cookbook, Third Edition
by Lee Holmes

Copyright © 2013 Lee Holmes. All rights reserved.
Printed in the United States of America.

Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis Proofreader: Rachel Monaghan
Production Editor: Kara Ebrahim Indexer: Angela Howard
Cover Designer: Randy Comer
Interior Designer: David Futato
lllustrator: Rebecca Demarest

October 2007: First Edition
August 2010: Second Edition
January 2013: Third Edition

Revision History for the First Edition:

2012-12-21 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320683 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Windows Powershell Cookbook, the image of a box tortoise, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32068-3
[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320683

Table of Contents

0] =310 (o R Xvii
o[- Xix
Partl. Tour

A Guided Tour of Windows PowerShell

Partll.

1. The Windows PowerShell Interactive Shell

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.

1.10.
1.11.
1.12.
1.13.
1.14.
1.15.
1.16.
1.17.
1.18.
1.19.

Fundamentals

Run Programs, Scripts, and Existing Tools

Run a PowerShell Command

Resolve Errors Calling Native Executables

Supply Default Values for Parameters

Invoke a Long-Running or Background Command
Program: Monitor a Command for Changes

Notity Yourself of Job Completion

Customize Your Shell, Profile, and Prompt

Customize PowerShell’s User Input Behavior

Customize PowerShell's Command Resolution Behavior
Find a Command to Accomplish a Task

Get Help on a Command

Update System Help Content

Program: Search Help for Text

Launch PowerShell at a Specific Location

Invoke a PowerShell Command or Script from Outside PowerShell
Understand and Customize PowerShell’s Tab Completion
Program: Learn Aliases for Common Commands
Program: Learn Aliases for Common Parameters

19
23
24
26
28
32
35
36
39
40
43
45
47
49
50
52
55
59
61

1.20. Access and Manage Your Console History 64

1.21. Program: Create Scripts from Your Session History 66
1.22. Invoke a Command from Your Session History 68
1.23. Program: Search Formatted Output for a Pattern 69
1.24. Interactively View and Process Command Output 70
1.25. Program: Interactively View and Explore Objects 72
1.26. Store the Output of a Command into a File 79
1.27. Add Information to the End of a File 80
1.28. Record a Transcript of Your Shell Session 81
1.29. Extend Your Shell with Additional Commands 82
1.30. Use Commands from Customized Shells 84
1.31. Save State Between Sessions 85
R 1T 1T 3 89
2.1. Filter Items in a List or Command Output 90
2.2. Group and Pivot Data by Name 91
2.3. Program: Simplify Most Where-Object Filters 94
2.4. Program: Interactively Filter Lists of Objects 96
2.5. Work with Each Item in a List or Command Output 99
2.6. Automate Data-Intensive Tasks 101
2.7. Program: Simplify Most Foreach-Object Pipelines 105
2.8. Intercept Stages of the Pipeline 108
2.9. Automatically Capture Pipeline Output 109
2.10. Capture and Redirect Binary Process Output 111
3. Variablesand Objects.cuviuiiriiiniiiiiie it i e rierieeneenaanans 117
3.1. Display the Properties of an Item as a List 118
3.2. Display the Properties of an Item as a Table 120
3.3. Store Information in Variables 122
3.4. Access Environment Variables 123
3.5. Program: Retain Changes to Environment Variables Set by a Batch File 126
3.6. Control Access and Scope of Variables and Other Items 128
3.7. Program: Create a Dynamic Variable 130
3.8. Work with .NET Objects 133
3.9. Create an Instance of a .NET Object 138
3.10. Create Instances of Generic Objects 140
3.11. Reduce Typing for Long Class Names 141
3.12. Use a COM Object 143
3.13. Learn About Types and Objects 143
3.14. Get Detailed Documentation About Types and Objects 145
3.15. Add Custom Methods and Properties to Objects 147
3.16. Create and Initialize Custom Objects 150

iv | Tableof Contents

3.17. Add Custom Methods and Properties to Types 154

3.18. Define Custom Formatting for a Type 158
. Loopingand Flow Control..........c.coviuniiiiiiiiiiiiiiiiii i 163
4.1. Make Decisions with Comparison and Logical Operators 163
4.2. Adjust Script Flow Using Conditional Statements 165
4.3. Manage Large Conditional Statements with Switches 167
4.4. Repeat Operations with Loops 170
4.5. Add a Pause or Delay 172
. Stringsand Unstructured Text.coeviieriiiiiiriiir i i e eeneaenns 175
5.1. Create a String 175
5.2. Create a Multiline or Formatted String 177
5.3. Place Special Characters in a String 178
5.4. Insert Dynamic Information in a String 179
5.5. Prevent a String from Including Dynamic Information 180
5.6. Place Formatted Information in a String 181
5.7. Search a String for Text or a Pattern 183
5.8. Replace Text in a String 185
5.9. Split a String on Text or a Pattern 187
5.10. Combine Strings into a Larger String 190
5.11. Convert a String to Uppercase or Lowercase 191
5.12. Trim a String 193
5.13. Format a Date for Output 194
5.14. Program: Convert Text Streams to Objects 196
5.15. Generate Large Reports and Text Streams 200
5.16. Generate Source Code and Other Repetitive Text 202
. QalculationsandMath.............oooiiiiiiiiiiiiiii 207
6.1. Perform Simple Arithmetic 207
6.2. Perform Complex Arithmetic 209
6.3. Measure Statistical Properties of a List 213
6.4. Work with Numbers as Binary 214
6.5. Simplify Math with Administrative Constants 218
6.6. Convert Numbers Between Bases 219
. Lists, Arrays, and Hashtables.ccooiiiiiiiiiiiiiiiiiiii i 223
7.1. Create an Array or List of Items 223
7.2. Create a Jagged or Multidimensional Array 225
7.3. Access Elements of an Array 226
7.4. Visit Each Element of an Array 228
7.5. Sort an Array or List of Items 229

Table of Contents | v

7.6. Determine Whether an Array Contains an Item 230
7.7. Combine Two Arrays 231
7.8. Find Items in an Array That Match a Value 232
7.9. Compare Two Lists 233
7.10. Remove Elements from an Array 234
7.11. Find Items in an Array Greater or Less Than a Value 235
7.12. Use the ArrayList Class for Advanced Array Tasks 236
7.13. Create a Hashtable or Associative Array 238
7.14. Sort a Hashtable by Key or Value 239
8. Utility Tasks.oveennieiiii i i e 243
8.1. Get the System Date and Time 243
8.2. Measure the Duration of a Command 244
8.3. Read and Write from the Windows Clipboard 246
8.4. Generate a Random Number or Object 248
8.5. Program: Search the Windows Start Menu 250
8.6. Program: Show Colorized Script Content 251
Partlll. Common Tasks
9. SimpleFiles......cveirniiriiii i i i i e e 259
9.1. Get the Content of a File 259
9.2. Search a File for Text or a Pattern 261
9.3. Parse and Manage Text-Based Logfiles 264
9.4. Parse and Manage Binary Files 267
9.5. Create a Temporary File 270
9.6. Search and Replace Text in a File 271
9.7. Program: Get the Encoding of a File 275
9.8. Program: View the Hexadecimal Representation of Content 277
10. Structured Files..........oooiiiiiiiii i 281
10.1. Access Information in an XML File 281
10.2. Perform an XPath Query Against XML 284
10.3. Convert Objects to XML 286
10.4. Modify Data in an XML File 287
10.5. Easily Import and Export Your Structured Data 289
10.6. Store the Output of a Command in a CSV or Delimited File 291
10.7. Import CSV and Delimited Data from a File 292
10.8. Manage JSON Data Streams 294
10.9. Use Excel to Manage Command Output 295

vi

| Table of Contents

10.10. Parse and Interpret PowerShell Scripts

11 CodeReuse.......oooviiiiiiiiiiiiii
11.1. Write a Script
11.2. Write a Function
11.3. Find a Verb Appropriate for a Command Name
11.4. Write a Script Block
11.5. Return Data from a Script, Function, or Script Block
11.6. Package Common Commands in a Module
11.7. Write Commands That Maintain State
11.8. Selectively Export Commands from a Module
11.9. Diagnose and Interact with Internal Module State
11.10. Handle Cleanup Tasks When a Module Is Removed
11.11. Access Arguments of a Script, Function, or Script Block
11.12. Add Validation to Parameters
11.13. Accept Script Block Parameters with Local Variables
11.14. Dynamically Compose Command Parameters
11.15. Provide -Whatlf, -Confirm, and Other Cmdlet Features
11.16. Add Help to Scripts or Functions
11.17. Add Custom Tags to a Function or Script Block
11.18. Access Pipeline Input
11.19. Write Pipeline-Oriented Scripts with Cmdlet Keywords
11.20. Write a Pipeline-Oriented Function
11.21. Organize Scripts for Improved Readability
11.22. Invoke Dynamically Named Commands
11.23. Program: Enhance or Extend an Existing Cmdlet

12. Internet-Enabled Scripts.covniiiiii i i
12.1. Download a File from an FTP or Internet Site
12.2. Upload a File to an FTP Site
12.3. Download a Web Page from the Internet
12.4. Parse and Analyze a Web Page from the Internet
12.5. Script a Web Application Session
12.6. Program: Get-PageUrls
12.7. Interact with REST-Based Web APIs
12.8. Connect to a Web Service
12.9. Export Command Output as a Web Page
12.10. Send an Email
12.11. Program: Monitor Website Uptimes
12.12. Program: Interact with Internet Protocols

13, User INteraction. .. ovvvrvin et ieiiiiiiiiiiiitietnetnerneenneenoeneenonnes

297

303
303
306
308
309
311
314
317
320
322
324
325
330
334
336
338
340
343
345
347
351
352
354
356

365
365
366
368
373
375
379
383
385
387
388
389
391

Table of Contents

14. Debugging

15. Tracing and Error Management

16.

13.1.
13.2.
13.3.
13.4.
13.5.
13.6.
13.7.
13.8.
13.9.

13.10. Program: Add a Graphical User Interface to Your Script

Read a Line of User Input

Read a Key of User Input

Program: Display a Menu to the User

Display Messages and Output to the User

Provide Progress Updates on Long-Running Tasks
Write Culture- Aware Scripts

Support Other Languages in Script Output

Program: Invoke a Script Block with Alternate Culture Settings

Access Features of the Host’s User Interface

13.11. Interact with MTA Objects

14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.

15.1.
15.2.
15.3.
15.4.
15.5.
15.6.
15.7.
15.8.

Environmental Awareness

16.1.
16.2.
16.3.
16.4.
16.5.
16.6.
16.7.
16.8.
16.9.

Prevent Common Scripting Errors

Trace Script Execution

Set a Script Breakpoint

Debug a Script When It Encounters an Error
Create a Conditional Breakpoint

Investigate System State While Debugging
Program: Watch an Expression for Changes
Program: Get Script Code Coverage

Determine the Status of the Last Command

View the Errors Generated by a Command
Manage the Error Output of Commands
Program: Resolve an Error

Contigure Debug, Verbose, and Progress Output
Handle Warnings, Errors, and Terminating Errors
Output Warnings, Errors, and Terminating Errors
Program: Analyze a Script’s Performance Profile

View and Modify Environment Variables

Modify the User or System Path

Access Information About Your Command’s Invocation
Program: Investigate the InvocationInfo Variable

Find Your Script’s Name

Find Your Script’s Location

Find the Location of Common System Paths

Get the Current Location

Safely Build File Paths Out of Their Components

397
398
399
401
404
405
409
412
414
415
418

421
422
424
428
430
432
434
437
440

443
443
445
447
448
450
452
455
456

463
463
465
466
468
471
472
473
476
477

viii

| Table of Contents

17.

16.10. Interact with PowerShell’s Global Environment
16.11. Determine PowerShell Version Information
16.12. Test for Administrative Privileges

Extend the Reach of Windows PowerShell....................cooiin,
17.1. Automate Programs Using COM Scripting Interfaces
17.2. Program: Query a SQL Data Source

17.3. Access Windows Performance Counters

17.4. Access Windows API Functions

17.5. Program: Invoke Simple Windows API Calls

17.6. Define or Extend a .NET Class

17.7. Add Inline C# to Your PowerShell Script

17.8. Access a .NET SDK Library

17.9. Create Your Own PowerShell Cmdlet

17.10. Add PowerShell Scripting to Your Own Program

18. Security and Script Signing.ooviiiiiiiiii e

19.

18.1. Enable Scripting Through an Execution Policy
18.2. Disable Warnings for UNC Paths

18.3. Sign a PowerShell Script, Module, or Formatting File
18.4. Program: Create a Self-Signed Certificate

18.5. Manage PowerShell Security in an Enterprise

18.6. Block Scripts by Publisher, Path, or Hash

18.7. Verify the Digital Signature of a PowerShell Script
18.8. Securely Handle Sensitive Information

18.9. Securely Request Usernames and Passwords

18.10. Program: Start a Process as Another User

18.11. Program: Run a Temporarily Elevated Command
18.12. Securely Store Credentials on Disk

18.13. Access User and Machine Certificates

18.14. Program: Search the Certificate Store

18.15. Add and Remove Certificates

18.16. Manage Security Descriptors in SDDL Form

Integrated Scripting Environment............ooiiiiiiiiiiiii i
19.1. Debug a Script

19.2. Customize Text and User Interface Colors

19.3. Connect to a Remote Computer

19.4. Extend ISE Functionality Through Its Object Model

19.5. Quickly Insert Script Snippets

478
479
480

483
483
485
488
490
497
500
503
505
507
510

515
516
519
520
522
523
526
527
529
531
532
534
537
539
540
542
543

545
547
549
551
552
553

Table of Contents

19.6. Add an Item to the Tools Menu 555
PartIV. Administrator Tasks
20. Filesand Directories.oovvvveieiiiiiiiiiiiiiiiii i 559
20.1. Determine the Current Location 560
20.2. Get the Files in a Directory 561
20.3. Find All Files Modified Before a Certain Date 563
20.4. Clear the Content of a File 564
20.5. Manage and Change the Attributes of a File 565
20.6. Find Files That Match a Pattern 566
20.7. Manage Files That Include Special Characters 569
20.8. Program: Get Disk Usage Information 570
20.9. Monitor a File for Changes 572
20.10. Get the Version of a DLL or Executable 573
20.11. Program: Get the MD5 or SHA1 Hash of a File 574
20.12. Create a Directory 576
20.13. Remove a File or Directory 577
20.14. Rename a File or Directory 578
20.15. Move a File or Directory 579
20.16. Create and Map PowerShell Drives 580
20.17. Access Long File and Directory Names 582
20.18. Unblock a File 583
20.19. Interact with Alternate Data Streams 584
20.20. Program: Move or Remove a Locked File 586
20.21. Get the ACL of a File or Directory 587
20.22. Set the ACL of a File or Directory 589
20.23. Program: Add Extended File Properties to Files 591
20.24. Program: Create a Filesystem Hard Link 593
20.25. Program: Create a ZIP Archive 595
21, The Windows Registry.ovvuiruuiriniiiniiiiiiriiireiiiennernnesennnes 599
21.1. Navigate the Registry 599
21.2. View a Registry Key 600
21.3. Modify or Remove a Registry Key Value 601
21.4. Create a Registry Key Value 602
21.5. Remove a Registry Key 603
21.6. Safely Combine Related Registry Modifications 604
21.7. Add a Site to an Internet Explorer Security Zone 606
21.8. Modify Internet Explorer Settings 608
21.9. Program: Search the Windows Registry 609

X

Table of Contents

22,

23.

24,

25.

26.

21.10. Get the ACL of a Registry Key

21.11. Set the ACL of a Registry Key

21.12. Work with the Registry of a Remote Computer
21.13. Program: Get Registry Items from Remote Machines
21.14. Program: Get Properties of Remote Registry Keys
21.15. Program: Set Properties of Remote Registry Keys
21.16. Discover Registry Settings for Programs

Comparing Data.ovviiiiiiiiiiii ittt ittt ras

22.1. Compare the Output of Two Commands
22.2. Determine the Differences Between Two Files
22.3. Verity Integrity of File Sets

EVentLogs. .. vveii it e e
23.1. List All Event Logs

23.2. Get the Newest Entries from an Event Log

23.3. Find Event Log Entries with Specific Text

23.4. Retrieve and Filter Event Log Entries

23.5. Find Event Log Entries by Their Frequency

23.6. Back Up an Event Log

23.7. Create or Remove an Event Log

23.8. Write to an Event Log

23.9. Run a PowerShell Script for Windows Event Log Entries
23.10. Clear or Maintain an Event Log

23.11. Access Event Logs of a Remote Machine

ProCesses. ..o
24.1. List Currently Running Processes

24.2. Launch the Application Associated with a Document

24.3. Launch a Process

24.4. Stop a Process

24.5. Get the Owner of a Process

24.6. Get the Parent Process of a Process

24.7. Debug a Process

B3 (e 1 e 47T
25.1. List All Running Services

25.2. Manage a Running Service

25.3. Configure a Service

T (1 D =T (1] 7
26.1. Test Active Directory Scripts on a Local Installation

611
612
614
616
618
620
622

627
627
629
630

633
633
635
636
638
641
643
644
646
646
648
650

653
654
655
656
658
659
660
661

663
663
665
666

669
670

Table of Contents

| xi

27.

26.2.
26.3.
26.4.
26.5.
26.6.
26.7.
26.8.
26.9.

Create an Organizational Unit

Get the Properties of an Organizational Unit
Modify Properties of an Organizational Unit
Delete an Organizational Unit

Get the Children of an Active Directory Container
Create a User Account

Program: Import Users in Bulk to Active Directory
Search for a User Account

26.10. Get and List the Properties of a User Account

26.11. Modify Properties of a User Account

26.12. Change a User Password

26.13. Create a Security or Distribution Group

26.14. Search for a Security or Distribution Group

26.15. Get the Properties of a Group

26.16. Find the Owner of a Group

26.17. Modify Properties of a Security or Distribution Group
26.18. Add a User to a Security or Distribution Group

26.19. Remove a User from a Security or Distribution Group
26.20. List a User’s Group Membership

26.21. List the Members of a Group

26.22. List the Users in an Organizational Unit

26.23. Search for a Computer Account

26.24. Get and List the Properties of a Computer Account

Enterprise Computer Management

27.1.
27.2.
27.3.
27.4.
27.5.
27.6.
27.7.
27.8.
27.9.

Join a Computer to a Domain or Workgroup

Remove a Computer from a Domain

Rename a Computer

Program: List Logon or Logoff Scripts for a User
Program: List Startup or Shutdown Scripts for a Machine
Deploy PowerShell-Based Logon Scripts

Enable or Disable the Windows Firewall

Open or Close Ports in the Windows Firewall

Program: List All Installed Software

27.10. Uninstall an Application

27.11. Manage Computer Restore Points

27.12. Reboot or Shut Down a Computer
27.13. Determine Whether a Hotfix Is Installed
27.14. Manage Scheduled Tasks on a Computer
27.15. Retrieve Printer Information

27.16. Retrieve Printer Queue Statistics

27.17. Manage Printers and Print Queues

673
674
675
675
676
677
678
680
681
682
683
683
685
686
687
688
688
689
690
690
691
692
693

695
695
696
697
698
699
701
702
702
704
705
706
708
710
710
714
715
717

Xii

| Table of Contents

28.

29.

30.

27.18. Program: Summarize System Information
27.19. Renew a DHCP Lease

27.20. Assign a Static IP Address

27.21. List All IP Addresses for a Computer
27.22. List Network Adapter Properties

Windows Management Instrumentation.ccoeviiiiiiiiennnen..
28.1. Access Windows Management Instrumentation and CIM Data

28.2. Modify the Properties of a WMI or CIM Instance

28.3. Invoke a Method on a WMI Instance or Class

28.4. Program: Determine Properties Available to WMI and CIM Filters
28.5. Program: Search for WMI Classes

28.6. Use .NET to Perform Advanced WMI Tasks

28.7. Improve the Performance of Large-Scale WMI Operations

28.8. Convert a VBScript WMI Script to PowerShell

0] 11 1]]
29.1. Find Commands That Support Their Own Remoting

29.2. Enable PowerShell Remoting on a Computer

29.3. Interactively Manage a Remote Computer

29.4. Invoke a Command on a Remote Computer

29.5. Disconnect and Reconnect PowerShell Sessions

29.6. Program: Remotely Enable PowerShell Remoting

29.7. Program: Invoke a PowerShell Expression on a Remote Machine
29.8. Test Connectivity Between Two Computers

29.9. Limit Networking Scripts to Hosts That Respond

29.10. Enable Remote Desktop on a Computer

29.11. Configure User Permissions for Remoting

29.12. Enable Remoting to Workgroup Computers

29.13. Implicitly Invoke Commands from a Remote Computer

29.14. Create Sessions with Full Network Access

29.15. Pass Variables to Remote Sessions

29.16. Configure Advanced Remoting Quotas and Options

29.17. Invoke a Command on Many Computers

29.18. Run a Local Script on a Remote Computer

29.19. Program: Transfer a File to a Remote Computer

29.20. Determine Whether a Script Is Running on a Remote Computer
29.21. Create a Task-Specific Remoting Endpoint

WORKEIOWS. . v ettt ettt ittt ettt r i e e eneenens
30.1. Write a Workflow
30.2. Run a Workflow

718
720
721
723
724

727
730
732
734
736
737
740
742
743

749
750
752
754
756
760
763
765
768
771
772
772
774
776
779
783
785
787
789
790
793
794

801
802
808

Table of Contents

| xiii

30.3. Suspend and Resume a Workflow 811
30.4. Invoke Islands of Traditional PowerShell Script 814
30.5. Invoke Workflow Actions in Parallel 816
30.6. Customize an Activity’s Connection Parameters 819
30.7. Write a Workflow That Requires Human Intervention 825
30.8. Add Raw XAML to a Workflow 827
30.9. Reference Custom Activities in a Workflow 828
30.10. Debug or Troubleshoot a Workflow 830
30.11. Use PowerShell Activities from a Traditional Windows Workflow
Application 834
31, Transactions.ooveeereiiiiiie i i 837
31.1. Safely Experiment with Transactions 839
31.2. Change Error Recovery Behavior in Transactions 841
32, EventHandling........ooovuiiiniiiiiiiiiiiii ittt 845
32.1. Respond to Automatically Generated Events 846
32.2. Create and Respond to Custom Events 849
32.3. Create a Temporary Event Subscription 852
32.4. Forward Events from a Remote Computer 853
32.5. Investigate Internal Event Action State 854
32.6. Use a Script Block as a .NET Delegate or Event Handler 856
PartV. References
A. PowerShell Language and Environment............coovviiiiiiiiiiiiiiiinnnn 861
B. Regular Expression Reference.........c.ovvviiiiiiiiiiiiiiiiiiienniennnnnns 919
C. XPath Quick Reference............ccoiiiiiiiiiiiiii 929
D. .NETString Formatting...........covvuiiiiiiiiiiiiiiiiiiiiiiiiii i, 933
E. .NETDateTime Formatting...........ccovuiiniiuiiiniiiiiiiiiiiiiinnennnennes 937
F. Selected .NET Classes and TheirUses.cooviiiiiiiiiiiiiiiiiiiiiiiian, 943
G. WMIReference. ...ttt 951
H. Selected COM Objectsand Their Uses.........ccvveviniiinniiiinriinnenniennn, 959

xiv | Table of Contents

I. Selected Events and Their Uses. . ..o.vuvvrvriniiniiiiiiiiiiiiinirenenennenens 963

J. Standard PowerShellVerbs.covrvninii ittt iiiiiiie e, 971

Table of Contents | xv

Foreword

When Lee Holmes asked me to write the introduction to the third edition of his Windows
PowerShell Cookbook, I was deeply honored. I have known Lee for a long time, and we
meet in real life every time I am out in Redmond, or when we happen to be speaking at
the same conference. If you are like me, you already own the first two editions of this
great book. You may even be asking yourself why you need a third edition of the same
book, and I will tell you: this is not the same book. It is a completely revised book that
takes advantage of the significant changes we have made to both Windows PowerShell
3.0 and to the underlying operating system.

Consider this: Windows PowerShell 1.0 had 129 cmdlets, but Windows PowerShell 3.0
on Windows 8 has over 2,000 cmdlets and functions. Because Lee’s book is so practical
in nature—it is, after all, a cookbook—this means that with so many more ingredients
to add to the recipes, the recipes will necessarily change. In addition, with the new
functionality comes additional opportunities for new recipes.

More than just a cookbook, however, the third edition of the Windows PowerShell
Cookbook is also a textbook of how to write great Windows PowerShell scripts. Just as
a budding saxophonist benefits from watching a legend such as Charlie Parker ply his
ax, so too does a budding scripter benefit from watching one of the guys who literally
wrote Windows PowerShell write scripts. Each of these recipes is a perfectly crafted
example of a Windows PowerShell script—your task is to study these scripts so you can
go and do likewise.

—Ed Wilson
Microsoft Scripting Guy and author of Windows Powershell 3.0
and Windows PowerShell 2.0 Best Practices

Xvii

Preface

In late 2002, Slashdot posted a story about a “next-generation shell” rumored to be in
development at Microsoft. As a longtime fan of the power unlocked by shells and their
scripting languages, the post immediately captured my interest. Could this shell provide
the command-line power and productivity I'd long loved on Unix systems?

Since I had just joined Microsoft six months earlier, I jumped at the chance to finally
get to the bottom of a Slashdot-sourced Microsoft Mystery. The post talked about strong
integration with the NET Framework, so I posted a query to an internal C# mailing list.
I got a response that the project was called “Monad,” which I then used to track down
an internal prototype build.

Prototype was a generous term. In its early stages, the build was primarily a proof of
concept. Want to clear the screen? No problem! Just lean on the Enter key until your
previous commands and output scroll out of view! But even at these early stages, it was
immediately clear that Monad marked a revolution in command-line shells. As with
many things of this magnitude, its beauty was self-evident. Monad passed full-
fidelity .NET objects between its commands. For even the most complex commands,
Monad abolished the (until now, standard) need for fragile text-based parsing. Simple
and powerful data manipulation tools supported this new model, creating a shell both
powerful and easy to use.

I joined the Monad development team shortly after that to help do my part to bring this
masterpiece of technology to the rest of the world. Since then, Monad has grown to
become a real, tangible product—now called Windows PowerShell.

So why write a book about it? And why this book?

Xix

Many users have picked up PowerShell for the sake of learning PowerShell. Any tangible
benefits come by way of side effect. Others, though, might prefer to opportunistically
learn a new technology as it solves their needs. How do you use PowerShell to navigate
the filesystem? How can you manage files and folders? Retrieve a web page?

This book focuses squarely on helping you learn PowerShell through task-based solu-
tions to your most pressing problems. Read a recipe, read a chapter, or read the entire
book—regardless, youre bound to learn something.

Who This Book Is For

This book helps you use PowerShell to get things done. It contains hundreds of solutions
to specific, real-world problems. For systems management, you'll find plenty of exam-
ples that show how to manage the filesystem, the Windows Registry, event logs, pro-
cesses, and more. For enterprise administration, you'll find two entire chapters devoted
to WMI, Active Directory, and other enterprise-focused tasks.

Along the way, you’ll also learn an enormous amount about PowerShell: its features, its
commands, and its scripting language—but most importantly you’ll solve problems.

How This Book Is Organized

This book consists of five main sections: a guided tour of PowerShell, PowerShell fun-
damentals, common tasks, administrator tasks, and a detailed reference.

Part I: Tour

A Guided Tour of Windows PowerShell breezes through PowerShell at a high level. It
introduces PowerShell’s core features:

o An interactive shell

« A new command model

o An object-based pipeline

o A razor-sharp focus on administrators

o A consistent model for learning and discovery
 Ubiquitous scripting

o Integration with critical management technologies

o A consistent model for interacting with data stores

The tour helps you become familiar with PowerShell as a whole. This familiarity will
create a mental framework for you to understand the solutions from the rest of the book.

xx | Preface

Part Il: Fundamentals

Chapters 1 through 8 cover the fundamentals that underpin the solutions in this book.
This section introduces you to the PowerShell interactive shell, fundamental pipeline
and object concepts, and many features of the PowerShell scripting language.

Part lll: Common Tasks

Chapters 9 through 19 cover the tasks you will run into most commonly when starting
to tackle more complex problems in PowerShell. This includes working with simple and
structured files, Internet-connected scripts, code reuse, user interaction, and more.

Part IV: Administrator Tasks

Chapters 20 through 32 focus on the most common tasks in systems and enterprise
management. Chapters 20 through 25 focus on individual systems: the filesystem, the
registry, event logs, processes, services, and more. Chapters 26 and 27 focus on Active
Directory, as well as the typical tasks most common in managing networked or domain-
joined systems. Chapters 28 through 30 focus on the three crucial facets of robust multi-
machine management: WMI, PowerShell Remoting, and PowerShell Workflows.

Part V: References

Many books belch useless information into their appendixes simply to increase page
count. In this book, however, the detailed references underpin an integral and essential
resource for learning and using PowerShell. The appendixes cover:

+ The PowerShell language and environment

« Regular expression syntax and PowerShell-focused examples

o XPath quick reference

o .NET string formatting syntax and PowerShell-focused examples

« .NET DateTime formatting syntax and PowerShell-focused examples
o Administrator-friendly .NET classes and their uses

+ Administrator-friendly WMI classes and their uses

+ Administrator-friendly COM objects and their uses

« Selected events and their uses

o PowerShell’s standard verbs

Preface | xxi

What You Need to Use This Book

The majority of this book requires only a working installation of Windows PowerShell.
Windows 7, Windows 8, Windows Server 2008 R2, and Windows Server 2012 include
Windows PowerShell by default. If you do not yet have PowerShell installed, you may
obtain it by following the download link here. This link provides download instructions
for PowerShell on Windows XP, Windows Server 2003, and Windows Vista. For Windows
Server 2008, PowerShell comes installed as an optional component that you can enable
through the Control Panel like other optional components.

The Active Directory scripts given in Chapter 26 are most useful when applied to an
enterprise environment, but Recipe 26.1, “Test Active Directory Scripts on a Local In-
stallation” shows how to install additional software (Active Directory Lightweight Di-
rectory Services, or Active Directory Application Mode) that lets you run these scripts
against a local installation.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects,
events, event handlers, tags, macros, or the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

W 8
)
5 This icon signifies a tip, suggestion, or general note.
aqs
LMY
T

This icon indicates a warning or caution.

xxii | Preface

http://www.microsoft.com/PowerShell

Code Examples

Obtaining Code Examples

To obtain electronic versions of the programs and examples given in this book, visit the
Examples link here.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis-
sion unless youre reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Windows PowerShell Cookbook, Third Edi-
tion, by Lee Holmes (O’Reilly). Copyright 2013 Lee Holmes, 978-1-449-32068-3

If you feel your use of code examples falls outside fair use or the permission given, feel
free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand
Safa "l digital library that delivers expert content in both book and video

Bocksontine form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xxiii

http://oreil.ly/powershell-cookbook
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil ly/powershell-cookbook.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Writing is the task of crafting icebergs. The heft of the book you hold in your hands is
just a hint of the multiyear, multirelease effort it took to get it there. And by a cast much
larger than me.

The groundwork started decades ago. My parents nurtured my interest in computers
and software, supported an evening-only bulletin board service, put up with “viruses”
that told them to buy a new computer for Christmas, and even listened to me blather
about batch files or how PowerShell compares to Excel. Without their support, who
knows where I'd be.

My family and friends have helped keep me sane for two editions of the book now. Ariel:
you are the light of my life. Robin: thinking of you reminds me each day that serendipity
is still alive and well in this busy world. Thank you to all of my friends and family for
being there for me. You can have me back now. :)

I would not have written either edition of this book without the tremendous influence
of Guy Allen, visionary of the University of Toronto’s Professional Writing program.
Guy: your mentoring forever changed me, just as it molds thousands of others from
English hackers into writers.

xxiv | Preface

http://oreil.ly/powershell-cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Of course, members of the PowerShell team (both new and old) are the ones that made
thisa book about PowerShell. Building this product with you has been a unique challenge
and experience—but most of all, a distinct pleasure. In addition to the PowerShell team,
the entire PowerShell community defined this book’s focus. From MVPs to early adopt-
ers to newsgroup lurkers: your support, questions, and feedback have been the inspi-
ration behind each page.

Converting thoughts into print always involves a cast of unsung heroes, even though
each author tries his best to convince the world how important these heroes are.

Thank you to the many technical reviewers who participated in O'Reilly’s Open Feed-
back Publishing System, especially Aleksandar Nikolic and Shay Levy. I truly appreciate
you donating your nights and weekends to help craft something of which we can all be
proud.

To the awesome staff at O’Reilly—Rachel Roumeliotis, Kara Ebrahim, Mike Hendrick-
son, Genevieve d’Entremont, Teresa Elsey, Laurel Ruma, the O’Reilly Tools Monks, and
the production team—your patience and persistence helped craft a book that holds true
to its original vision. You also ensured that the book didn't just knock around in my
head but actually got out the door.

This book would not have been possible without the support from each and every one
of you.

Preface | xxv

PART |

Tour

A Guided Tour of Windows PowerShell

Introduction

Windows PowerShell promises to revolutionize the world of system management and
command-line shells. From its object-based pipelines to its administrator focus to its
enormous reach into other Microsoft management technologies, PowerShell drastically
improves the productivity of administrators and power users alike.

When you're learning a new technology, it is natural to feel bewildered at first by all the
unfamiliar features and functionality. This perhaps rings especially true for users new
to Windows PowerShell because it may be their first experience with a fully featured
command-line shell. Or worse, they’ve heard stories of PowerShell’s fantastic integrated
scripting capabilities and fear being forced into a world of programming that they’ve
actively avoided until now.

Fortunately, these fears are entirely misguided; PowerShell is a shell that both grows with
you and grows on you. Let’s take a tour to see what it is capable of:

 PowerShell works with standard Windows commands and applications. You don't
have to throw away what you already know and use.

 PowerShell introduces a powerful new type of command. PowerShell commands
(called cmadlets) share a common Verb-Noun syntax and offer many usability im-
provements over standard commands.

» PowerShell understands objects. Working directly with richly structured objects
makes working with (and combining) PowerShell commands immensely easier
than working in the plain-text world of traditional shells.

o PowerShell caters to administrators. Even with all its advances, PowerShell focuses
strongly on its use as an interactive shell: the experience of entering commands in
a running PowerShell application.

« PowerShell supports discovery. Using three simple commands, you can learn and
discover almost anything PowerShell has to offer.

o PowerShell enables ubiquitous scripting. With a fully fledged scripting language
that works directly from the command line, PowerShell lets you automate tasks with
ease.

o PowerShell bridges many technologies. By letting you work with .NET, COM, WMI,
XML, and Active Directory, PowerShell makes working with these previously iso-
lated technologies easier than ever before.

» PowerShell simplifies management of data stores. Through its provider model,
PowerShell lets you manage data stores using the same techniques you already use
to manage files and folders.

We'll explore each of these pillars in this introductory tour of PowerShell. If you are
running Windows 7 (or later) or Windows 2008 R2 (or later), PowerShell is already
installed. If not, visit the download link here to install it. PowerShell and its supporting
technologies are together referred to as the Windows Management Framework.

An Interactive Shell

At its core, PowerShell is first and foremost an interactive shell. While it supports script-
ing and other powerful features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching PowerShell.exe rather than
cmd.exe—the shells begin to diverge as you explore the intermediate and advanced
functionality, but you can be productive in PowerShell immediately.

To launch Windows PowerShell, do one of the following:

o Click Start—All Programs—Accessories—Windows PowerShell.

o Click Start-Run, and then type PowerShell.

A PowerShell prompt window opens that’s nearly identical to the traditional command
prompt window of Windows XP, Windows Server 2003, and their many ancestors. The
PS C:\Users\Lee> prompt indicates that PowerShell is ready for input, as shown in
Figure I-1.

4 | AGuided Tour of Windows PowerShell

http://www.microsoft.com/PowerShell

ey Windows PowerShell

Microsoft Corporation. All rights reserved.

Figure I-1. Windows PowerShell, ready for input

Once you've launched your PowerShell prompt, you can enter DOS-style and Unix-style
commands to navigate around the filesystem just as you would with any Windows or
Unix command prompt—as in the interactive session shown in Example I-1. In this
example, we use the pushd, cd, dir, pwd, and popd commands to store the current lo-
cation, navigate around the filesystem, list items in the current directory, and then return
to the original location. Try it!

Example I-1. Entering many standard DOS- and Unix-style file manipulation com-
mands produces the same results you get when you use them with any other Windows
shell

PS C:\Documents and Settings\Lee> function Prompt { "PS > " }

PS > pushd .
PS > cd \
PS > dir
Directory: C:\
Mode LastWriteTime Length Name
d---- 11/2/2006 4:36 AM SWINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark
d---- 11/29/2006 2:47 PM Boot
d---- 11/28/2006 2:10 PM DECCHECK
d---- 10/7/2006 4:30 PM Documents and Settings

A Guided Tour of Windows PowerShell | 5

d---- 5/21/2007 6:02 PM F&SC-demo
d---- 4/2/2007 7:21 PM Inetpub

d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 7:26 PM temp

d---- 5/21/2007 8:55 PM Windows

-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys
~a--- 5/1/2007 8:43 PM 33057 RUU. log

-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW
PS > popd

PS > pwd

Path

C:\Users\Lee

In this example, our first command customizes the prompt. In c¢md.exe, customizing
the prompt looks like prompt PG. In bash, it looks like PS1="[\h] \w> ". In Power-
Shell, you define a function that returns whatever you want displayed. Recipe 11.2,
“Write a Function” introduces functions and how to write them.

The pushd command is an alternative name (alias) to the much more descriptively
named PowerShell command Push-Location. Likewise, the cd, dir, popd, and pwd
commands all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is running the tools you know
and love, such as ipconfig and notepad. Type the command name and you'll see results
like those shown in Example I-2.

Example I-2. Windows tools and applications such as ipconfig run in PowerShell just as
they do in cmd.exe

PS > ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

Connection-specific DNS Suffix . : hsdl.wa.comcast.net.
IP Address. : 192.168.1.100
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.1.1

PS > notepad
(notepad launches)

6 | AGuided Tour of Windows PowerShell

Entering ipconfig displays the IP addresses of your current network connections. En-
tering notepad runs—as youd expect—the Notepad editor that ships with Windows.
Try them both on your own machine.

Structured Commands (Cmdlets)

In addition to supporting traditional Windows executables, PowerShell introduces a
powerful new type of command called a cmdlet (pronounced “‘command-let”). All
cmdlets are named in a Verb-Noun pattern, such as Get-Process, Get-Content, and
Stop-Process.

PS > Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific
process by name.

Once you know the handful of common verbs in PowerShell, learning
. how to work with new nouns becomes much easier. While you may
063" never have worked with a certain object before (such as a Service), the
standard Get, Set, Start, and Stop actions still apply. For a list of these
common verbs, see Table J-1 in Appendix J.

You don’t always have to type these full cmdlet names, however. PowerShell lets you use
the Tab key to autocomplete cmdlet names and parameter names:

PS > Get-Pr<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To help improve your
efficiency, PowerShell defines aliases for all common commands and lets you define
your own. In addition to alias names, PowerShell requires only that you type enough of
the parameter name to disambiguate it from the rest of the parameters in that cmdlet.
PowerShell is also case-insensitive. Using the built-in gps alias (which represents the
Get-Process cmdlet) along with parameter shortening, you can instead type:

PS > gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Positional
parameters let you provide parameter values in a certain position on the command line,
rather than having to specify them by name. The Get-Process cmdlet takes a process
name as its first positional parameter. This parameter even supports wildcards:

PS > gps l*s

A Guided Tour of Windows PowerShell | 7

Deep Integration of Objects

PowerShell begins to flex more of its muscle as you explore the way it handles structured
data and richly functional objects. For example, the following command generates a
simple text string. Since nothing captures that output, PowerShell displays it to you:

PS > "Hello World"
Hello World

The string you just generated is, in fact, a fully functional object from the .NET Frame-
work. For example, you can access its Length property, which tells you how many char-
acters are in the string. To access a property, you place a dot between the object and its
property name:

PS > "Hello World".Length
11

All PowerShell commands that produce output generate that output as objects as well.
For example, the Get-Process cmdlet generates a System.Diagnostics.Process ob-
ject, which you can store in a variable. In PowerShell, variable names start with a $
character. If you have an instance of Notepad running, the following command stores
a reference to it:

Sprocess = Get-Process notepad

Since this is a fully functional Process object from the .NET Framework, you can call
methods on that object to perform actions on it. This command calls the K111() method,
which stops a process. To access a method, you place a dot between the object and its
method name:

$process.Kill()

PowerShell supports this functionality more directly through the Stop-Process cmdlet,
but this example demonstrates an important point about your ability to interact with
these rich objects.

Administrators as First-Class Users

While PowerShell’s support for objects from the NET Framework quickens the pulse
of most users, PowerShell continues to focus strongly on administrative tasks. For ex-
ample, PowerShell supports MB (for megabyte) and GB (for gigabyte) as some of its stan-
dard administrative constants. For example, how many disks will it take to back up a 40
GB hard drive to CD-ROM?

PS > 40GB / 650MB
63.0153846153846

8 | AGuided Tour of Windows PowerShell

Although the NET Framework is traditionally a development platform, it contains a
wealth of functionality useful for administrators too! In fact, it makes PowerShell a great
calendar. For example, is 2008 a leap year? PowerShell can tell you:

PS > [DateTime]::IsLeapYear(2008)
True

Going further, how might you determine how much time remains until summer? The
following command converts "06/21/2011" (the start of summer) to a date, and then
subtracts the current date from that. It stores the result in the $result variable, and then
accesses the TotalDays property.

PS > Sresult = [DateTime] "06/21/2011" - [DateTime]::Now
PS > $result.TotalDays
283.0549285662616

Composable Commands

Whenever a command generates output, you can use a pipeline character (|) to pass that
output directly to another command as input. If the second command understands the
objects produced by the first command, it can operate on the results. You can chain
together many commands this way, creating powerful compositions out of a few simple
operations. For example, the following command gets all items in the PathI directory
and moves them to the Path2 directory:

Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the
pipeline. In Example I-3, the first command gets all processes running on the system.
It passes those to the Where-Object cmdlet, which runs a comparison against each
incoming item. In this case, the comparison is $_.Handles -ge 500, which checks
whether the Handles property of the current object (represented by the $_ variable) is
greater than or equal to 500. For each object in which this comparison holds true, you
pass the results to the Sort-Object cmdlet, asking it to sort items by their Handles
property. Finally, you pass the objects to the Format-Table cmdlet to generate a table
that contains the Handles, Name, and Description of the process.

Example I-3. You can build more complex PowerShell commands by using pipelines to
link cmdlets, as shown here with Get-Process, Where-Object, Sort-Object, and Format-
Table

PS > Get-Process |
Where-Object { $_.Handles -ge 500 } |
Sort-Object Handles |
Format-Table Handles,Name,Description -Auto

A Guided Tour of Windows PowerShell | 9

Handles Name Description

588 winlogon

592 svchost

667 lsass

725 csrss

742 System

964 WINWORD Microsoft Office Word
1112 OUTLOOK Microsoft Office Outlook
2063 svchost

Techniques to Protect You from Yourself

While aliases, wildcards, and composable pipelines are powerful, their use in commands
that modify system information can easily be nerve-racking. After all, what does this
command do? Think about it, but don't try it just yet:

PS > gps [b-t]*[c-r] | Stop-Process

It appears to stop all processes that begin with the letters b through t and end with the
letters c through r. How can you be sure? Let PowerShell tell you. For commands that
modify data, PowerShell supports -WhatIf and -Confirm parameters that let you see
what a command would do:

PS > gps [b-t]*[c-r] | Stop-Process -whatif

What if: Performing operation "Stop-Process" on Target "ctfmon (812)".

What if: Performing operation "Stop-Process" on Target "Ditto (1916)".

What if: Performing operation "Stop-Process" on Target "dsamain (316)".

What if: Performing operation "Stop-Process" on Target "ehrecvr (1832)".

What if: Performing operation "Stop-Process" on Target "ehSched (1852)".

What if: Performing operation "Stop-Process" on Target "EXCEL (2092)".

What if: Performing operation "Stop-Process" on Target "explorer (1900)".

(...)

In this interaction, using the -WhatIf parameter with the Stop-Process pipelined com-
mand lets you preview which processes on your system will be stopped before you
actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on Vista, it forced a shutdown with only one minute
warning!

It was very funny though...At least I had enough time to save everything first!

10 | AGuided Tour of Windows PowerShell

Common Discovery Commands

While reading through a guided tour is helpful, I find that most learning happens in an
ad hoc fashion. To find all commands that match a given wildcard, use the Get - Command
cmdlet. For example, by entering the following, you can find out which PowerShell
commands (and Windows applications) contain the word process.

PS > Get-Command *process*

CommandType Name Definition

Cmdlet Get-Process Get-Process [[-Name] <Str...
Application gprocess.exe c:\windows\system32\gproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-Help cmdlet, like this:
PS > Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides the
Get-Member cmdlet to retrieve information about the properties and methods that an
object, such as a .NET System.String, supports. Piping a string to the Get-Member
command displays its type name and its members:

PS > "Hello World" | Get-Member

TypeName: System.String

Name MemberType Definition

(...)

PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldcCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
ToLower Method System.String ToLower(), System....
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String TrimEnd(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Chars ParameterizedProperty System.Char Chars(Int32 index) {...
Length Property System.Int32 Length {get;}

A Guided Tour of Windows PowerShell | 11

Ubiquitous Scripting

PowerShell makes no distinction between the commands typed at the command line
and the commands written in a script. Your favorite cmdlets work in scripts and your
favorite scripting techniques (e.g., the foreach statement) work directly on the com-
mand line. For example, to add up the handle count for all running processes:

PS > ShandleCount = 0

PS > foreach($process in Get-Process) { $handleCount += $process.Handles }
PS > ShandleCount

19403

While PowerShell provides a command (Measure-0Object) to measure statistics about
collections, this short example shows how PowerShell lets you apply techniques that
normally require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can also create and work di-
rectly with objects from the .NET Framework that you may be familiar with. PowerShell
becomes almost like the C# immediate mode in Visual Studio. Example I-4 shows how
PowerShell lets you easily interact with the .NET Framework.

Example I-4. Using objects from the NET Framework to retrieve a web page and process
its content

PS > SwebClient = New-Object System.Net.WebClient

PS > S$content = $webClient.DownloadString(
"http://blogs.msdn.com/PowerShell/rss.aspx")

PS > S$content.Substring(0,1000)

<?xml version="1.0" encoding="UTF-8" ?>

<?xml-stylesheet type="text/xsl" href="http://blogs.msdn.com/utility/FeedS

tylesheets/rss.xs1" media="screen"?><rss version="2.0" xmlns:dc="http://pu

rl.org/dc/elements/1.1/" xmlns:slash="http://purl.org/rss/1.0/modules/slas

h/" xmlns:wfw="http://wellformedweb.org/CommentAPI/"><channel><title>Windo

(...)

Ad Hoc Development

By blurring the lines between interactive administration and writing scripts, the history
buffers of PowerShell sessions quickly become the basis for ad hoc script development.
In this example, you call the Get-History cmdlet to retrieve the history of your session.
For each item, you get its CommandLine property (the thing you typed) and send the
output to a new script file.

PS > Get-History | Foreach-Object { $_.CommandLine } > c:\temp\script.psil
PS > notepad c:\temp\script.psi

(save the content you want to keep)

PS > c:\temp\script.ps1

12 | AGuided Tour of Windows PowerShell

If this is the first time you've run a script in PowerShell, you will need
. toconfigure your execution policy. For more information about select-
¢ ing an execution policy, see Recipe 18.1, “Enable Scripting Through an

Execution Policy”.

aqs
[N
N

For more detail about saving your session history into a script, see Recipe 1.21, “Pro-
gram: Create Scripts from Your Session History”.

Bridging Technologies

We've seen how PowerShell lets you fully leverage the .NET Framework in your tasks,
but its support for common technologies stretches even further. As Example I-5 (con-
tinued from Example I-4) shows, PowerShell supports XML.

Example I-5. Working with XML content in PowerShell

PS > $xmlContent = [xml] $content
PS > $xmlContent

xml xml-stylesheet rss
version="1.0" encoding... type="text/xsl" href="... rss

PS > $xmlContent.rss

version : 2.0

dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/

channel : channel

PS > $xmlContent.rss.channel.item | select Title

CMD.exe compatibility

Time Stamping Log Files

Microsoft Compute Cluster now has a PowerShell Provider and Cmdlets
The Virtuous Cycle: .NET Developers using PowerShell

(...)

PowerShell also lets you work with Windows Management Instrumentation (WMI) and
CIM:

PS > Get-CimInstance Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009

A Guided Tour of Windows PowerShell | 13

Manufacturer : Phoenix Technologies, LTD

Name : Phoenix - AwardBIOS v6.00PG
SerialNumber TOXXXXXXXXXXX
Version : Nvidia - 42302e31

Or, as Example I-6 shows, you can work with Active Directory Service Interfaces (ADSI).

Example I-6. Working with Active Directory in PowerShell

PS > [ADSI] "WinNT://./Administrator" | Format-List *

UserFlags . {66113}

MaxStorage : {-1}

PasswordAge : {19550795}

PasswordExpired . {0}

LoginHours : {255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255}

FullName : {3

Description : {Built-in account for administering the compu
ter/domain}

BadPasswordAttempts . {0}

LastLogin : {5/21/2007 3:00:00 AM}

HomeDirectory : {3

LoginScript : {3

Profile : {3

HomeDirDrive : {3

Parameters : {3

PrimaryGroupID . {513}

Name : {Administrator}

MinPasswordLength . {0}

MaxPasswordAge : {3710851}

MinPasswordAge . {0}

PasswordHistorylLength . {0}

AutoUnlockInterval . {1800}

LockoutObservationInterval : {1800}

MaxBadPasswordsAllowed . {0}

RasPermissions . {1}

objectSid :{1500000521000 121 227 252 83 122
130 50 34 67 23 10 50 244 1 0 0}

Or, as Example I-7 shows, you can even use PowerShell for scripting traditional COM

objects.

Example I-7. Working with COM objects in PowerShell

PS > S$firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile

Type 01

FirewallEnabled : True
ExceptionsNotAllowed : False
NotificationsDisabled : False

UnicastResponsesToMulticastBroadcastDisabled : False

14 | AGuided Tour of Windows PowerShell

RemoteAdminSettings : System.__ComObject

IcmpSettings : System._ _ComObject

GloballyOpenPorts : {Media Center Extender Serv
ice, Remote Media Center Ex
perience, Adam Test Instanc

e, QWAVE...}

Services : {File and Printer Sharing,
UPNP Framework, Remote Desk
top}

AuthorizedApplications : {Remote Assistance, Windows

Messenger, Media Center, T
rillian...}

Namespace Navigation Through Providers

Another avenue PowerShell offers for working with the system is providers. PowerShell
providers let you navigate and manage data stores using the same techniques you already
use to work with the filesystem, as illustrated in Example I-8.

Example I-8. Navigating the filesystem

PS > Set-Location c:\
PS > Get-ChildItem

Directory: C:\

Mode LastWriteTime Length Name

d---- 11/2/2006 4:36 AM SWINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark

d---- 11/29/2006 2:47 PM Boot

d---- 11/28/2006 2:10 PM DECCHECK

d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo

d---- 4/2/2007 7:21 PM Inetpub

d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 11:47 PM temp

d---- 5/21/2007 8:55 PM Windows

-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys

-a--- 5/1/2007 8:43 PM 33057 RUU. log

-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

This also works on the registry, as shown in Example I-9.

Example I-9. Navigating the registry

PS > Set-Location HKCU:\Software\Microsoft\Windows)\
PS > Get-ChildItem

Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows

A Guided Tour of Windows PowerShell | 15

SKC VC Name Property

30 1 CurrentVersion {1SC}
3 1 Shell {BagMRU Size}
4 2 ShellNoRoam {(default), BagMRU Size}

PS > Set-Location CurrentVersion\Run
PS > Get-ItemProperty .

(...)

FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /
background

TaskSwitchXP . d:\lee\tools\TaskSwitchXP.exe

ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe

Ditto : C:\Program Files\Ditto\Ditto.exe

(...)

And it even works on the machine’s certificate store, as Example I-10 illustrates.

Example I-10. Navigating the certificate store

PS > Set-Location cert:\CurrentUser\Root
PS > Get-ChildItem

Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject

CDD4EEAE600OAC7F40C3802C171E30148030C072 CN=Microsoft Root Certificate...
BE36A4562FB2EEO5DBB3D32323ADF445084ED656 CN=Thawte Timestamping CA, OU...
A43489159A520FOD93DO32CCAF37E7FE20A8B419 CN=Microsoft Root Authority, ...
9FE47B4DO5D46E8066BAB1D1BFCOE48F1DBE6B26 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99FA3B5247 CN=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9EO4741E85 0OU=Copyright (c) 1997 Microso...
(...)

Much, Much More

As exciting as this guided tour was, it barely scratches the surface of how you can use
PowerShell to improve your productivity and systems management skills. For more
information about getting started in PowerShell, see Chapter 1.

16 | AGuided Tour of Windows PowerShell

PART I

Fundamentals

Chapter 1, The Windows PowerShell Interactive Shell
Chapter 2, Pipelines

Chapter 3, Variables and Objects

Chapter 4, Looping and Flow Control

Chapter 5, Strings and Unstructured Text

Chapter 6, Calculations and Math

Chapter 7, Lists, Arrays, and Hashtables

Chapter 8, Utility Tasks

CHAPTER 1
The Windows PowerShell Interactive Shell

1.0. Introduction

Above all else, the design of Windows PowerShell places priority on its use as an efficient
and powerful interactive shell. Even its scripting language plays a critical role in this
effort, as it too heavily favors interactive use.

What surprises most people when they first launch PowerShell is its similarity to the
command prompt that has long existed as part of Windows. Familiar tools continue to
run. Familiar commands continue to run. Even familiar hotkeys are the same. Support-
ing this familiar user interface, though, is a powerful engine that lets you accomplish
once cumbersome administrative and scripting tasks with ease.

This chapter introduces PowerShell from the perspective of its interactive shell.

1.1. Run Programs, Scripts, and Existing Tools

Problem

You rely on alot of effort invested in your current tools. You have traditional executables,
Perl scripts, VBScript, and of course, a legacy build system that has organically grown
into a tangled mess of batch files. You want to use PowerShell, but you don't want to give
up everything you already have.

Solution

To run a program, script, batch file, or other executable command in the system’s path,
enter its filename. For these executable types, the extension is optional:

19

Program.exe arguments
ScriptName.psl arguments
BatchFile.cmd arguments

To run a command that contains a space in its name, enclose its filename in single-
quotes (') and precede the command with an ampersand (&), known in PowerShell as
the invoke operator:

& 'C:\Program Files\Program\Program.exe' arguments
To run a command in the current directory, place .\ in front of its filename:
.\Program.exe arguments

To run a command with spaces in its name from the current directory, precede it with
both an ampersand and . \:

& '.\Program With Spaces.exe' arguments

Discussion

In this case, the solution is mainly to use your current tools as you always have. The only
difference is that you run them in the PowerShell interactive shell rather than cmd.exe.

Specifying the command name

The final three tips in the Solution merit special attention. They are the features of
PowerShell that many new users stumble on when it comes to running programs. The
first is running commands that contain spaces. In cmd.exe, the way to run a command
that contains spaces is to surround it with quotes:

"C:\Program Files\Program\Program.exe"

In PowerShell, though, placing text inside quotes is part of a feature that lets you evaluate
complex expressions at the prompt, as shown in Example 1-1.

Example 1-1. Evaluating expressions at the PowerShell prompt

PS>1+1

2

PS > 26 * 1.15

29.9

PS > "Hello" + " World"

Hello World

PS > "Hello World"

Hello World

PS > "C:\Program Files\Program\Program.exe"
C:\Program Files\Program\Program.exe
PS >

20 | Chapter 1: The Windows PowerShell Interactive Shell

So, a program name in quotes is no different from any other string in quotes. It’s just an
expression. As shown previously, the way to run a command in a string is to precede
that string with the invoke operator (&). If the command you want to run is a batch file
that modifies its environment, see Recipe 3.5, “Program: Retain Changes to Environ-
ment Variables Set by a Batch File”.

W 8
¥ By default, PowerShell’s security policies prevent scripts from running.
.‘& . Once you begin writing or using scripts, though, you should configure
¢&% this policy to something less restrictive. For information on how to

configure your execution policy, see Recipe 18.1, “Enable Scripting
Through an Execution Policy”.

The second command that new users (and seasoned veterans before coffee!) sometimes
stumble on is running commands from the current directory. In cmd.exe, the current
directory is considered part of the path: the list of directories that Windows searches to
find the program name you typed. If you are in the C:\Programs directory, cmd.exelooks
in C:\Programs (among other places) for applications to run.

PowerShell, like most Unix shells, requires that you explicitly state your desire to run a
program from the current directory. To do that, you use the . \Program.exe syntax, as
shown previously. This prevents malicious users on your system from littering your hard
drive with evil programs that have names similar to (or the same as) commands you
might run while visiting that directory.

To save themselves from having to type the location of commonly used scripts and
programs, many users put commonly used utilities along with their PowerShell scripts
in a “tools” directory, which they add to their system’s path. If PowerShell can find a
script or utility in your system’s path, you do not need to explicitly specify its location.

If you want PowerShell to automatically look in your current working directory for
scripts, you can add a period (.) to your PATH environment variable.

For more information about updating your system path, see Recipe 16.2, “Modify the
User or System Path”.

If you want to capture the output of a command, you can either save the results into a
variable, or save the results into a file. To save the results into a variable, see Recipe 3.3,
“Store Information in Variables”. To save the results into a file, see Recipe 1.26, “Store
the Output of a Command into a File”.

Specifying command arguments

To specify arguments to a command, you can again type them just as you would in other
shells. For example, to make a specified file read-only (two arguments to attrib.exe),

simply type:

1.1. Run Programs, Scripts, and Existing Tools | 21

attrib +R c:\path\to\file.txt

Where many scripters get misled when it comes to command arguments is how to
change them within your scripts. For example, how do you get the filename from a
PowerShell variable? The answer is to define a variable to hold the argument value, and
just use that in the place you used to write the command argument:

S$filename = "c:\path\to\other\file.txt"
attrib +R $filename

You can use the same technique when you call a PowerShell cmdlet, script, or function:

$filename = "c:\path\to\other\file.txt"
Get-Acl -Path $filename

If you see a solution that uses the Invoke-Expression cmdlet to compose command
arguments, it is almost certainly incorrect. The Invoke-Expression cmdlet takes the
string that you give it and treats it like a full PowerShell script. As just one example of
the problems this can cause, consider the following: filenames are allowed to contain
the semicolon (;) character, but when Invoke-Expression sees a semicolon, it assumes
that it is a new line of PowerShell script. For example, try running this:

$filename = "c:\file.txt; Write-Warning 'This could be bad'"
Invoke-Expression "Get-Acl -Path $filename"

Given that these dynamic arguments often come from user input, using Invoke-
Expression to compose commands can (at best) cause unpredictable script results.
Worse, it could result in damage to your system or a security vulnerability.

In addition to letting you supply arguments through variables one at a time, PowerShell
also lets you supply several of them at once through a technique known as splatting. For
more information about splatting, see Recipe 11.14, “Dynamically Compose Command
Parameters”.

See Also

Recipe 3.3, “Store Information in Variables”

Recipe 3.5, “Program: Retain Changes to Environment Variables Set by a Batch File”
Recipe 11.14, “Dynamically Compose Command Parameters”

Recipe 16.2, “Modify the User or System Path”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

22 | Chapter 1: The Windows PowerShell Interactive Shell

1.2. Run a PowerShell Command

Problem

You want to run a PowerShell command.

Solution
To run a PowerShell command, type its name at the command prompt. For example:

PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

133 5 11760 7668 46 1112 audiodg
184 5 33248 508 93 1692 avgamsvr
143 7 31852 984 97 1788 avgenc
Discussion

The Get-Process command is an example of a native PowerShell command, called a
cmdlet. As compared to traditional commands, cmdlets provide significant benefits to
both administrators and developers:

o They share a common and regular command-line syntax.

« Theysupport rich pipeline scenarios (using the output of one command as the input
of another).

o They produce easily manageable object-based output, rather than error-prone
plain-text output.

Because the Get-Process cmdlet generates rich object-based output, you can use its
output for many process-related tasks.

Every PowerShell command lets you provide input to the command through its param-
eters. For more information on providing input to commands, see “Running Com-
mands” (page 899).

The Get-Process cmdlet is just one of the many that PowerShell supports. See
Recipe 1.11, “Find a Command to Accomplish a Task” to learn techniques for finding
additional commands that PowerShell supports.

For more information about working with classes from the .NET Framework, see
Recipe 3.8, “Work with .NET Objects”.

1.2.RunaPowerShell Command | 23

See Also

Recipe 1.11, “Find a Command to Accomplish a Task”
Recipe 3.8, “Work with .NET Objects”

“Running Commands” (page 899)

1.3. Resolve Errors Calling Native Executables

Problem

You have a command line that works from cmd.exe, and want to resolve errors that occur
from running that command in PowerShell.

Solution

Enclose any affected command arguments in single quotes to prevent them from being
interpreted by PowerShell, and replace any single quotes in the command with two single
quotes.

PS > cmd /c echo '!"#$%&''()*+,-./09:;<=>?@AZ[\]"*_"az{|}~'

LHSHE () *+,-.[09:5<=>2@AZ[\]"_"az{]|}~
For complicated commands where this does not work, use the verbatim argument
(--%) syntax.

PS > cmd /c echo 'quotes' "and" Svariables @{ etc = Strue }
quotes and System.Collections.Hashtable

PS > cmd --% /c echo 'quotes' "and" Svariables @{ etc = Strue }
'quotes' "and" S$variables @{ etc = Strue }

Discussion

One of PowerShell’s primary goals has always been command consistency. Because of
this, cmdlets are very regular in the way that they accept parameters. Native executables
write their own parameter parsing, so you never know what to expect when working
with them. In addition, PowerShell offers many features that make you more efficient
at the command line: command substitution, variable expansion, and more. Since many
native executables were written before PowerShell was developed, they may use special
characters that conflict with these features.

As an example, the command given in the Solution uses all the special characters avail-
able on a typical keyboard. Without the quotes, PowerShell treats some of them as lan-
guage features, as shown in Table 1-1.

24 | Chapter 1: The Windows PowerShell Interactive Shell

Table 1-1. Sample of special characters

Special character Meaning
" The beginning (or end) of quoted text
The beginning of a comment

The beginning of a variable

& Reserved for future use

() Parentheses used for subexpressions
; Statement separator

{1} Script block

| Pipeline separator

Escape character

When surrounded by single quotes, PowerShell accepts these characters as written,
without the special meaning.

Despite these precautions, you may still sometimes run into a command that doesn't
seem to work when called from PowerShell. For the most part, these can be resolved by
reviewing what PowerShell passes to the command and escaping the special characters.

To see exactly what PowerShell passes to that command, you can view the output of the
trace source called NativeCommandParameterBinder:

PS > Trace-Command NativeCommandParameterBinder {
cmd /c echo "!M"#S%&''()*+,-./09:;<=>2@AZ[\]*_"az{|}~'

} -PsHost

DEBUG: NativeCommandParameterBinder Information: 0 : WriteLine
Argument 0: /c

DEBUG: NativeCommandParameterBinder Information: 0 : WriteLine
Argument 1: echo

DEBUG: NativeCommandParameterBinder Information: 0 : WriteLine

Argument 2: !'#S$%&'()*+,-./09:;<=>?7@QAZ[\]*_"az{|}~

LUHSUR ()4, - . /091 3<=>2@AZ[\] az{|}~
If the command arguments shown in this output don’t match the arguments you expect,
they have special meaning to PowerShell and should be escaped.

For a complex enough command that “just used to work,” though, escaping special
characters is tiresome. To escape the whole command invocation, use the verbatim
argument marker (- -%) to prevent PowerShell from interpreting any of the remaining
characters on the line. You can place this marker anywhere in the command’s arguments,
letting you benefit from PowerShell constructs where appropriate. The following ex-
ample uses a PowerShell variable for some of the command arguments, but then uses
verbatim arguments for the rest:

1.3. Resolve Errors Calling Native Executables | 25

PS > Susername = "Lee"
PS > cmd /c echo Hello $username with 'quotes' "and" Svariables @{ etc = Strue }
Hello Lee with quotes and System.Collections.Hashtable
PS > cmd /c echo Hello $username °
--% with 'quotes' "and" $variables @{ etc = $true }
Hello Lee with 'quotes' "and" S$Svariables @{ etc = S$true }

While in this mode, PowerShell also accepts cmd.exe-style environment variables—as
these are frequently used in commands that “just used to work”

PS > Senv:host = "myhost"

PS > ping %host%

Ping request could not find host %host%. Please check the name and try again.
PS > ping --% %host%

Pinging myhost [127.0.1.1] with 32 bytes of data:
(...)

See Also

Appendix A, PowerShell Language and Environment

1.4. Supply Default Values for Parameters

Problem

You want to define a default value for a parameter in a PowerShell command.

Solution

Add an entry to the PSDefaultParameterValues hashtable.

PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
150 13 9692 9612 39 21.43 996 audiodg
1013 84 45572 42716 315 1.67 4596 WWAHost
(...)

PS > SPSDefaultParameterValues["Get-Process:ID"] = $pid
PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

584 62 132776 157940 985 13.15 9104 powershell_ise

PS > Get-Process -Id 0

26 | Chapter 1: The Windows PowerShell Interactive Shell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Discussion

In PowerShell, many commands (cmdlets and advanced functions) have parameters
that let you configure their behavior. For a full description of how to provide input to
commands, see “Running Commands” (page 899). Sometimes, though, supplying values
for those parameters at each invocation becomes awkward or repetitive.

Until PowerShell version 3, it was the responsibility of each cmdlet author to recognize
awkward or repetitive configuration properties and build support for “preference vari-
ables” into the cmdlet itself. For example, the Send-MailMessage cmdlet looks for the
$PSEmailServer variable if you do not supply a value for its -SmtpServer parameter.

To make this support more consistent and configurable, PowerShell version 3 introduces
the PSDefaultParameterValues preference variable. This preference variable is a hasht-
able. Like all other PowerShell hashtables, entries come in two parts: the key and the
value.

Keys in the PSDefaultParameterValues hashtable must match the pattern cmdlet:pa
rameter—that is, a cmdlet name and parameter name, separated by a colon. Either (or
both) may use wildcards, and spaces between the command name, colon, and parameter
are ignored.

Values for the cmdlet/parameter pairs can be either a simple parameter value (a string,
boolean value, integer, etc.) or a script block. Simple parameter values are what you will
use most often.

If you need the default value to dynamically change based on what parameter values are
provided so far, you can use a script block as the default. When you do so, PowerShell
evaluates the script block and uses its result as the default value. If your script block
doesn’t return a result, PowerShell doesn’t apply a default value.

When PowerShell invokes your script block, $args[@] contains information about any
parameters bound so far: BoundDefaultParameters, BoundParameters, and BoundPo
sitionalParameters. As one example of this, consider providing default values to the
-Credential parameter based on the computer being connected to. Here is a function
that simply outputs the credential being used:

function RemoteConnector
{
param(
[Parameter()]
$ComputerName,

1.4. Supply Default Values for Parameters | 27

[Parameter(Mandatory = Strue)]
$Credential)

"Connecting as " + $Credential.UserName

}
Now, you can define a credential map:

PS > Scredmap = @{}
PS > S$credmap["RemoteComputer1"] = Get-Credential
PS > Scredmap["RemoteComputer2"] = Get-Credential

Then, create a parameter default for all Credential parameters that looks at the Com
puterName bound parameter:

S$PSDefaultParameterValues["*:Credential"] = {
if(Sargs[0].BoundParameters -contains "ComputerName")

{

$cred = Scredmap[$PSBoundParameters["ComputerName"]]
if(Scred) { Scred }

}
Here is an example of this in use:

PS > RemoteConnector -ComputerName RemoteComputeril
Connecting as UserForRemoteComputeril
PS > RemoteConnector -ComputerName RemoteComputer?2
Connecting as UserForRemoteComputer?2
PS > RemoteConnector -ComputerName RemoteComputer3

cmdlet RemoteConnector at command pipeline position 1

Supply values for the following parameters:
Credential: (...)

For more information about working with hashtables in PowerShell, see “Hashtables
(Associative Arrays)” (page 872).

See Also
“Hashtables (Associative Arrays)” (page 872)

“Running Commands” (page 899)

1.5. Invoke a Long-Running or Background Command

Problem

You want to invoke a long-running command on a local or remote computer.

28 | Chapter 1: The Windows PowerShell Interactive Shell

Solution
Invoke the command as a Job to have PowerShell run it in the background:

PS > Start-Job { while($true) { Get-Random; Start-Sleep 5 } } -Name Sleeper

Id Name State HasMoreData Location

1 Sleeper Running True localhost

PS > Receive-Job Sleeper
671032665

1862308704

PS > Stop-Job Sleeper

Discussion

PowerShell’s job cmdlets provide a consistent way to create and interact with background
tasks. In the Solution, we use the Start-Job cmdlet to launch a background job on the
local computer. We give it the name of Sleeper, but otherwise we don’t customize much
of its execution environment.

In addition to allowing you to customize the job name, the Start-Job cmdlet also lets
you launch the job under alternate user credentials or as a 32-bit process (if run originally
from a 64-bit process).

Once you have launched a job, you can use the other Job cmdlets to interact with it:

Get-Job
Gets all jobs associated with the current session. In addition, the -Before, -After,
-Newest,and - State parameterslet you filter jobs based on their state or completion
time.

Wait-Job
Waits for a job until it has output ready to be retrieved.

Receive-Job
Retrieves any output the job has generated since the last call to Receive-Job.

Stop-Job
Stops a job.

Remove-Job
Removes a job from the list of active jobs.

1.5. Invoke a Long-Running or Background Command | 29

In addition to the Start-Job cmdlet, you can also use the -AsJob
parameter in many cmdlets to have them perform their tasks in the

%' background. Two of the most useful examples are the Invoke-
Command cmdlet (when operating against remote computers) and the set
of WMI-related cmdlets.

5

If your job generates an error, the Receive-Job cmdlet will display it to you when you
receive the results, as shown in Example 1-2. If you want to investigate these errors
further, the object returned by Get-Job exposes them through the Error property.

Example 1-2. Retrieving errors from a Job

PS > Start-Job -Name ErrorJob { Write-Error Error! }

Id Name State HasMoreData Location

1 ErrorJob Running True localhost

PS > Receive-Job ErrorJob
Error!
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
Exception
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorExc
eption,Microsoft.PowerShell.Commands.WriteErrorCommand

PS > $job = Get-Job ErrorJob
PS > $job | Format-List *

State : Completed

HasMoreData : False

StatusMessage :

Location : localhost

Command : Write-Error Error!

JobStateInfo : Completed

Finished : System.Threading.ManualResetEvent
Instanceld : 801e932c-5580-4c8b-af06-ddd1024840b7
Id H

Name : ErrorJob

ChildJobs : {Job2}

Output {3

Error : {3

Progress {3}

Verbose : {3

Debug {3}

Warning : {3

PS > $job.ChildJobs[0@] | Format-List *

30 | Chapter 1: The Windows PowerShell Interactive Shell

State

HasMoreData
Location
Runspace
Command
JobStateInfo
Finished
Instanceld
Id

Name
ChildJobs
Output
Error

Progress
Verbose
Debug
Warning

: Completed

StatusMessage :

: False

: localhost

: System.Management.Automation.RemoteRunspace

Write-Error Error!

: Completed

: System.Threading.ManualResetEvent

: 60fa85da-448b-49ff-8116-6eae6c3f5006
H

: Job2

: {3

: {}

: {Microsoft.PowerShell.Commands.WriteErrorException,Microso

ft.PowerShell.Commands.WriteErrorCommand}

: {1
: {3
: {1
: {3

PS > $job.ChildJobs[0].Error

Error!

+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteError

Exception

+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorExc
eption,Microsoft.PowerShell.Commands.WriteErrorCommand

PS >

As this example shows, jobs are sometimes containers for other jobs, called child jobs.

Jobs created through the Start - Job cmdlet will always be child jobs attached to a generic
container. To access the errors returned by these jobs, you instead access the errors in

its first child job (called child job number zero).

In addition to long-running jobs that execute under control of the current PowerShell

session, you might want to register and control jobs that run on a schedule, or inde-

pendently of the current PowerShell session. PowerShell has a handful of commands to
let you work with scheduled jobs like this; for more information, see Recipe 27.14,

“Manage Scheduled Tasks on a Computer”.

See Also

Recipe 27.14, “Manage Scheduled Tasks on a Computer”

Recipe 28.7, “Improve the Performance of Large-Scale WMI Operations”

Recipe 29.4, “Invoke a Command on a Remote Computer”

1.5. Invoke a Long-Running or Background Command

31

1.6. Program: Monitor a Command for Changes

As thrilling as our lives are, some days are reduced to running a command over and
over and over. Did the files finish copying yet? Is the build finished? Is the site still up?

Usually, the answer to these questions comes from running a command, looking at its
output, and then deciding whether it meets your criteria. And usually this means just
waiting for the output to change, waiting for some text to appear, or waiting for some
text to disappear.

Fortunately, Example 1-3 automates this tedious process for you.

Example 1-3. Watch-Command.ps1

##t

Watch-Command

##t

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

##
B

<#

.SYNOPSIS

Watches the result of a command invocation, alerting you when the output
either matches a specified string, lacks a specified string, or has simply
changed.

.EXAMPLE

PS > Watch-Command { Get-Process -Name Notepad | Measure } -UntilChanged
Monitors Notepad processes until you start or stop one.

.EXAMPLE

PS > Watch-Command { Get-Process -Name Notepad | Measure } -Until "Count 1"
Monitors Notepad processes until there is exactly one open.

.EXAMPLE
PS > Watch-Command {

Get-Process -Name Notepad | Measure } -While 'Count ¢ \d\s*\n'
Monitors Notepad processes while there are between 0 and 9 open

(once number after the colon).

#>

[CmdletBinding(DefaultParameterSetName = "Forever")]

32 | Chapter 1: The Windows PowerShell Interactive Shell

param(

)

The script block to invoke while monitoring
[Parameter(Mandatory = Strue, Position = 0)]
[ScriptBlock] $ScriptBlock,

The delay, in seconds, between monitoring attempts
[Parameter()]
[Double] $DelaySeconds = 1,

Specifies that the alert sound should not be played
[Parameter()]
[Switch] $Quiet,

Monitoring continues only while the output of the

command remains the same.

[Parameter(ParameterSetName = "UntilChanged", Mandatory = $false)]
[Switch] SUntilChanged,

The regular expression to search for. Monitoring continues
until this expression is found.
[Parameter(ParameterSetName = "Until", Mandatory = $false)]
[String] $Until,

The regular expression to search for. Monitoring continues
until this expression is not found.
[Parameter(ParameterSetName = "While", Mandatory = S$false)]
[String] $SWhile

Set-StrictMode -Version 3

S$initialOutput = ""

Start a continuous loop
while(S$true)

{

Run the provided script block
$r = & S$ScriptBlock

Clear the screen and display the results
Clear-Host

$ScriptBlock.ToString().Trim()

StextOutput = $r | Out-String

StextOutput

Remember the initial output, if we haven't
stored it yet
if(-not $initialOutput)
{
$initialOutput = $StextOutput
}

1.6. Program: Monitor a Command for Changes

33

If we are just looking for any change,
see 1f the text has changed.

if($UntilChanged)
{
if($initialOutput -ne S$textOutput)
{
break
}

}

If we need to ensure some text is found,
break if we didn't find it.

if(SWhile)
{
if(StextOutput -notmatch $While)
{
break
}

}

If we need to wailt for some text to be found,
break if we find it.
if(Suntil)
{
if(StextOutput -match $Until)
{

}

break

}

Delay
Start-Sleep -Seconds S$SDelaySeconds
}

Notify the user
if(-not $Quiet)
{
[Console]: :Beep(1000, 1000)

}

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

34 | Chapter 1: The Windows PowerShell Interactive Shell

1.7. Notify Yourself of Job Completion

Problem

You want to notify yourself when a long-running job completes.

Solution

Use the Register-TemporaryEvent command given in Recipe 32.3, “Create a Tempo-
rary Event Subscription” to register for the event’s StateChanged event:

PS > $job = Start-Job -Name TenSecondSleep { Start-Sleep 10 }
PS > Register-TemporaryEvent $job StateChanged -Action {
[Console]: :Beep(100,100)
Write-Host "Job #$($sender.Id) ($($sender.Name)) complete."
}

PS > Job #6 (TenSecondSleep) complete.
PS >

Discussion

When a job completes, it raises a StateChanged event to notify subscribers that its state
has changed. We can use PowerShell’s event handling cmdlets to register for notifications
about this event, but they are not geared toward this type of one-time event handling.
To solve that, we use the Register-TemporaryEvent command given in Recipe 32.3,
“Create a Temporary Event Subscription”.

In our example action block in the Solution, we simply emit a beep and write a message
saying that the job is complete.

As another option, you can also update your prompt function to highlight jobs that are
complete but still have output you haven’t processed:

$psJobs = @(Get-Job -State Completed | ? { $_.HasMoreData })
if($psJobs.Count -gt 0) {
($psJobs | Out-String).Trim() | Write-Host -Fore Yellow }

For more information about events and this type of automatic event handling, see
Chapter 32.

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Chapter 32, Event Handling

1.7. Notify Yourself of Job Completion | 35

1.8. Customize Your Shell, Profile, and Prompt

Problem

You want to customize PowerShell’s interactive experience with a personalized prompt,
aliases, and more.

Solution

When you want to customize aspects of PowerShell, place those customizations in your
personal profile script. PowerShell provides easy access to this profile script by storing
its location in the $profile variable.

By default, PowerShell’s security policies prevent scripts (including your
. profile) from running. Once you begin writing scripts, though, you
063" should configure this policy to something less restrictive. For informa-
tion on how to configure your execution policy, see Recipe 18.1, “Enable
Scripting Through an Execution Policy”.

To create a new profile (and overwrite one if it already exists):
New-Item -type file -force $profile

To edit your profile (in the Integrated Scripting Environment):
ise $profile

To see your profile file:
Get-ChildItem $profile

Once you create a profile script, you can add a function called prompt that returns a
string. PowerShell displays the output of this function as your command-line prompt.

function prompt

{
"PS [$env:COMPUTERNAME] >"

}
This example prompt displays your computer name, and looks like PS [LEE-DESK] >.

You may also find it helpful to add aliases to your profile. Aliaseslet you refer to common
commands by a name that you choose. Personal profile scripts let you automatically
define aliases, functions, variables, or any other customizations that you might set in-
teractively from the PowerShell prompt. Aliases are among the most common custom-
izations, as they let you refer to PowerShell commands (and your own scripts) by a name
that is easier to type.

36 | Chapter 1: The Windows PowerShell Interactive Shell

If you want to define an alias for a command but also need to modify
the parameters to that command, then define a function instead. For

%" more information, see Recipe 11.14, “Dynamically Compose Com-
mand Parameters”.

XS
[N
N

For example:

Set-Alias new New-Object

Set-Alias iexplore 'C:\Program Files\Internet Explorer\iexplore.exe'
Your changes will become effective once you save your profile and restart PowerShell.
Alternatively, you can reload your profile immediately by running this command:

. $profile

Functions are also very common customizations, with the most popular being the
prompt function.

Discussion

The Solution discusses three techniques to make useful customizations to your
PowerShell environment: aliases, functions, and a hand-tailored prompt. You can (and
will often) apply these techniques at any time during your PowerShell session, but your
profile script is the standard place to put customizations that you want to apply to every
session.

To remove an alias or function, use the Remove-Item cmdlet:

Remove-Item function:\MyCustomFunction
Remove-Item alias:\new

Although the Prompt function returns a simple string, you can also use the function for
more complex tasks. For example, many users update their console window title (by
changing the $host.UI.RawUI.WindowTitle variable) or use the Write-Host cmdlet to
output the prompt in color. If your prompt function handles the screen output itself, it
still needs to return a string (for example, a single space) to prevent PowerShell from
using its default. If you don’t want this extra space to appear in your prompt, add an
extra space at the end of your Write-Host command and return the backspace ("'b")
character, as shown in Example 1-4.

Example 1-4. An example PowerShell prompt

B
#i

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

1.8. Customize Your Shell, Profile, and Prompt | 37

#i#

Set-StrictMode -Version 3

function Prompt

{
$id = 1
S$historyItem = Get-History -Count 1
if(ShistoryItem)
{

$1d = ShistoryItem.Id + 1

}
Write-Host -ForegroundColor DarkGray "'n[$(Get-Location)]"
Write-Host -NoNewLine "PS:$id > "
$host.UI.RawUI.WindowTitle = "$(Get-Location)"
g

}

In addition to showing the current location, this prompt also shows the ID for that
command in your history. This lets you locate and invoke past commands with relative
ease:

[C:\]

PS:73 >5 * 5
25

[C:\]
PS:74 >1 + 1
2

[C:\]

PS:75 >Invoke-History 73
5*5

25

[C:\]
PS:76 >

Although the profile referenced by $profile is the one you will almost always want to
use, PowerShell actually supports four separate profile scripts. For further details on
these scripts (along with other shell customization options), see “Common Customi-
zation Points” (page 914).

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

“Common Customization Points” (page 914)

38 | Chapter 1: The Windows PowerShell Interactive Shell

1.9. Customize PowerShell’s User Input Behavior

Problem

You want to override the way that PowerShell reads input at the prompt.

Solution

Create a PSConsoleHostReadLine function. In that function, process the user input and
return the resulting command. Example 1-5 implements a somewhat ridiculous
Notepad-based user input mechanism:

Example 1-5. A Notepad-based user input mechanism

function PSConsoleHostReadlLine

{
$inputFile = Join-Path Senv:TEMP PSConsoleHostReadLine
Set-Content S$inputFile "PS > "
Notepad opens. Enter your command in it, save the file,
and then exit.
notepad $inputFile | Out-Null
SuserInput = Get-Content S$inputFile
$resultingCommand = $userInput.Replace("PS >", "")
$resultingCommand

}

Discussion

When PowerShell first came on the scene, Unix folks were among the first to notice.
Theyd enjoyed a powerful shell and a vigorous heritage of automation for years—and
“when I'm forced to use Windows, PowerShell rocks” is a phrase we've heard many times.

This natural uptake was no mistake. There are many on the team who come from a deep
Unix background, and similarities to traditional Unix shells were intentional. When
coming from a Unix background, though, we still hear the occasional grumble that tab
completion feels weird. Ctrl-R doesn’'t invoke history search? Tab cycles through match-
es, rather than lists them? Abhorrent!

In PowerShell versions 1 or 2, there was nothing you could reasonably do to address
this. PowerShell reads its input from the console in what is known as Cooked Mode—
where the Windows console subsystem handles all the keypresses, fancy F7 menus, and
more. When you press Enter or Tab, PowerShell gets the text of what you have typed so
far, but that’s it. There is no way for it to know that you had pressed the (Unix-like)
Ctrl-R, Ctrl-A, Ctrl-E, or any other keys.

1.9. Customize PowerShell’s User Input Behavior | 39

This issue has been resolved in PowerShell version 3 through the PSConsoleHostRead
Line function. When you define this method in the PowerShell console host, PowerShell
calls that function instead of the Cooked Mode input functionality. And that’s it—the
rest is up to you. If youd like to implement a custom input method, the freedom (and
responsibility) is all yours.

VN
) A community implementation of a Bash-like PSConsoleHostRead
t‘s‘.‘ . Line function is available here.

For more information about handling keypresses and other forms of user input, see
Chapter 13.

See Also

Chapter 13, User Interaction

1.10. Customize PowerShell's Command Resolution
Behavior

Problem

You want to override or customize the command that PowerShell invokes before it is
invoked.

Solution

Assign a script block to one or all of the PreCommandLookupAction, PostCommand
LookupAction, or CommandNotFoundAction properties of $executionContext.Ses
sionState.InvokeCommand. Example 1-6 enables easy parent directory navigation
when you type multiple dots.

Example 1-6. Enabling easy parent path navigation through CommandNotFoundAction

$executionContext.SessionState.InvokeCommand.CommandNotFoundAction = {
param($CommandName, $CommandLookupEventArgs)

If the command is only dots
if($CommandName -match '~\.+$')
{
Associate a new command that should be invoked instead
$CommandLookupEventArgs.CommandScriptBlock = {
Count the number of dots, and run "Set-Location .."
less time.

one

40 | Chapter 1: The Windows PowerShell Interactive Shell

http://bit.ly/T4GE9f

for($counter = 0; S$Scounter -1t $CommandName.lLength - 1; Scounter++)

{

Set-Location ..

3

We call GetNewClosure() so that the reference to $CommandName can
be used in the new command.
}.GetNewClosure()

}

PS C:\Users\Lee> cd $pshome
PS C:\Windows\System32\WindowsPowerShell\v1.0>
PS C:\Windows>

Discussion

When you invoke a command in PowerShell, the engine goes through three distinct
phases:

1. Retrieve the text of the command.
2. Find the command for that text.

3. Invoke the command that was found.

In PowerShell version 3, the $executionContext.SessionState. InvokeCommand prop-
erty now lets you override any of these stages with script blocks to intercept any or
all of the PreCommandLookupAction, PostCommandLookupAction, or CommandNotFound
Action stages.

Each script block receives two parameters: the command name, and an object (Com
mandLookupEventArgs) to control the command lookup behavior. If your handler
assigns a script block to the CommandScriptBlock property of the CommandLookup
EventArgs or assigns a CommandInfo to the Command property of the CommandLookup
EventArgs, PowerShell will use that script block or command, respectively. If your script
block sets the StopSearch property to true, PowerShell will do no further command
resolution.

PowerShell invokes the PreCommandLookupAction script block when it knows the name
of a command (i.e., Get-Process) but hasn't yet looked for the command itself. You can
override this action if you want to react primarily based on the text of the command
name or want to preempt PowerShell’s regular command or alias resolution. For exam-
ple, Example 1-7 demonstrates a PreCommandLookupAction that looks for commands
with an asterisk before their name. When it sees one, it enables the -Verbose parameter.

Example 1-7. Customizing the PreCommandLookupAction

SexecutionContext.SessionState.InvokeCommand.PreCommandLookupAction = {
param($CommandName, $CommandLookupEventArgs)

1.10. Customize PowerShell’s Command Resolution Behavior | 41

If the command name starts with an asterisk, then
enable its Verbose parameter
if($CommandName -match "*")

{
Remove the leading asterisk
$NewCommandName = $CommandName -replace '*',"'
Create a new script block that invokes the actual command,
passes along all original arguments, and adds in the -Verbose
parameter
$CommandLookupEventArgs.CommandScriptBlock = {
& SNewCommandName @args -Verbose
We call GetNewClosure() so that the reference to $NewCommandName
can be used in the new command.
}.GetNewClosure()
}
}
PS > dir > 1.txt
PS > dir > 2.txt
PS > del 1.txt

PS > *del 2.txt
VERBOSE: Performing operation "Remove file" on Target "C:\temp\tempfolder\2.txt".

After PowerShell executes the PreCommandLookupAction (if one exists and doesn’t re-
turnacommand), it goes through its regular command resolution. Ifit finds a command,
it invokes the script block associated with the PostCommandLookupAction. You can
override this action if you want to react primarily to a command that is just about to be
invoked. Example 1-8 demonstrates a PostCommandLookupAction that tallies the com-
mands you use most frequently.

Example 1-8. Customizing the PostCommandLookupAction

SexecutionContext.SessionState.InvokeCommand.PostCommandLookupAction = {
param($CommandName, $CommandLookupEventArgs)

Stores a hashtable of the commands we use most frequently
if(-not (Test-Path variable:\CommandCount))

{
}

$global:CommandCount = @{}

If 1t was launched by us (rather than as an internal helper
command), record its invocation.
if($CommandLookupEventArgs.CommandOrigin -eq "Runspace")

{
}

$commandCount[$CommandName] = 1 + ScommandCount[$CommandName]

42 | Chapter 1: The Windows PowerShell Interactive Shell

PS > Get-Variable commandCount
PS > Get-Process -id $pid

PS > Get-Process -id $pid

PS > $commandCount

Name Value

Out-Default 4
Get-Variable 1
prompt 4
Get-Process 2

If command resolution is unsuccessful, PowerShell invokes the CommandNotFoundAc
tion script block if one exists. At its simplest, you can override this action if you want
to recover from or override PowerShell’s error behavior when it cannot find a command.

Asamore advanced application, the CommandNotFoundAction lets you write PowerShell
extensions that alter their behavior based on the form of the name, rather than the
arguments passed to it. For example, you might want to automatically launch URLs just
by typing them or navigate around providers just by typing relative path locations.

The Solution gives an example of implementing this type of handler. While dynamic
relative path navigation is not a built-in feature of PowerShell, it is possible to get a very
reasonable alternative by intercepting the CommandNotFoundAction. If we see a missing
command that has a pattern we want to handle (a series of dots), we return a script block
that does the appropriate relative path navigation.

1.11. Find a Command to Accomplish a Task

Problem

You want to accomplish a task in PowerShell but don’t know the command or cmdlet
to accomplish that task.

Solution
Use the Get-Command cmdlet to search for and investigate commands.

To get the summary information about a specific command, specify the command name
as an argument:

Get-Command CommandName

To get the detailed information about a specific command, pipe the output of Get-
Command to the Format-List cmdlet:

Get-Command CommandName | Format-List

1.11. Find a Command to AccomplishaTask | 43

To search for all commands with a name that contains text, surround the text with
asterisk characters:

Get-Command *text*
To search for all commands that use the Get verb, supply Get to the -Verb parameter:
Get-Command -Verb Get

To search for all commands that act on a service, use Service as the value of the -Noun
parameter:

Get-Command -Noun Service

Discussion

One of the benefits that PowerShell provides administrators is the consistency of its
command names. All PowerShell commands (called cmdlets) follow a regular Verb-
Noun pattern—for example, Get-Process, Get-EventLog, and Set-Location. The verbs
come from a relatively small set of standard verbs (as listed in Appendix J) and describe
what action the cmdlet takes. The nouns are specific to the cmdlet and describe what
the cmdlet acts on.

Knowing this philosophy, you can easily learn to work with groups of cmdlets. If you
want to start a service on the local machine, the standard verb for that is Start. A good
guess would be to first try Start-Service (which in this case would be correct), but
typing Get-Command -Verb Start would also be an effective way to see what things you
can start. Going the other way, you can see what actions are supported on services by
typing Get-Command -Noun Service.

When you use the Get-Command cmdlet, PowerShell returns results from the list of all
commands available on your system. If youd instead like to search just commands from
modules that you've loaded either explicitly or through autoloading, use the -List
Imported parameter. For more information about PowerShell’s autoloading of com-
mands, see Recipe 1.29, “Extend Your Shell with Additional Commands”.

See Recipe 1.12, “Get Help on a Command” for a way to list all commands along with
a brief description of what they do.

The Get-Command cmdlet is one of the three commands you will use most commonly as
you explore Windows PowerShell. The other two commands are Get-Help and Get-
Member.

There is one important point to keep in mind when it comes to looking for a PowerShell
command to accomplish a particular task. Many times, that PowerShell command does
not exist, because the task is best accomplished the same way it always was—for example,
ipconfig.exe to get IP configuration information, netstat.exe to list protocol statis-
tics and current TCP/IP network connections, and many more.

44 | Chapter 1: The Windows PowerShell Interactive Shell

For more information about the Get-Command cmdlet, type Get-Help Get-Command.

See Also
Recipe 1.12, “Get Help on a Command”

1.12. Get Help on a Command

Problem

You want to learn how a specific command works and how to use it.

Solution

The command that provides help and usage information about a command is called
Get-Help. It supports several different views of the help information, depending on your
needs.

To get the summary of help information for a specific command, provide the command’s
name as an argument to the Get-Help cmdlet. This primarily includes its synopsis,
syntax, and detailed description:

Get-Help CommandName
or:
CommandName -?

To get the detailed help information for a specific command, supply the -Detailed flag
to the Get-Help cmdlet. In addition to the summary view, this also includes its parameter
descriptions and examples:

Get-Help CommandName -Detailed

To get the full help information for a specific command, supply the -Full flag to the
Get-Help cmdlet. In addition to the detailed view, this also includes its full parameter
descriptions and additional notes:

Get-Help CommandName -Full

To get only the examples for a specific command, supply the -Examples flag to the Get-
Help cmdlet:

Get-Help CommandName -Examples

To retrieve the most up-to-date online version of a command’s help topic, supply the
-Online flag to the Get-Help cmdlet:

Get-Help CommandName -Online

To view a searchable, graphical view of a help topic, use the -ShowhWindow parameter:

1.12.GetHelponaCommand | 45

Get-Help CommandName -ShowWindow

To find all help topics that contain a given keyword, provide that keyword as an argument
to the Get-Help cmdlet. If the keyword isn't also the name of a specific help topic, this
returns all help topics that contain the keyword, including its name, category, and
synopsis:

Get-Help Keyword

Discussion

The Get-Help cmdlet is the primary way to interact with the help system in PowerShell.
Like the Get-Command cmdlet, the Get-Help cmdlet supports wildcards. If you want to
list all commands that have help content that matches a certain pattern (for example,
process), you can simply type Get-Help *process*.

If the pattern matches only a single command, PowerShell displays the help for that
command. Although command wildcarding and keyword searching is a helpful way to
search PowerShell help, see Recipe 1.14, “Program: Search Help for Text” for a script
that lets you search the help content for a specified pattern.

While there are thousands of pages of custom-written help content at your disposal,
PowerShell by default includes only information that it can automatically generate from
the information contained in the commands themselves: names, parameters, syntax,
and parameter defaults. You need to update your help content to retrieve the rest. The
first time you run Get-Help as an administrator on a system, PowerShell offers to
download this updated help content:

PS > Get-Help Get-Process

Do you want to run Update-Help?

The Update-Help cmdlet downloads the newest Help files for Windows
PowerShell modules and installs them on your computer. For more details,
see the help topic at http://go.microsoft.com/fwlink/?LinkId=210614.

[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

Answer Y to this prompt, and PowerShell automatically downloads and installs the most
recent help content for all modules on your system. For more information on updatable
help, see Recipe 1.13, “Update System Help Content”.

If youd like to generate a list of all cmdlets and aliases (along with their brief synopses),
run the following command:

Get-Help * -Category Cmdlet | Select-Object Name,Synopsis | Format-Table -Auto

In addition to console-based help, PowerShell also offers online access to its help content.
The Solution demonstrates how to quickly access online help content.

46 | Chapter 1: The Windows PowerShell Interactive Shell

The Get-Help cmdlet is one of the three commands you will use most commonly as you
explore Windows PowerShell. The other two commands are Get-Command and Get-
Member.

For more information about the Get-Help cmdlet, type Get-Help Get-Help.

See Also
Recipe 1.14, “Program: Search Help for Text”

1.13. Update System Help Content

Problem

You want to update your system’s help content to the latest available.

Solution

Run the Update-Help command. To retrieve help from a local path, use the -Source
Path cmdlet parameter:

Update-Help
or:

Update-Help -SourcePath ||helpserver|\help

Discussion

One of PowerShell’s greatest strengths is the incredible detail of its help content. Count-
ing only the help content and about_* topics that describe core functionality, Power-
Shell’s help includes approximately half a million words and would span 1,200 pages if
printed.

The challenge that every version of PowerShell has been forced to deal with is that this
help content is written at the same time as PowerShell itself. Given that its goal is to help
the user, the content that’s ready by the time a version of PowerShell releases is a best-
effort estimate of what users will need help with.

As users get their hands on PowerShell, they start to have questions. Some of these are
addressed by the help topics, while some of them aren’t. Sometimes the help is simply
incorrect due to a product change during the release. Before PowerShell version 3, re-
solving these issues meant waiting for the next release of Windows or relying solely on

Get-Help’s -Online parameter. To address this, PowerShell version 3 introduces up-
datable help.

1.13. Update System Help Content | 47

It’s not only possible to update help, but in fact the Update-Help command is the only
way to get help on your system. Out of the box, PowerShell provides an experience
derived solely from what is built into the commands themselves: name, syntax, param-
eters, and default values.

The first time you run Get-Help as an administrator on a system, PowerShell offers to
download updated help content:

PS > Get-Help Get-Process

Do you want to run Update-Help?

The Update-Help cmdlet downloads the newest Help files for Windows
PowerShell modules and installs them on your computer. For more details,
see the help topic at http://go.microsoft.com/fwlink/?LinkId=210614.

[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

Answer Y to this prompt, and PowerShell automatically downloads and installs the most
recent help content for all modules on your system.

W8
If you are building a system image and want to prevent this prompt from
. ever appearing, set the registry key HKLM: \Software\Microsoft\Pow

0% erShell\DisablePromptToUpdateHelp to 1.

qs
[0
N

In addition to the prompt-driven experience, you can call the Update-Help cmdlet
directly.

Both experiences look at each module on your system, comparing the help you have for
that module with the latest version online. For in-box modules, PowerShell uses down
load.microsoft.com to retrieve updated help content. Other modules that you down-
load from the Internet can use the HelpInfoUri module key to support their own up-
datable help.

By default, the Update-Help command retrieves its content from the Internet. If you
want to update help on a machine not connected to the Internet, you can use the
-SourcePath parameter of the Update-Help cmdlet. This path represents a directory or
UNC path where PowerShell should look for updated help content. To populate this
content, first use the Save-Help cmdlet to download the files, and then copy them to
the source location.

For more information about PowerShell help, see Recipe 1.12, “Get Help on a Com-
mand”.

See Also
Recipe 1.12, “Get Help on a Command”

48 | Chapter 1: The Windows PowerShell Interactive Shell

1.14. Program: Search Help for Text

Both the Get-Command and Get-Help cmdlets let you search for command names that
match a given pattern. However, when you don’t know exactly what portions of a com-
mand name you are looking for, you will more often have success searching through the
help content for an answer. On Unix systems, this command is called Apropos.

The Get-Help cmdlet automatically searches the help database for keyword references
when it can’t find a help topic for the argument you supply. In addition to that, you might
want to extend this even further to search for text patterns or even help topics that talk
about existing help topics. PowerShell’s help facilities support a version of wildcarded
content searches, but don’t support full regular expressions.

That doesn’t need to stop us, though, as we can write the functionality ourselves.

To run this program, supply a search string to the Search-Help script (given in
Example 1-9). The search string can be either simple text or a regular expression. The
script then displays the name and synopsis of all help topics that match. To see the help
content for that topic, use the Get-Help cmdlet.

Example 1-9. Search-Help.ps1

#it

Search-Help

#it

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

B R g i e

<#t

.SYNOPSIS

Search the PowerShell help documentation for a given keyword or regular
expression. For simple keyword searches in PowerShell version two or three,
simply use "Get-Help <keyword>"

.EXAMPLE

PS > Search-Help hashtable
Searches help for the term 'hashtable'

.EXAMPLE
PS > Search-Help "(datetime|ticks)"

Searches help for the term datetime or ticks, using the regular expression
syntax.

1.14. Program: Search Help for Text | 49

#>

param(
The pattern to search for
[Parameter(Mandatory = Strue)]
$Pattern

)

ShelpNames = $(Get-Help * | Where-Object { $_.Category -ne "Alias" })

Go through all of the help topics
foreach($helpTopic in $helpNames)

{
Get their text content, and
Scontent = Get-Help -Full $helpTopic.Name | Out-String
if($Scontent -match "(.{0,30}Spattern.{0,30})")
{
$helpTopic | Add-Member NoteProperty Match Smatches[0].Trim()
ShelpTopic | Select-Object Name,Match
}
}

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

1.15. Launch PowerShell at a Specific Location

Problem

You want to launch a PowerShell session in a specific location.

Solution

Both Windows and PowerShell offer several ways to launch PowerShell in a specific
location:

« Explorer’s address bar

 PowerShell’s command-line arguments

o Community extensions

50 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion

If you are browsing the filesystem with Windows Explorer, typing PowerShell into the
address bar launches PowerShell in that location (as shown in Figure 1-1).

(=[O sl

@f_)'| il powershell - | s | Search CookbookV2 yel [
Organize » Include in library « Share with + Burn Mew folder = o« i l@l

W Favorites =l Mame Type i

|49 Recently Change J Admin File folde S

J Public | chapters File folde—
Bl Desktop m J docbock-xsl File folde
& Downloads s figs File folde
=] Recent Places J CriginalDocs File folde

. PowerShellCookbook
- 4| Tl

File folde ™
2

o likrariar

g

Figure 1-1. Launching PowerShell from Windows Explorer

Additionally, Windows 8 offers an Open Windows PowerShell option directly from the
File menu, as shown in Figure 1-2).

For another way to launch PowerShell from Windows Explorer, several members of the
PowerShell community have written power toys and Windows Explorer extensions that
provide a “Launch PowerShell Here” option when you right-click on a folder from Win-
dows Explorer. An Internet search for “PowerShell Here” turns up several.

If you aren’t browsing the desired folder with Windows Explorer, you can use Start—Run
(or any other means of launching an application) to launch PowerShell at a specific
location. For that, use PowerShell’s -NoExit parameter, along with the implied - Command
parameter. In the - Command parameter, call the Set-Location cmdlet to initially move
to your desired location.

PowerShell -NoExit Set-Location 'C:\Program Files'

1.15. Launch PowerShell at a Specific Location | 51

WA= current = ‘:'
o

D Open new window * u Open Windows PowerShell pent b

Open command prompt L4 % Open Windows PowerShell as administrator :
P File folder

P File folder

u Open Windows PowerShell | .
P File folder

(Open a window you can use to PM File folder
Delete history type commands at a Windows .
J? PowerShell PM File folder

P XML Document
e Help 4 PM XML Document
P XML Document

b2 .
Close P XML Document

P XML Document

[appexml B3/ 20TZ&33 PM XML Document
|| Lee Holmes .
| appfaml 8/ 012 433 PM XML Document
- | appg.aml 8/13/2012 433 PM XML Document
1M Computer . .
| apphxml 8/13/2012 433 PM XML Document
L 4 >

e

Figure 1-2. Launching PowerShell in Windows 8

1.16. Invoke a PowerShell Command or Script from
Outside PowerShell

Problem

You want to invoke a PowerShell command or script from a batch file, a logon script, a
scheduled task, or any other non-PowerShell application.

Solution

To invoke a PowerShell command, use the -Command parameter:
PowerShell -Command Get-Process; Read-Host

To launch a PowerShell script, use the -File parameter:
PowerShell -File 'full path to script' arguments

For example:

PowerShell -File 'c:\shared scripts\Get-Report.psl' Hello World

52 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion

By default, any arguments to PowerShell.exe get interpreted as commands to run.
PowerShell runs the command as though you had typed it in the interactive shell, and
then exits. You can customize this behavior by supplying other parameters to Power-
Shell.exe, such as -NoExit, -NoProfile, and more.

W S
= If you are the author of a program that needs to run PowerShell scripts
t‘;‘.‘ . or commands, PowerShell lets you call these scripts and commands
¢ much more easily than calling its command-line interface. For more

information about this approach, see Recipe 17.10, “Add PowerShell
Scripting to Your Own Program”.

Since launching a script is so common, PowerShell provides the -File parameter to
eliminate the complexities that arise from having to invoke a script from the -Command
parameter. This technique lets you invoke a PowerShell script as the target of a logon
script, advanced file association, scheduled task, and more.

W N
¥ When PowerShell detects that its input or output streams have been
:‘s‘ . redirected, it suppresses any prompts that it might normally display. If
01 you want to host an interactive PowerShell prompt inside another ap-

plication (such as Emacs), use - as the argument for the -File param-
eter. In PowerShell (as with traditional Unix shells), this implies “taken
from standard input”

powershell -File -

If the script is for background automation or a scheduled task, these scripts can some-
times interfere with (or become influenced by) the user’s environment. For these situa-
tions, three parameters come in handy:

-NoProfile
Runs the command or script without loading user profile scripts. This makes the
script launch faster, but it primarily prevents user preferences (e.g., aliases and
preference variables) from interfering with the script’s working environment.

-WindowStyle
Runs the command or script with the specified window style—most commonly
Hidden. When run with a window style of Hidden, PowerShell hides its main window
immediately. For more ways to control the window style from within PowerShell,
see Recipe 24.3, “Launch a Process”.

1.16. Invoke a PowerShell Command or Script from Qutside PowerShell | 53

-ExecutionPolicy
Runs the command or script with a specified execution policy applied only to this
instance of PowerShell. This lets you write PowerShell scripts to manage a system
without having to change the system-wide execution policy. For more information
about scoped execution policies, see Recipe 18.1, “Enable Scripting Through an
Execution Policy”.

Ifthe arguments to the - Command parameter become complex, special character handling
in the application calling PowerShell (such as cmd.exe) might interfere with the
command you want to send to PowerShell. For this situation, PowerShell supports an
EncodedCommand parameter: a Base64-encoded representation of the Unicode string you
want to run. Example 1-10 demonstrates how to convert a string containing PowerShell
commands to a Base64-encoded form.

Example 1-10. Converting PowerShell commands into a Base64-encoded form

$commands = '1..10 | % { "PowerShell Rocks" }'
Sbytes = [System.Text.Encoding]::Unicode.GetBytes(Scommands)
$encodedString = [Convert]::ToBase64String(Sbytes)

Once you have the encoded string, you can use it as the value of the EncodedCommand
parameter, as shown in Example 1-11.

Example 1-11. Launching PowerShell with an encoded command from cmd.exe

Microsoft Windows [Version 6.0.6000]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Users\Lee>PowerShell -EncodedCommand MQAUAC4AMQAWACAAfAAgACUAIAB7ACAAIGBQAGSA
dwBT1TAHIAUwWBOAGUAbABSACAAUgGBVAGMAawBzACIAIAB9AA==
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 17.10, “Add PowerShell Scripting to Your Own Program”

54 | Chapter 1: The Windows PowerShell Interactive Shell

1.17. Understand and Customize PowerShell’s Tab
Completion

Problem

You want to customize how PowerShell reacts to presses of the Tab key (and additionally,
Ctrl-Space in the case of IntelliSense in the Integrated Scripting Environment).

Solution

Create a custom function called TabExpansion2. PowerShell invokes this function when
you press Tab, or when it invokes IntelliSense in the Integrated Scripting Environment.

Discussion

When you press Tab, PowerShell invokes a facility known as tab expansion: replacing
what you've typed so far with an expanded version of that (if any apply.) For example,
if you type Set-Location C:\ and then press Tab, PowerShell starts cycling through
directories under C:\ for you to navigate into.

The features offered by PowerShell’s built-in tab expansion are quite rich, as shown in
Table 1-2.

Table 1-2. Tab expansion features in Windows PowerShell

Description Example

Command completion. Completes command names when current ~ Get-Ch <Tab>
text appears to represent a command invocation.

Parameter completion. Completes command parameters forthe ~ Get-ChildItem -Pat <Tab>
current command.

Argument completion. Completes command arguments for the Set-ExecutionPolicy -
current command parameter. This applies to any command ExecutionPolicy <Tab>
argument that takes a fixed set of values (enumerations or

parameters that define a ValidateSet attribute). In addition,

PowerShell contains extended argument completion for module

names, help topics, CIM/ WMI classes, event log names, job IDs and

names, process IDsand names, providernames, drive names, service

names and display names, and trace source names.

History text completion. Replaces the currentinput with items from # Process <Tab>
the command history that match the text after the # character.

History ID completion. Replaces the currentinput with the command ~ # 12 <Tab>
line from item number IDin your command history.

1.17. Understand and Customize PowerShell’s Tab Completion | 55

Description

Filename completion. Replaces the current parametervalue with file
names that match what you've typed so far. When applied to the
Set-Location cmdlet, PowerShell furtherfilters results to only
directories.

Operator completion. Replaces the current text with a matching
operator. This includes flags supplied to the switch statement.

Variable completion. Replaces the current text with available
PowerShell variables. In the Integrated Scripting Environment,
PowerShellincorporates variables even from script content that has
never been invoked.

Member completion. Replaces member names for the currently
referencedvariableortype. When PowerShell caninferthe members
from previous commands in the pipeline, it even supports member
completion within script blocks.

Type completion. Replaces abbreviated type names with their
namespace-qualified name.

Example

Set-Location C:\Windows\S<Tab>

"Hello World" -rep <Tab>
switch - c<Tab>

$myGreeting = "Hello World";
SmyGr <Tab>

[Console]: :Ba<TAB>
Get-Process | Where-Object
{ $_.Ha <Tab>

[PSSer<TAB>
$1 = New-Object List[Stri <Tab>

If you want to extend PowerShell’s tab expansion capabilities, define a function called
TabExpansion2. You can add this to your PowerShell profile directly, or dot-source it
from your profile. Example 1-12 demonstrates an example custom tab expansion func-
tion that extends the functionality already built into PowerShell.

Example 1-12. A sample implementation of TabExpansion2

AR R R

#it
TabExpansion2
#it

From Windows PowerShell Cookbook (0'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
#it

function TabExpansion2

{
[CmdletBinding(DefaultParameterSetName = 'ScriptInputSet')]
Param(
[Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = S$true,
Position = 0)]
[string] $inputScript,
[Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = S$true,
Position = 1)]
[int] $cursorColumn,
[Parameter(ParameterSetName = 'AstInputSet', Mandatory = S$true,
Position = 0)]
[System.Management.Automation.Language.Ast] $ast,
56 | Chapter 1: The Windows PowerShell Interactive Shell

End

[Parameter(ParameterSetName = 'AstInputSet', Mandatory = S$true,
Position = 1)]
[System.Management.Automation.Language.Token[]] $tokens,

[Parameter(ParameterSetName = 'AstInputSet', Mandatory = S$true,
Position = 2)]
[System.Management.Automation.Language.IScriptPosition] $positionOfCursor,

[Parameter(ParameterSetName = 'ScriptInputSet', Position = 2)]
[Parameter(ParameterSetName = 'AstInputSet', Position = 3)]
[Hashtable] Soptions = $null

Create a new 'Options' hashtable if one has not been supplied.

In this hashtable, you can add keys for the following options, using

Strue or $false for their values:

#i#t

IgnoreHiddenShares - Ignore hidden UNC shares (such as \\COMPUTER\ADMINS)
RelativePaths - When expanding filenames and paths, $true forces PowerShell
to replace paths with relative paths. When $false, forces PowerShell to

replace them with absolute paths. By default, PowerShell makes this

decision based on what you had typed so far before invoking tab completion.
LiteralPaths - Prevents PowerShell from replacing special file characters
(such as square brackets and back-ticks) with theilr escaped equivalent.
if(-not Soptions) { Soptions = @{} }

Demonstrate some custom tab expansion completers for parameters.
This is a hashtable of parameter names (and optionally cmdlet names)
that we add to the Soptions hashtable.
#i
When PowerShell evaluates the script block, $args gets the
following: command name, parameter, word being completed,
AST of the command being completed, and currently bound arguments.
Soptions["CustomArgumentCompleters"] = @{
"Get-ChildItem:Filter" = { "*.ps1","*.txt","*.doc" }
"ComputerName" = { "ComputerNamel","ComputerName2","ComputerName3" }

}

Also define a completer for a native executable.
When PowerShell evaluates the script block, $args gets the
word being completed, and AST of the command being completed.
Soptions["NativeArgumentCompleters"] = @{

"attrib" = { "+R","+H","+S" }
}

Define a "quick completions" list that we'll cycle through
when the user types '!!' followed by TAB.
$quickCompletions = @(
'Get-Process -Name PowerShell | ? Id -ne $pid | Stop-Process',

1.17. Understand and Customize PowerShell’s Tab Completion | 57

'Set-Location $pshome',
('Serrors = Serror | % { $_.InvocationInfo.Line }; Get-History |
" 2 { $_.CommandLine -notin S$errors }')

+

)

First, check the built-in tab completion results
$result = Snull
if (SpsCmdlet.ParameterSetName -eq 'ScriptInputSet')

{
$result = [Management.Automation.CommandCompletion]::CompleteInput(
<#inputScript#> S$inputScript,
<#tcursorColumn#> $cursorColumn,
<#options#> Soptions)
}
else
{
$result = [Management.Automation.CommandCompletion]::CompleteInput(
<#ast#> Sast,
<#tokens#> Stokens,
<#tpositionOfCursor#> $positionOfCursor,
<#options#> Soptions)
}

If we didn't get a result
if(Sresult.CompletionMatches.Count -eq 0)
{
If this was done at the command-line or in a remote session,
create an AST out of the input
if ($psCmdlet.ParameterSetName -eq 'ScriptInputSet')
{
Sast = [System.Management.Automation.lLanguage.Parser]::ParseInput(
SinputScript, [ref]S$tokens, [ref]$null)

In this simple example, look at the text being supplied.
We could do advanced analysis of the AST here if we wanted,
but in this case just use its text. We use a regular expression
to check if the text started with two exclamations, and then
use a match group to retain the rest.
S$text = Sast.Extent.Text
if(Stext -match 'AlI(.*)")
{
Extract the rest of the text from the regular expression
match group.
ScurrentCompletionText = Smatches[1].Trim()

Go through each of our quick completions and add them to

our completion results. The arguments to the completion results
are the text to be used in tab completion, a potentially shorter
version to use for display (i.e., IntelliSense in the ISE),

the type of match, and a potentially more verbose description to
be used as a tool tip.

58 | Chapter 1: The Windows PowerShell Interactive Shell

SquickCompletions |
Where-Object { $_ -match $ScurrentCompletionText } |
Foreach-Object { Sresult.CompletionMatches.Add(

(New-Object Management.Automation.CompletionResult $_,$_,"Text",$_))

}
}
}
return $result
}
}
See Also

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

“Common Customization Points” (page 914)

1.18. Program: Learn Aliases for Common Commands

In interactive use, full cmdlet names (such as Get-ChildItem) are cumbersome and
slow to type. Although aliases are much more efficient, it takes a while to discover them.
To learn aliases more easily, you can modify your prompt to remind you of the shorter
version of any aliased commands that you use.

This involves two steps:

1. Add the program Get-AliasSuggestion.ps1, shown in Example 1-13, to your
tools directory or another directory.

Example 1-13. Get-AliasSuggestion.ps1

A
#it

Get-AliasSuggestion

#it

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

<#
.SYNOPSIS

Get an alias suggestion from the full text of the last command. Intended to
be added to your prompt function to help learn aliases for commands.

.EXAMPLE

PS > Get-AliasSuggestion Remove-ItemProperty

1.18. Program: Learn Aliases for Common Commands | 59

Suggestion: An alias for Remove-ItemProperty is rp
#>

param(
The full text of the last command
$LastCommand

)

Set-StrictMode -Version 3

ShelpMatches = @()

Find all of the commands in their last input

Stokens = [Management.Automation.PSParser]::Tokenize(
$lastCommand, [ref] $null)

Scommands = Stokens | Where-Object { $_.Type -eq "Command" }

Go through each command
foreach($command in $commands)

{
Get the alias suggestions
foreach($alias in Get-Alias -Definition $command.Content)
{
ShelpMatches += "Suggestion: An alias for " +
"$(Salias.Definition) is $(Salias.Name)"
}
}
ShelpMatches

2. Add the text from Example 1-14 to the Prompt function in your profile. If you do
not yet have a Prompt function, see Recipe 1.8, “Customize Your Shell, Profile, and
Prompt” to learn how to add one.

Example 1-14. A useful prompt to teach you aliases for common commands

function Prompt

{
Get the last item from the history
S$historyItem = Get-History -Count 1

If there were any history items
if(ShistoryItem)
{
Get the training suggestion for that item
$suggestions = @(Get-AliasSuggestion ShistoryItem.CommandLine)
If there were any suggestions
if(Ssuggestions)
{
For each suggestion, write it to the screen
foreach($aliasSuggestion in $suggestions)

60 | Chapter 1: The Windows PowerShell Interactive Shell

{
3

Write-Host ""

Write-Host "$aliasSuggestion"

}

Rest of prompt goes here
"PS [$env:COMPUTERNAME] >"

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 1.8, “Customize Your Shell, Profile, and Prompt”

1.19. Program: Learn Aliases for Common Parameters

Problem

You want to learn aliases defined for command parameters.

Solution

Use the Get-ParameterAlias script, as shown in Example 1-15, to return all aliases for
parameters used by the previous command in your session history.

Example 1-15. Get-ParameterAlias.ps1

BRI R R R
##t

Get-ParameterAlias

##t

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#H

<#
.SYNOPSIS

Looks in the session history, and returns any aliases that apply to
parameters of commands that were used.

1.19. Program: Learn Aliases for Common Parameters | 61

.EXAMPLE

PS > dir -ErrorAction SilentlyContinue

PS > Get-ParameterAlias

An alias for the 'ErrorAction' parameter of 'dir' is ea
#>

Set-StrictMode -Version 3

Get the last item from their session history
Shistory = Get-History -Count 1

if(-not $history)

{

}

return

And extract the actual command line they typed
$lastCommand = $history.CommandLine

Use the Tokenizer API to determine which portions represent

commands and parameters to those commands

Stokens = [System.Management.Automation.PsParser]::Tokenize(
$lastCommand, [ref] $null)

$currentCommand = $null

Now go through each resulting token
foreach($token in $tokens)

{

If we've found a new command, store that.
if($token.Type -eq "Command")
{

}

$currentCommand = $token.Content

If we've found a command parameter, start looking for aliases
if(($token.Type -eq "CommandParameter") -and ($currentCommand))
{
Remove the leading "-" from the parameter
$ScurrentParameter = $token.Content.TrimStart("-")

Determine all of the parameters for the current command.
(Get-Command S$currentCommand).Parameters.GetEnumerator() |

For parameters that start with the current parameter name,
Where-Object { $_.Key -like "$currentParameter*" } |

return all of the aliases that apply. We use "starts with"
because the user might have typed a shortened form of

the parameter name.

Foreach-0Object {

62 | Chapter 1: The Windows PowerShell Interactive Shell

$_.Value.Aliases | Foreach-Object {
"Suggestion: An alias for the 'ScurrentParameter'
"parameter of 'S$ScurrentCommand' is 'S_'"

+

}

Discussion

To make it easy to type command parameters, PowerShell lets you type only as much of
the command parameter as is required to disambiguate it from other parameters of that
command. In addition to shortening implicitly supported by the shell, cmdlet authors
can also define explicit aliases for their parameters—for example, CN as a short form for
ComputerName.

While helpful, these aliases are difficult to discover.

If you want to see the aliases for a specific command, you can access its Parameters
collection:

PS > (Get-Command New-TimeSpan).Parameters.Values | Select Name,Aliases

Name Aliases
Start {LastWriteTime}
End {}

Days {}
Hours {}
Minutes {3}
Seconds {}
Verbose {vb}
Debug {db}
ErrorAction {ea}
WarningAction {wa}
ErrorVariable {ev}
WarningVariable {wv}
OutVariable {ov}
OutBuffer {ob}

If you want to learn any aliases for parameters in your previous command, simply run
Get-ParameterAlias.psl. To make PowerShell do this automatically, add a call to Get -
ParameterAlias.ps1 in your prompt.

This script builds on two main features: PowerShell’s Tokenizer API, and the rich infor-
mation returned by the Get-Command cmdlet. PowerShell’s Tokenizer API examines its
input and returns PowerShell’s interpretation of the input: commands, parameters, pa-
rameter values, operators, and more. Like the rich output produced by most of
PowerShell’s commands, Get - Command returns information about a command’s param-
eters, parameter sets, output type (if specified), and more.

1.19. Program: Learn Aliases for Common Parameters | 63

For more information about the Tokenizer API, see Recipe 10.10, “Parse and Interpret
PowerShell Scripts”.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”
Recipe 10.10, “Parse and Interpret PowerShell Scripts”

“Structured Commands (Cmdlets)” (page vii)

1.20. Access and Manage Your Console History

Problem

After working in the shell for a while, you want to invoke commands from your history,
view your command history, and save your command history.

Solution

The shortcuts given in Recipe 1.8, “Customize Your Shell, Profile, and Prompt” let you
manage your history, but PowerShell offers several features to help you work with your
console in even more detail.

To get the most recent commands from your session, use the Get-History cmdlet (or
its alias of h):

Get-History

To rerun a specific command from your session history, provide its ID to the Invoke-
History cmdlet (or its alias of ihy):

Invoke-History ID

To increase (or limit) the number of commands stored in your session history, assign a
new value to the $MaximumHistoryCount variable:

SMaximumHistoryCount = Count

To save your command history to a file, pipe the output of Get-History to the Export-
CliXml cmdlet:

Get-History | Export-CliXml Filename

64 | Chapter 1: The Windows PowerShell Interactive Shell

To add a previously saved command history to your current session history, call the
Import-CliXml cmdlet and then pipe that output to the Add-History cmdlet:

Import-CliXml Filename | Add-History
To clear all commands from your session history, use the Clear-History cmdlet:

Clear-History

Discussion

Unlike the console history hotkeys discussed in Recipe 1.8, “Customize Your Shell, Pro-
file, and Prompt”, the Get-History cmdlet produces rich objects that represent infor-
mation about items in your history. Each object contains that item’s ID, command line,
start of execution time, and end of execution time.

Once you know the ID of a history item (as shown in the output of Get-History), you
can pass it to Invoke-History to execute that command again. The example prompt
function shown in Recipe 1.8, “Customize Your Shell, Profile, and Prompt” makes
working with prior history items easy, as the prompt for each command includes the
history ID that will represent it.

R
Puy)

You can easily see how long a series of commands took to invoke by looking at
. the StartExecutionTime and EndExecutionTime properties. This is a great way
0% to get a handle on exactly how little time it took to come up with the commands
that just saved you hours of manual work:

PS C:\> Get-History 65,66 | Format-Table *

Id CommandLine StartExecutionTime EndExecutionTime
65 dir 10/13/2012 2:06:05 PM 10/13/2012 2:06:05 PM
66 Start-Sleep -Seconds 45 10/13/2012 2:06:15 PM 10/13/2012 2:07:00 PM

IDs provided by the Get-History cmdlet differ from the IDs given by the Windows
console common history hotkeys (such as F7), because their history management tech-
niques differ.

By default, PowerShell stores the last 4,096 entries of your command history. If you want
to raise or lower this amount, set the $MaximumHistoryCount variable to the size you
desire. To make this change permanent, set the variable in your PowerShell profile script.

By far, the most useful feature of PowerShell’s command history is for reviewing ad hoc
experimentation and capturing it in a script that you can then use over and over. For an
overview of that process (and a script that helps to automate it), see Recipe 1.21, “Pro-
gram: Create Scripts from Your Session History”.

1.20. Access and Manage Your Console History | 65

See Also
Recipe 1.8, “Customize Your Shell, Profile, and Prompt”
Recipe 1.21, “Program: Create Scripts from Your Session History”

Recipe 1.22, “Invoke a Command from Your Session History”

1.21. Program: Create Scripts from Your Session History

After interactively experimenting at the command line for a while to solve a multistep
task, you'll often want to keep or share the exact steps you used to eventually solve the
problem. The script smiles at you from your history buffer, but it is unfortunately sur-
rounded by many more commands that you don’t want to keep.

For an example of using the Out-GridView cmdlet to do this graphically,
. see Recipe 2.4, “Program: Interactively Filter Lists of Objects”.

To solve this problem, use the Get-History cmdlet to view the recent commands that
you've typed. Then, call Copy -History with the IDs of the commands you want to keep,
as shown in Example 1-16.

Example 1-16. Copy-History.ps1

A
#it

Copy-History

#i#t

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it
B

<#

.SYNOPSIS

Copiles selected commands from the history buffer into the clipboard as a script.
.EXAMPLE

PS > Copy-History
Copies the entire contents of the history buffer into the clipboard.

.EXAMPLE

PS > Copy-History -5

66 | Chapter 1: The Windows PowerShell Interactive Shell

Copies the last five commands into the clipboard.
.EXAMPLE

PS > Copy-History 2,5,8,4
Copies commands 2,5,8, and 4.

.EXAMPLE

PS > Copy-History (1..10+5+6)
Copies commands 1 through 10, then 5, then 6, using PowerShell's array
slicing syntax.

#>

param(
The range of history IDs to copy
[int[]] $Range

)

Set-StrictMode -Version 3
Shistory = @()

If they haven't specified a range, assume it's everything
if((-not $range) -or (Srange.Count -eq 0))
{

}

If 1t's a negative number, copy only that many
elseif(($range.Count -eq 1) -and (Srange[0] -1t 0))
{

Shistory = @(Get-History -Count ([Int16]::MaxValue))

Scount = [Math]::Abs($range[0])
Shistory = (Get-History -Count Scount)
}

Otherwise, go through each history ID in the given range
and add it to our history list.

else
{
foreach($commandId in $range)
{
if($commandId -eq -1) { Shistory += Get-History -Count 1 }
else { Shistory += Get-History -Id $commandId }
}

}

Finally, export the history to the clipboard.
Shistory | Foreach-Object { $_.CommandLine } | clip.exe

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

1.21. Program: Create Scripts from Your Session History | 67

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.4, “Program: Interactively Filter Lists of Objects”

1.22. Invoke a Command from Your Session History

Problem

You want to run a command from the history of your current session.

Solution

Use the Invoke-History cmdlet (or its ihy alias) to invoke a specific command by its ID:
Invoke-History ID

To search through your history for a command containing text:
PS > #text<Tab>

To repopulate your command with the text of a previous command by its ID:

PS > #ID<Tab>

Discussion

Once you've had your shell open for a while, your history buffer quickly fills with useful
commands. The history management hotkeys described in Recipe 1.8, “Customize Your
Shell, Profile, and Prompt” show one way to navigate your history, but this type of history
navigation works only for command lines you've typed in that specific session. If you
keep a persistent command history (as shown in Recipe 1.31, “Save State Between Ses-
sions”), these shortcuts do not apply.

The Invoke-History cmdlet illustrates the simplest example of working with your
command history. Given a specific history ID (perhaps shown in your prompt function),
calling Invoke-History with that ID will run that command again. For more informa-
tion about this technique, see Recipe 1.8, “Customize Your Shell, Profile, and Prompt”.

As part of its tab-completion support, PowerShell gives you easy access to previous
commands as well. If you prefix your command with the # character, tab completion
takes one of two approaches:

ID completion
If you type a number, tab completion finds the entry in your command history with
that ID, and then replaces your command line with the text of that history entry.
This is especially useful when you want to slightly modify a previous history entry,
since Invoke-History by itself doesn’t support that.

68 | Chapter 1: The Windows PowerShell Interactive Shell

Pattern completion
If you type anything else, tab completion searches for entries in your command
history that contain that text. Under the hood, PowerShell uses the - 1ike operator
to match your command entries, so you can use all of the wildcard characters sup-
ported by that operator. For more information on searching text for patterns, see
Recipe 5.7, “Search a String for Text or a Pattern”.

PowerShell’s tab completion is largely driven by the fully customizable TabExpansion2
function. You can easily change this function to include more advanced functionality,
or even just customize specific behaviors to suit your personal preferences. For more
information, see Recipe 1.17, “Understand and Customize PowerShell’s Tab Comple-
tion”.

See Also
Recipe 1.8, “Customize Your Shell, Profile, and Prompt”
Recipe 5.7, “Search a String for Text or a Pattern”

Recipe 1.17, “Understand and Customize PowerShell’s Tab Completion”

Recipe 1.31, “Save State Between Sessions”

1.23. Program: Search Formatted Qutput for a Pattern

While PowerShell’s built-in filtering facilities are incredibly flexible (for example, the
Where-Object cmdlet), they generally operate against specific properties of the incom-
ing object. If you are searching for text in the object’s formatted output, or don’t know
which property contains the text you are looking for, simple text-based filtering is
sometimes helpful.

To solve this problem, you can pipe the output into the Out-String cmdlet before pass-
ing it to the Select-String cmdlet:

Get-Service | Out-String -Stream | Select-String audio
Or, using built-in aliases:
Get-Service | oss | sls audio

In script form, Select-TextOutput (shown in Example 1-17) does exactly this, and it
lets you search for a pattern in the visual representation of command output.

Example 1-17. Select-TextOutput.ps1

##

Select-TextOutput

##

From Windows PowerShell Cookbook (0'Reilly)

1.23. Program: Search Formatted Output fora Pattern | 69

by Lee Holmes (http://www.leeholmes.com/guide)

#it

HHARHH R R R R
<#

.SYNOPSIS

Searches the textual output of a command for a pattern.

.EXAMPLE

PS > Get-Service | Select-TextOutput audio
Finds all references to "Audio" in the output of Get-Service

#>
param(
The pattern to search for

SPattern
)

Set-StrictMode -Version 3
S$input | Out-String -Stream | Select-String $pattern

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

1.24. Interactively View and Process Command OQutput

Problem

You want to graphically explore and analyze the output of a command.

Solution

Use the Out-GridView cmdlet to interactively explore the output of a command.

70 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion

The Out-Gridview cmdlet is one of the rare PowerShell cmdlets that displays a graphical
user interface. While the Where-0Object and Sort-0bject cmdlets are the most common
way to sort and filter lists of items, the Out-GridView cmdlet is very effective at the style
of repeated refinement that sometimes helps you develop complex queries. Figure 1-3
shows the Out-Gridview cmdlet in action.

|4 Fems in System32 EI@

MName:a LastWriteTime:":45" x @

and LastWriteTime is less than or equal to M/dyyy
4 Add criteria ¥ | | % Clear All |
Maode tn'gth | MName |

[WisstwriteTime | YEYITS—
Length 168 infocardcpl.cpl
[C] Mame 232 litdapidil

Add 1 648 wwapidll
= 207 JUY ILSTH0 P 624 LangCleanupSysprepAction.dll
- 3/26/2009 74346 PM 19694 GRAPHICS.COM
- 3/26/2009 11:37:46 PM 13824 localuidll
- 3/26/2009 11:38:46 PM 13312 wwaninstdll
3/26/2009 11:36:46 PM 10240 acproxy.dll
- 3/26/2009 11:37:46 PM 9216 LAPRXY.DLL
- 3/21/2009 1:3446 PM 9056 icardres.dll
- 3/26/2009 11:36:46 PM 7680 acledit.dil
-~ 3/26/2009 7:43:46 PM 882 fastopen.exe

B e e e ow & oo
i

Figure 1-3. Out-GridView, ready to filter

Out-GridView lets you primarily filter your command output in two ways: a quick fil-
ter expression and a criteria filter.

Quick filters are fairly simple. As you type text in the topmost “Filter” window, Out-
Gridview filters the list to contain only items that match that text. If you want to restrict
this text filtering to specific columns, simply provide a column name before your search
string and separate the two with a colon. You can provide multiple search strings, in
which case Out-GridView returns only rows that match all of the required strings.

)
=¥ Unlike most filtering cmdlets in PowerShell, the quick filters in the Out -
c‘;: . Gridview cmdlet do not support wildcards or regular expressions. For
ek this type of advanced query, criteria-based filtering can help.

1.24. Interactively View and Process Command Output | 71

Criteria filters give fine-grained control over the filtering used by the Out-Gridview
cmdlet. To apply a criteria filter, click the “Add criteria” button and select a property to
filter on. Out-Gridview adds a row below the quick filter field and lets you pick one of
several operations to apply to this property:

o Less than or equal to

o Greater than or equal to
o Between

» Equals

» Does not equal

» Contains

¢ Does not contain

In addition to these filtering options, Out-GridView also lets you click and rearrange
the header columns to sort by them.

Processing output

Once you've sliced and diced your command output, you can select any rows you want
to keep and press Ctrl-C to copy them to the clipboard. Out-GridVview copies the items
to the clipboard as tab-separated data, so you can easily paste the information into a
spreadsheet or other file for further processing.

In addition to supporting clipboard output, the Out-Gridview cmdlet supports full-
fidelity object filtering if you use its -PassThru parameter. For an example of this full-
fidelity filtering, see Recipe 2.4, “Program: Interactively Filter Lists of Objects”.

See Also

Recipe 2.4, “Program: Interactively Filter Lists of Objects”

1.25. Program: Interactively View and Explore Objects

When working with unfamiliar objects in PowerShell, much of your time is spent with
the Get-Member and Format-List commands—navigating through properties, review-
ing members, and more.

For ad hoc investigation, a graphical interface is often useful.

To solve this problem, Example 1-18 provides an interactive tree view that you can use
to explore and navigate objects. For example, to examine the structure of a script as
PowerShell sees it (its abstract syntax tree):

72 | Chapter 1: The Windows PowerShell Interactive Shell

$ps = { Get-Process -ID $pid }.Ast
Show-0Object $ps

For more information about parsing and analyzing the structure of PowerShell scripts,

see Recipe 10.10, “Parse and Interpret PowerShell Scripts”.

Example 1-18. Show-Object.ps1

#it

Show-Object

#it

From Windows PowerShell Cookbook (0'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
#it

HHHH R R R

<#

.SYNOPSIS

Provides a graphical interface to let you explore and navigate an object.

.EXAMPLE

PS > $ps = { Get-Process -ID $pid }.Ast
PS > Show-Object $ps

#>

param(
The object to examine
[Parameter(ValueFromPipeline = $true)]

$InputObject
)

Set-StrictMode -Version 3
Add-Type -Assembly System.Windows.Forms

Figure out the variable name to use when displaying the
object navigation syntax. To do this, we look through all

of the variables for the one with the same object identifier.

$rootVariableName = dir variable:* -Exclude InputObject,Args |
Where-Object {
$_.Value -and
($_.vValue.GetType() -eq S$InputObject.GetType()) -and
($_.Value.GetHashCode() -eq $InputObject.GetHashCode())
}

##t If we got multiple, pick the first
SrootVariableName = $rootVariableName| % Name | Select -First 1

1.25. Program: Interactively View and Explore Objects

3

If we didn't find one, use a default name
if(-not $rootVariableName)
{
$rootVariableName = "InputObject"
}

A function to add an object to the display tree

function PopulateNode($node, $object)

{
If we've been asked to add a NULL object, just return
if(-not Sobject) { return }

If the object is a collection, then we need to add multiple
children to the node
if([System.Management.Automation.LanguagePrimitives]::GetEnumerator($Sobject))
{
Some very rare collections don't support indexing (i.e.: $foo[0]).
In this situation, PowerShell returns the parent object back when you
try to access the [0] property.
$1sOnlyEnumerable = $object.GetHashCode() -eq $object[0].GetHashCode()

Go through all the items

$count = 0
foreach($childObjectValue in $object)
{

Create the new node to add, with the node text of the item and

value, along with its type

$newChildNode = New-Object Windows.Forms.TreeNode

$newChildNode.Text = "$($node.Name)[$count] = $childObjectValue : " +
SchildObjectValue.GetType()

Use the node name to keep track of the actual property name
and syntax to access that property.

If we can't use the index operator to access children, add
a special tag that we'll handle specially when displaying
the node names.

1f($isOnlyEnumerable)

{

3

$newChildNode.Name = "@"

$newChildNode.Name += "[$count]"
$null = $node.Nodes.Add(SnewChildNode)

If this node has children or properties, add a placeholder
node underneath so that the node shows a '+' sign to be
expanded.

AddPlaceholderIfRequired $newChildNode $childObjectValue

Scount++

74 | Chapter 1: The Windows PowerShell Interactive Shell

else

If the item was not a collection, then go through its
properties
foreach($child in $object.PSObject.Properties)

{
Figure out the value of the property, along with
1ts type.
$childObject = $child.Value
$childObjectType = Snull
1f($childobject)
{
$SchildObjectType = $childObject.GetType()
}
Create the new node to add, with the node text of the item and
value, along with its type
$childNode = New-Object Windows.Forms.TreeNode
$childNode.Text = $child.Name + " = $childObject : $childObjectType"
$childNode.Name = $child.Name
$null = $node.Nodes.Add($SchildNode)
If this node has children or properties, add a placeholder
node underneath so that the node shows a '+' sign to be
expanded.
AddPlaceholderIfRequired $childNode $childObject
}

}

A function to add a placeholder if required to a node.

If there are any properties or children for this object, make a temporary
node with the text "..." so that the node shows a '+' sign to be

expanded.

function AddPlaceholderIfRequired($node, Sobject)

{
if(-not Sobject) { return }
if([System.Management.Automation.LanguagePrimitives]::GetEnumerator(Sobject) -or
@(Sobject.PSObject.Properties))
{
$null = Snode.Nodes.Add((New-Object Windows.Forms.TreeNode "..."))
}
}

A function invoked when a node is selected.
function OnAfterSelect

{

param($Sender, $TreeViewEventArgs)

Determine the selected node

1.25. Program: Interactively View and Explore Objects | 75

$nodeSelected = $Sender.SelectedNode

Walk through its parents, creating the virtual
PowerShell syntax to access this property.
$nodePath = GetPathForNode $nodeSelected

Now, invoke that PowerShell syntax to retrieve
the value of the property.

$resultObject = Invoke-Expression $nodePath
SoutputPane.Text = $nodePath

If we got some output, put the object's member

information in the text box.

if(SresultObject)

{
$members = Get-Member -InputObject $resultObject | Out-String
SoutputPane.Text += "'n" + $members

}

A function invoked when the user is about to expand a node
function OnBeforeExpand

{

param($Sender, $TreeViewCancelEventArgs)

Determine the selected node
$selectedNode = $TreeViewCancelEventArgs.Node

If 1t has a child node that is the placeholder, clear

the placeholder node.

if(SselectedNode.FirstNode -and
($selectedNode.FirstNode.Text -eq "..."))

{

}
else

{
}

$selectedNode.Nodes.Clear()

return

Walk through its parents, creating the virtual
PowerShell syntax to access this property.
$nodePath = GetPathForNode $selectedNode

Now, invoke that PowerShell syntax to retrieve
the value of the property.
Invoke-Expression "'$resultObject = $nodePath"

And populate the node with the result object.
PopulateNode $selectedNode S$SresultObject

76 | Chapter 1: The Windows PowerShell Interactive Shell

A function to handle keypresses on the form.

In this case, we capture ~C to copy the path of
the object property that we're currently viewing.
function OnKeyPress

{
param($Sender, $KeyPressEventArgs)
[Char] 3 = Control-C
i1f(SKeyPressEventArgs.KeyChar -eq 3)
{
$KeyPressEventArgs.Handled = $true
Get the object path, and set it on the clipboard
$node = $Sender.SelectedNode
$nodePath = GetPathForNode $node
[System.Windows.Forms.Clipboard]::SetText($nodePath)
$form.Close()
}
}

A function to walk through the parents of a node,
creating virtual PowerShell syntax to access this property.
function GetPathForNode

{
param($Node)

$nodeElements = @()

Go through all the parents, adding them so that
SnodeElements is in order.
while($Node)
{
SnodeElements = ,$Node + $nodeElements
$Node = SNode.Parent

}

Now go through the node elements
$nodePath = ""

foreach($Node in $nodeElements)

{

$nodeName = SNode.Name

If 1t was a node that PowerShell is able to enumerate
(but not index), wrap it in the array cast operator.
if($nodeName.StartsWith('@'))

{
$nodeName = $nodeName.Substring(1)
$nodePath = "@(" + $nodePath + ")"
}
elseif($nodeName.StartsWith('['))
{

1.25. Program: Interactively View and Explore Objects

77

}

If it's a child index, we don't need to
add the dot for property access

}

elseif($nodePath)

{
Otherwise, we're accessing a property. Add a dot.
$nodePath += "."

}

Append the node name to the path
$nodePath += $nodeName

And return the result
$nodePath

Create the TreeView, which will hold our object navigation

area.

S$treeView = New-Object Windows.Forms.TreeView
StreeView.Dock = "Top"
StreeView.Height = 500

StreeView.PathSeparator =

StreeView.Add_AfterSelect({ OnAfterSelect @args })
StreeView.Add_BeforeExpand({ OnBeforeExpand @args })
StreeView.Add_KeyPress({ OnKeyPress @args })

Create the output pane, which will hold our object
member information.

SoutputPane = New-Object System.Windows.Forms.TextBox
SoutputPane.Multiline = $true

SoutputPane.ScrollBars = "Vertical"

SoutputPane.Font = "Consolas"

SoutputPane.Dock = "Top"

SoutputPane.Height = 300

Create the root node, which represents the object
we are trying to show.

$root =

New-Object Windows.Forms.TreeNode

$root.Text = "SInputObject : " + $InputObject.GetType()
Sroot.Name = '$' + SrootVariableName
Sroot.Expand()

snull =

StreeView.Nodes.Add($root)

And populate the initial information into the tree

view.

PopulateNode $root S$InputObject

Finally, create the main form and show it.

S$form =

$form.Text = "Browsing

New-Object Windows.Forms.Form
" + S$root.Text

S$form.Width = 1000

78 | Chapter 1: The Windows PowerShell Interactive Shell

$form.Height = 800
$form.Controls.Add(SoutputPane)
$form.Controls.Add(StreeView)
$null = $form.ShowDialog()
$form.Dispose()

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

1.26. Store the Output of a Command into a File

Problem

You want to redirect the output of a command or pipeline into a file.

Solution

To redirect the output of a command into a file, use either the Out-File cmdlet or one
of the redirection operators.

Out-File:

Get-ChildItem | Out-File unicodeFile.txt
Get-Content filename.cs | Out-File -Encoding ASCII file. txt
Get-ChildItem | Out-File -Width 120 unicodeFile.cs

Redirection operators:

Get-ChildItem > files.txt
Get-ChildItem 2> errors.txt
Get-ChildItem n> otherStreams.txt

Discussion

The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. The redirection operators are unique because they give the
greatest amount of control over redirecting individual streams. The Out-File cmdlet is
unique primarily because it lets you easily configure the formatting width and encoding.

1.26. Store the Output of a Command intoaFile | 79

If you want to save the objects from a command into a file (rather than
. the text-based representation that you see on screen), see Recipe 10.5,
%' “Easily Import and Export Your Structured Data”.

aqs
[N
N

The default formatting width and the default output encoding are two aspects of output
redirection that can sometimes cause difficulty.

The default formatting width sometimes causes problems because redirecting
PowerShell-formatted output into a file is designed to mimic what you see on the screen.
If your screen is 80 characters wide, the file will be 80 characters wide as well. Examples
of PowerShell-formatted output include directory listings (that are implicitly formatted
as a table) as well as any commands that you explicitly format using one of the
Format-*set of cmdlets. If this causes problems, you can customize the width of the file
with the -Width parameter on the Out-File cmdlet.

The default output encoding sometimes causes unexpected results because PowerShell
creates all files using the UTF-16 Unicode encoding by default. This allows PowerShell
to fully support the entire range of international characters, cmdlets, and output. Al-
though this is a great improvement on traditional shells, it may cause an unwanted
surprise when running large search-and-replace operations on ASCII source code files,
for example. To force PowerShell to send its output to a file in the ASCII encoding, use
the -Encoding parameter on the Out-File cmdlet.

For more information about the Out-File cmdlet, type Get-Help Out-File. For a full
list of supported redirection operators, see “Capturing Output” (page 913).

See Also
Recipe 10.5, “Easily Import and Export Your Structured Data”

“Capturing Output” (page 913)

1.27. Add Information to the End of a File

Problem

You want to redirect the output of a pipeline into a file but add the information to the
end of that file.

Solution

To redirect the output of a command into a file, use either the -Append parameter of the
Out-File cmdlet or one of the appending redirection operators described in “Capturing
Output” (page 913). Both support options to append text to the end of a file.

80 | Chapter 1: The Windows PowerShell Interactive Shell

Out-File:
Get-ChildItem | Out-File -Append files. txt
Redirection operators:

Get-ChildItem >> files. txt

Discussion

The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. See the discussion in Recipe 1.26, “Store the Output of a Com-
mand into a File” for a more detailed comparison of the two approaches, including
reasons that you would pick one over the other.

See Also
Recipe 1.26, “Store the Output of a Command into a File”

“Capturing Output” (page 913)

1.28. Record a Transcript of Your Shell Session

Problem

You want to record a log or transcript of your shell session.

Solution

To record a transcript of your shell session, run the command Start-Transcript. Ithas
an optional -Path parameter that defaults to a filename based on the current system
time. By default, PowerShell places this file in the My Documents directory. To stop
recording the transcript of your shell system, run the command Stop-Transcript.

Discussion

Although the Get-History cmdlet is helpful, it does not record the output produced
during your PowerShell session. To accomplish that, use the Start-Transcript cmdlet.
In addition to the Path parameter described previously, the Start-Transcript cmdlet
also supports parameters that let you control how PowerShell interacts with the output
file.

1.28. Record a Transcript of Your Shell Session | 81

1.29. Extend Your Shell with Additional Commands

Problem

You want to use PowerShell cmdlets, providers, or script-based extensions written by a
third party.

Solution

If the module is part of the standard PowerShell module path, simply run the command
you want.

Invoke-NewCommand

Ifitis not, use the Import-Module command to import third-party commands into your
PowerShell session.

To import a module from a specific directory:
Import-Module c:|path|to|\module
To import a module from a specific file (module, script, or assembly):

Import-Module c:|path|to|module|file.ext

Discussion

PowerShell supports two sets of commands that enable additional cmdlets and provid-
ers: *-Module and *-PsSnapin. Snapins were the packages for extensions in version 1
of PowerShell, and are rarely used. Snapins supported only compiled extensions and
had onerous installation requirements.

Version 2 of PowerShell introduced modules that support everything that snapins sup-
port (and more) without the associated installation pain. That said, PowerShell version 2
also required that you remember which modules contained which commands and
manually load those modules before using them. Windows 8 and Windows Server 2012
include thousands of commands in over 50 modules—quickly making reliance on one’s
memory an unsustainable approach.

PowerShell version 3 significantly improves the situation by autoloading modules for
you. Internally, it maintains a mapping of command names to the module that contains
them. Simply start using a command (which the Get-Command cmdlet can help you
discover), and PowerShell loads the appropriate module automatically. If you wish to
customize this autoloading behavior, you can use the $PSModuleAutoLoadingPrefer
ence preference variable.

82 | Chapter 1: The Windows PowerShell Interactive Shell

When PowerShell imports a module with a given name, it searches through every di-
rectory listed in the PSModulePath environment variable, looking for the first module
that contains the subdirectories that match the name you specity. Inside those directo-
ries, it looks for the module (*.psd1, *.psmi, and *.d11) with the same name and
loads it.

W N
) When autoloading modules, PowerShell prefers modules in the system’s
.‘& . module directory over those in your personal module path. This pre-
"4k vents user modules from accidentally overriding core functionality. If
you want a module to override core functionality, you can still use the

Import-Module cmdlet to load the module explicitly.

When you install a module on your own system, the most common place to put it is in
the WindowsPowerShell\Modules directory in your My Documents directory. To have
PowerShell look in another directory for modules, add it to your personal PSModule
Path environment variable, just as you would add a Tools directory to your personal
path.

For more information about managing system paths, see Recipe 16.2, “Modify the User
or System Path”.

If you want to load a module from a directory not in PSModulePath, you can provide
the entire directory name and module name to the Import-Module command. For ex-
ample, for a module named Test, use Import-Module c:|path|to|Test. As with load-
ing modules by name, PowerShell looks in c: | temp|path|to for a module (*.psdl,
* psml, or *.dll) named Test and loads it.

If you know the specific module file you want to load, you can also specify the full path
to that module.

If you want to find additional commands, there are several useful resources available.

PowerShell Community Extensions
Located here, the PowerShell Community Extensions project contains a curated
collection of useful and powerful commands. It has been written by a handful of
volunteers, many of them Microsoft MVPs.

The Technet Script Center Gallery
Located here, the TechNet Script Center Gallery offers a well-indexed and well-
organized collection of PowerShell scripts.

PoshCode
Located here, PoshCode contains thousands of scripts and script snippets—of both
high and low quality.

1.29. Extend Your Shell with Additional Commands | 83

http://pscx.codeplex.com
http://gallery.technet.microsoft.com/ScriptCenter/
http://poshcode.org

See Also
Recipe 1.8, “Customize Your Shell, Profile, and Prompt”
Recipe 11.6, “Package Common Commands in a Module”

Recipe 16.2, “Modify the User or System Path”

1.30. Use Commands from Customized Shells

Problem

You want to use the commands from a PowerShell-based product that launches a cus-
tomized version of the PowerShell console, but in a regular PowerShell session.

Solution

Launch the customized version of the PowerShell console, and then use the Get-Module
and Get-PsSnapin commands to see what additional modules and/or snapins itloaded.

Discussion

As described in Recipe 1.29, “Extend Your Shell with Additional Commands”, Power-
Shell modules and snapins are the two ways that third parties can distribute and add
additional PowerShell commands. Products that provide customized versions of the
PowerShell console do this by calling PowerShell.exe with one of three parameters:

» -PSConsoleFile, to load a console file that provides a list of snapins to load.

o -Command, to specify an initial startup command (that then loads a snapin or
module)

o -File, to specify an initial startup script (that then loads a snapin or module)

Regardless of which one it used, you can examine the resulting set of loaded extensions
to see which ones you can import into your other PowerShell sessions.

Detecting loaded snapins

The Get-PsSnapin command returns all snapins loaded in the current session. It always
returns the set of core PowerShell snapins, but it will also return any additional snapins
loaded by the customized environment. For example, if the name of a snapin you rec-
ognizeis Product. Feature. Commands, you canload that into future PowerShell sessions
by typing Add-PsSnapin Product.Feature.Commands. To automate this, add the com-
mand into your PowerShell profile.

84 | Chapter 1: The Windows PowerShell Interactive Shell

If youare uncertain of which snapin toload, you can also use the Get - Command command
to discover which snapin defines a specific command:

PS > Get-Command Get-Counter | Select PsSnapin

PSSnapIn

Microsoft.PowerShell.Diagnostics

Detecting loaded modules

Like the Get-PsSnapin command, the Get-Module command returns all modules load-
ed in the current session. It returns any modules you've added so far into that session,
but it will also return any additional modules loaded by the customized environment.
For example, if the name of a module you recognize is ProductModule, you can load
that into future PowerShell sessions by typing Import-Module ProductModule. To au-
tomate this, add the command into your PowerShell profile.

If you are uncertain of which module to load, you can also use the Get-Command com-
mand to discover which module defines a specific command:

PS > Get-Command Start-BitsTransfer | Select Module

BitsTransfer

See Also
Recipe 1.29, “Extend Your Shell with Additional Commands”

1.31. Save State Between Sessions

Problem

You want to save state or history between PowerShell sessions.

Solution

Subscribe to the PowerShell.Exiting engine event to have PowerShell invoke a script
or script block that saves any state you need.

To have PowerShell save your command history, place a call to Enable-History
Persistence in your profile, as in Example 1-19.
Example 1-19. Enable-HistoryPersistence.ps1

AR R
##

1.31. Save State Between Sessions | 85

Enable-HistoryPersistence

#it

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

THHERHHHE AR RS

<#
.SYNOPSIS

Reloads any previously saved command history, and registers for the
PowerShell.Exiting engine event to save new history when the shell
exits.

#>
Set-StrictMode -Version 3

Load our previous history
S$GLOBAL :maximumHistoryCount = 32767
ShistoryFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
if(Test-Path ShistoryFile)
{
Import-CliXml $historyFile | Add-History
}

Register for the engine shutdown event
$null = Register-EngineEvent -Sourceldentifier °
([System.Management.Automation.PsEngineEvent]: :Exiting) -Action {

Save our history
ShistoryFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
SmaximumHistoryCount = 1kb

Get the previous history items
SoldEntries = @()

if(Test-Path ShistoryFile)

{

}

SoldEntries = Import-CliXml ShistoryFile -ErrorAction SilentlyContinue

And merge them with our changes

ScurrentEntries = Get-History -Count $maximumHistoryCount

$additions = Compare-Object $oldEntries $currentEntries °
-Property CommandLine | Where-Object { $_.SideIndicator -eq "=>" } |
Foreach-Object { $_.CommandLine }

S$newEntries = ScurrentEntries | ? { $additions -contains $_.CommandLine }

Keep only unique command lines. First sort by CommandLine in
descending order (so that we keep the newest entries,) and then

86 | Chapter 1: The Windows PowerShell Interactive Shell

re-sort by StartExecutionTime.
Shistory = @($oldEntries + $newEntries) |
Sort -Unique -Descending CommandLine | Sort StartExecutionTime

Finally, keep the last 100

Remove-Item ShistoryFile

Shistory | Select -Last 100 | Export-CliXml $historyFile
}

Discussion

PowerShell provides easy script-based access to a broad variety of system, engine, and
other events. You can register for notification of these events and even automatically
process any of those events. In this example, we subscribe to the only one currently
available, which is called PowerShell.Exiting. PowerShell generates this event when
you close a session.

This script could do anything, but in this example we have it save our command history
and restore it when we launch PowerShell. Why would we want to do this? Well, with a
rich history buffer, we can more easily find and reuse commands we’ve previously run.
For two examples of doing this, see Examples 1.20 and 1.22.

Example 1-19 takes two main actions. First, we load our stored command history (if any
exists). Then, we register an automatic action to be processed whenever the engine
generates its PowerShell. Exiting event. The action itself is relatively straightforward,
although exporting our new history does take a little finesse. If you have several sessions
open at the same time, each will update the saved history file when it exits. Since we
don’t want to overwrite the history saved by the other shells, we first reload the history
from disk and combine it with the history from the current shell.

Once we have the combined list of command lines, we sort them and pick out the unique
ones before storing them back in the file.

For more information about working with PowerShell engine events, see Recipe 32.2,
“Create and Respond to Custom Events”.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”
Recipe 1.20, “Access and Manage Your Console History”

Recipe 32.2, “Create and Respond to Custom Events”

1.31. Save State Between Sessions | 87

CHAPTER 2
Pipelines

2.0. Introduction

One of the fundamental concepts in a shell is called the pipeline. It also forms the basis
of one of PowerShell’s most significant advances. A pipeline is a big name for a simple
concept—a series of commands where the output of one becomes the input of the next.
A pipeline in a shell is much like an assembly line in a factory: it successively refines
something as it passes between the stages, as shown in Example 2-1.

Example 2-1. A PowerShell pipeline

Get-Process | Where-Object WorkingSet -gt 500kb | Sort-Object -Descending Name

In PowerShell, you separate each stage in the pipeline with the pipe (|) character.

In Example 2-1, the Get-Process cmdlet generates objects that represent actual pro-
cesses on the system. These process objects contain information about the process’s
name, memory usage, process ID, and more. As the Get-Process cmdlet generates
output, it passes it along. Simultaneously, the Where-0bject cmdlet gets to work directly
with those processes, testing easily for those that use more than 500 KB of memory. It
passes those along immediately as it processes them, allowing the Sort-0bject cmdlet
to also work directly with those processes and sort them by name in descending order.

This brief example illustrates a significant advancement in the power of pipelines:
PowerShell passes full-fidelity objects along the pipeline, not their text representations.

In contrast, all other shells pass data as plain text between the stages. Extracting mean-
ingful information from plain-text output turns the authoring of pipelines into a black
art. Expressing the previous example in a traditional Unix-based shell is exceedingly
difficult, and it is nearly impossible in cmd.exe.

89

Traditional text-based shells make writing pipelines so difficult because they require
you to deeply understand the peculiarities of output formatting for each command in
the pipeline, as shown in Example 2-2.

Example 2-2. A traditional text-based pipeline

lee@trinity:~$ ps -F | awk '{ 1f($5 > 500) print }' | sort -r -k 64,70

UID PID PPID C SZ RSS PSR STIME TTY TIME CMD
lee 8175 7967 O 965 1036 0 21:51 pts/0 00:00:00 ps -F
lee 7967 7966 © 1173 2104 0 21:38 pts/0 00:00:00 -bash

In this example, you have to know that, for every line, group number five represents the
memory usage. You have to know another language (that of the awk tool) to filter by
that column. Finally, you have to know the column range that contains the process name
(columns 64 to 70 on this system) and then provide that to the sort command. And
that’s just a simple example.

An object-based pipeline opens up enormous possibilities, making system administra-
tion both immensely more simple and more powerful.

2.1. Filter Items in a List or Command Qutput

Problem

You want to filter the items in a list or command output.

Solution

Use the Where-0bject cmdlet to select items in a list (or command output) that match
a condition you provide. The Where-0bject cmdlet has the standard aliases where and ?.

To list all running processes that have “search” in their name, use the - 1ike operator to
compare against the process’s Name property:

Get-Process | Where-Object { $_.Name -like "*Search*" }
To list all processes not responding, test the Responding property:
Get-Process | Where-Object { -not $_.Responding }

To list all stopped services, use the -eq operator to compare against the service’s Status
property:
Get-Service | Where-Object { $_.Status -eq "Stopped" }

For simple comparisons on properties, you can omit the script block syntax and use the
comparison parameters of Where-Object directly:

Get-Process | Where-Object Name -like "*Search*"

90 | Chapter2:Pipelines

Discussion

For each item in its input (which is the output of the previous command), the Where-
Object cmdlet evaluates that input against the script block that you specity. If the script
block returns True, then the Where-0Object cmdlet passes the object along. Otherwise,
it does not. A script block is a series of PowerShell commands enclosed by the { and }
characters. You can write any PowerShell commands inside the script block. In the script
block, the $_ (or $PSItem) variable represents the current input object. For each item in
the incoming set of objects, PowerShell assigns that item to the $_ (or $PSItem) variable
and then runs your script block. In the preceding examples, this incoming object rep-
resents the process, file, or service that the previous cmdlet generated.

This script block can contain a great deal of functionality, if desired. It can combine
multiple tests, comparisons, and much more. For more information about script blocks,
see Recipe 11.4, “Write a Script Block”. For more information about the type of com-
parisons available to you, see “Comparison Operators” (page 879).

For simple filtering, the syntax of the Where-0Object cmdlet may sometimes seem over-
bearing. Recipe 2.3, “Program: Simplify Most Where-Object Filters” shows two alter-
natives that can make simple filtering (such as the previous examples) easier to work
with.

For complex filtering (for example, the type you would normally rely on a mouse to do
with files in an Explorer window), writing the script block to express your intent may
be difficult or even infeasible. If this is the case, Recipe 2.4, “Program: Interactively Filter
Lists of Objects” shows a script that can make manual filtering easier to accomplish.

For more information about the Where-0Object cmdlet, type Get-Help Where-Object.

See Also

Recipe 2.3, “Program: Simplify Most Where-Object Filters”
Recipe 2.4, “Program: Interactively Filter Lists of Objects”
Recipe 11.4, “Write a Script Block”

“Comparison Operators” (page 879)

2.2. Group and Pivot Data by Name

Problem

You want to easily access items in a list by a property name.

2.2. Group and Pivot Data by Name | 91

Solution

Use the Group-0bject cmdlet (which has the standard alias group) with the -AsHash
and -AsString parameters. This creates a hashtable with the selected property (or ex-
pression) used as keys in that hashtable:

PS > $h = dir | group -AsHash -AsString Length
PS > $h

Name Value
746 {ReplaceTest.ps1}
499 {Format-String.ps1}
20494 {test.dl1}
PS > $h["499"]

Directory: C:\temp
Mode LastWriteTime Length Name

-a--- 10/18/2009 9:57 PM
PS > Sh["746"]
Directory: C:\temp
Mode LastWriteTime Length Name
-a--- 10/18/2009 9:51 PM
Discussion

499 Format-String.psi

746 ReplaceTest.ps1

In some situations, you might find yourself repeatedly calling the Where-Object cmdlet
to interact with the same list or output:

PS > Sprocesses = Get-Process
PS > Sprocesses | Where-Object { $_.Id -eq 1216 }

Handles

NPM(K)

PM(K)

WS(K) VM(M)

CPU(s)

PS > Sprocesses | Where-Object { $_.Id -eq 212 }

Handles

NPM(K)

614 10

PM(K)

28444

WS(K) VM(M)

CPU(s)

Id ProcessName

1216 dwm

Id ProcessName

212 SearchIndexer

92

| Chapter 2: Pipelines

In these situations, you can instead use the -AsHash parameter of the Group-Object
cmdlet. When you use this parameter, PowerShell creates a hashtable to hold your re-
sults. This creates a map between the property you are interested in and the object it
represents:

PS > $processes = Get-Process | Group-Object -AsHash Id
PS > $processes[1216]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

62 3 1012 3132 50 0.20 1216 dwm
PS > $processes[212]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

610 10 28444 5488 117 1.27 212 SearchIndexer

For simple types of data, this approach works well. Depending on your data, though,
using the -AsHash parameter alone can create difficulties.

The firstissue you might run into arises when the value of a property is $null. Hashtables
in PowerShell (and the NET Framework that provides the underlying support) do not
support $null as a value, so you get a misleading error message:

PS > "Hello",(Get-Process -id $pid) | Group-Object -AsHash Id

Group-Object : The objects grouped by this property cannot be expanded

since there is a duplication of the key. Please give a valid property and try
again.

A second issue crops up when more complex data gets stored within the hashtable. This
can unfortunately be true even of data that appears to be simple:

PS > Sresult = dir | Group-Object -AsHash Length
PS > S$result

Name Value

746 {ReplaceTest.ps1}
499 {Format-String.psi1}
20494 {test.d11}

PS > Sresult[746]
(Nothing appears)

This missing result is caused by an incompatibility between the information in the
hashtable and the information you typed. This is normally not an issue in hashtables
that you create yourself, because you provided all of the information to populate them.
In this case, though, the Length values stored in the hashtable come from the directory
listing and are of the type Int64. An explicit cast resolves the issue but takes a great deal
of trial and error to discover:

2.2. Group and Pivot Databy Name | 93

PS > Sresult[[int64] 746]
Directory: C:\temp

Mode LastWriteTime Length Name

-a--- 10/18/2009 9:51 PM 746 ReplaceTest.psi1

It is difficult to avoid both of these issues, so the Group-0bject cmdlet also offers an
-AsString parameter to convert all of the values to their string equivalents. With that
parameter, you can always assume that the values will be treated as (and accessible by)
strings:

PS > Sresult = dir | Group-Object -AsHash -AsString Length
PS > Sresult["746"]

Directory: C:\temp

Mode LastWriteTime Length Name

-a--- 10/18/2009 9:51 PM 746 ReplaceTest.psl

For more information about the Group-0bject cmdlet, type Get-Help Group-Object.
For more information about PowerShell hashtables, see Recipe 7.13, “Create a Hashtable
or Associative Array”.

See Also

Recipe 7.13, “Create a Hashtable or Associative Array”
“Hashtables (Associative Arrays)” (page 872)

2.3. Program: Simplify Most Where-Object Filters

The Where-0Object cmdlet is incredibly powerful, in that it allows you to filter your
output based on arbitrary criteria. For extremely simple filters (such as filtering based
only on a comparison to a single property), though, the script-block-based syntax can
get a little ungainly:

Get-Process | Where-Object { $_.Handles -gt 1000 }

In PowerShell version 3, the Where-Object cmdlet (and by extension its ? alias) was
extended to simplify most filters dramatically:

Get-Process | Where-Object Handles -gt 1000
Get-Process | ? HasExited

If you don’t have access to PowerShell version 3, it is possible to write a similar script
(as shown in Example 2-3) to offload all the syntax to the script itself:

94 | Chapter2:Pipelines

Get-Process | Compare-Property Handles gt 1000
Get-Process | Compare-Property HasExited

With a shorter alias, this becomes even easier to type:

PS > Set-Alias wheres Compare-Property
PS > Get-ChildItem | wheres Length gt 100

Example 2-3 implements this “simple where” functionality. Note that supplying a non-
existing operator as the $operator parameter will generate an error message.

Example 2-3. Compare-Property.ps1

HHHEHH
##

Compare-Property

##

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

<#

.SYNOPSIS

Compare the property you provide against the input supplied to the script.
This provides the functionality of simple Where-Object comparisons without
the syntax required for that cmdlet.

.EXAMPLE

PS Get-Process | Compare-Property Handles gt 1000

.EXAMPLE

PS > Set-Alias ?? Compare-Property
PS > dir | ?? PsIsContainer

#>

param(
The property to compare
$Property,

The operator to use in the comparison

SOperator = "eq",

The value to compare with
SMatchText = "S$true"

2.3. Program: Simplify Most Where-Object Filters | 95

)

Begin { $expression = "'$_.$property -$operator ‘"$matchText'"" }
Process { if(Invoke-Expression S$expression) { $_ } }

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

2.4. Program: Interactively Filter Lists of Objects

There are times when the Where-0bject cmdlet is too powerful. In those situations, the
Compare-Property script shown in Recipe 2.3, “Program: Simplify Most Where-Object
Filters” provides a much simpler alternative. There are also times when the Where-
Object cmdlet is too simple—when expressing your selection logic as code is more
cumbersome than selecting it manually. In those situations, an interactive filter can be
much more effective.

PowerShell version 3 makes this interactive filtering incredibly easy through the
-PassThru parameter of the Out-GridView cmdlet. For example, you can use this pa-
rameter after experimenting with commands for a while to create a simple script. Simply
highlight the lines you want to keep, and press OK:

PS > S$script = Get-History | Foreach-Object CommandLine | Out-GridView -PassThru
PS > S$script | Set-Content c:\temp\script.psi

By default, the Out-Gridview cmdlet lets you select multiple items at once before press-
ing OK. If youd rather constrain the selection to a single element, use Single as the
value of the -OutputMode parameter.

If you have access only to PowerShell version 2, Example 2-4 implements a simple ver-
sion of this interactive filter. It uses several concepts not yet covered in this book, so feel
free to just consider it a neat script for now. To learn more about a part that you don't
yet understand, look it up in the table of contents or the index.

Example 2-4. Select-FilteredObject.ps1

#it

Select-FilteredObject

#it

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it
B R g i e

96 | Chapter2:Pipelines

<#
.SYNOPSIS

Provides an inteactive window to help you select complex sets of objects.
To do this, it takes all the input from the pipeline, and presents it in a
Notepad window. Keep any lines that represent objects you want to retain,
delete the rest, then save the file and exit Notepad.

The script then passes the original objects that you kept along the
pipeline.

.EXAMPLE

PS > Get-Process | Select-FilteredObject | Stop-Process -WhatIf

Gets all of the processes running on the system, and displays them to you.
After you've selected the ones you want to stop, it pipes those into the
Stop-Process cmdlet.

#>

PowerShell runs your "begin" script block before it passes you any of the
items in the pipeline.
begin
{
Set-StrictMode -Version 3

Create a temporary file
$filename = [System.IO.Path]::GetTempFileName()

Define a header in a "here-string" that explains how to interact with
the file
Sheader = @"

Keep any lines that represent objects you want to retain,
and delete the rest.

#it

Once you finish selecting objects, save this file and

exit.

HUH I

"Q
Place the instructions into the file
Sheader > $filename
Initialize the variables that will hold our list of objects, and
a counter to help us keep track of the objects coming down the
pipeline
SobjectList = @()
Scounter = 0

}

2.4. Program: Interactively Filter Lists of Objects

97

PowerShell runs your "process" script block for each item it passes down
the pipeline. In this block, the "$_" variable represents the current
pipeline object
process
{
Add a line to the file, using PowerShell's format (-f) operator.
When provided the ouput of Get-Process, for example, these lines look
##t like:
30: System.Diagnostics.Process (powershell)
"{0}: {1}" -f Scounter,$_.ToString() >> Sfilename

Add the object to the list of objects, and increment our counter.
$objectlList += $_
Scounter++

}

PowerShell runs your "end" script block once it completes passing all
objects down the pipeline.

end
{
Start Notepad, then call the process's WaitForExit() method to
pause the script until the user exits Notepad.
$process = Start-Process Notepad -Args S$filename -PassThru
Sprocess.WaitForExit()
Go over each line of the file
foreach($line in (Get-Content $filename))
{
Check if the line is of the special format: numbers, followed by
a colon, followed by extra text.
if($line -match "~A(\d+?):.*")
{
If i1t did match the format, then $matches[1] represents the
number -- a counter into the list of objects we saved during
the "process" section.
So, we output that object from our list of saved objects.
$SobjectList[Smatches[1]]
}
}
Finally, clean up the temporary file.
Remove-Item S$filename
}

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

98 | Chapter2:Pipelines

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.3, “Program: Simplify Most Where-Object Filters”

2.5. Work with Each Item in a List or Command Output

Problem

You have a list of items and want to work with each item in that list.

Solution

Use the Foreach-0bject cmdlet (which has the standard aliases foreach and %) to work
with each item in a list.

To apply a calculation to each item in a list, use the $_ (or $PSItem) variable as part of
a calculation in the script block parameter:

PS > 1..10 | Foreach-Object { $_ * 2 }
2
4
6
8
10
12
14
16
18
20

To run a program on each file in a directory, use the $_ (or $PSItem) variable as a
parameter to the program in the script block parameter:

Get-ChildItem *.txt | Foreach-Object { attrib -r $_ }

To access a method or property for each object in a list, access that method or property
on the $_ (or $PSItem) variable in the script block parameter. In this example, you get
the list of running processes called notepad, and then wait for each of them to exit:

$notepadProcesses = Get-Process notepad
$notepadProcesses | Foreach-Object { $_.WaitForExit() }

Discussion

Like the Where-0Object cmdlet, the Foreach-0Object cmdlet runs the script block that
you specify for each item in the input. A script block is a series of PowerShell commands

2.5. Work with Each Item in a List or Command Qutput | 99

enclosed by the { and } characters. For each item in the set of incoming objects,
PowerShell assigns that item to the $_ (or $PSItem) variable, one element at a time. In
the examples given by the Solution, the $_ (or $PSItem) variable represents each file or
process that the previous cmdlet generated.

This script block can contain a great deal of functionality, if desired. You can combine
multiple tests, comparisons, and much more. For more information about script blocks,
see Recipe 11.4, “Write a Script Block”. For more information about the type of com-
parisons available to you, see “Comparison Operators” (page 879).

In addition to the script block supported by the Foreach-0bject cmdlet to process each
element of the pipeline, it also supports script blocks to be executed at the beginning
and end of the pipeline. For example, consider the following code to measure the sum
of elements in an array:

S$myArray = 1,2,3,4,5

$sum = 0
$myArray | Foreach-Object { $sum += $_ }
$sum

You can simplify this to:

$myArray | Foreach-Object -Begin {
$sum = 0 } -Process { $sum += $_ } -End { $sum }
Since you can also specify the -Begin, -Process, and -End parameters by position, this
can simplify even further to:

$myArray | Foreach-Object { $sum =0 } { Ssum += $_ } { $sum }

For simple property or member access, the syntax of the Foreach-0Object cmdlet may
sometimes seem overbearing. Recipe 2.7, “Program: Simplify Most Foreach-Object
Pipelines” shows several alternatives that can make simple member access easier to work
with.

The first example in the Solution demonstrates a neat way to generate
. ranges of numbers: 1..10

X
- This is PowerShell’s array range syntax, which you can learn more about
in Recipe 7.3, “Access Elements of an Array”.

The Foreach-0bject cmdlet isn't the only way to perform actions on items in a list. The
PowerShell scripting language supports several other keywords, such as for, (a different)
foreach, do, and while. For information on how to use those keywords, see Recipe 4.4,
“Repeat Operations with Loops”.

For more information about the Foreach-Object cmdlet, type Get-Help Foreach-
Object.

100 | Chapter2: Pipelines

For more information about dealing with pipeline input in your own scripts, functions,
and script blocks, see Recipe 11.18, “Access Pipeline Input”.

See Also

Recipe 4.4, “Repeat Operations with Loops”
Recipe 7.3, “Access Elements of an Array”
Recipe 11.4, “Write a Script Block”

Recipe 11.18, “Access Pipeline Input”
“Comparison Operators” (page 879)

2.6. Automate Data-Intensive Tasks

Problem

You want to invoke a simple task on large amounts of data.

Solution

If only one piece of data changes (such as a server name or username), store the data in
a text file. Use the Get-Content cmdlet to retrieve the items, and then use the Foreach-
Object cmdlet (which has the standard aliases foreach and %) to work with each item
in that list. Example 2-5 illustrates this technique.

Example 2-5. Using information from a text file to automate data-intensive tasks

PS > Get-Content servers.txt
SERVER1
SERVER2
PS > Scomputers = Get-Content servers.txt
PS > Scomputers | Foreach-Object {
Get-CimInstance Win32_OperatingSystem -Computer $_ }

SystemDirectory : C:\WINDOWS\system32

Organization
BuildNumber 1 2600
Version : 5.1.2600

SystemDirectory : C:\WINDOWS\system32

Organization
BuildNumber 1 2600
Version : 5.1.2600

If it becomes cumbersome (or unclear) to include the actions in the Foreach-Object
cmdlet, you can also use the foreach scripting keyword, as illustrated in Example 2-6.

2.6. Automate Data-Intensive Tasks | 101

Example 2-6. Using the foreach scripting keyword to make a looping statement easier to
read

Scomputers = Get-Content servers.txt

foreach($computer in $computers)

{

Get the information about the operating system from WMI
$system = Get-CimInstance Win32_OperatingSystem -Computer $computer

Determine if 1t is running Windows XP
if($system.Version -eq "5.1.2600")
{

}

"Scomputer is running Windows XP"

}

If several aspects of the data change per task (for example, both the CIM class and the
computer name for computers in a large report), create a CSV file with a row for each
task. Use the Import-Csv cmdlet to import that data into PowerShell, and then use
properties of the resulting objects as multiple sources of related data. Example 2-7
illustrates this technique.

Example 2-7. Using information from a CSV to automate data-intensive tasks

PS > Get-Content WmiReport.csv
ComputerName,Class
LEE-DESK,Win32_OperatingSystem
LEE-DESK,Win32_Bios

PS > $data = Import-Csv WmiReport.csv

PS > $data

ComputerName Class

Léé:éé;k---- &{;;é_OperatingSystem
LEE-DESK Win32_Bios

PS > $data |

Foreach-Object { Get-CimInstance $_.Class -Computer $_.ComputerName }

SystemDirectory : C:\WINDOWS\system32

Organization
BuildNumber : 2600
Version : 5.1.2600

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009

Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber TOXXXXXXXXXXX

Version : Nvidia - 42302e31

102 | Chapter2: Pipelines

Discussion

One of the major benefits of PowerShell is its capability to automate repetitive tasks.
Sometimes these repetitive tasks are action-intensive (such as system maintenance
through registry and file cleanup) and consist of complex sequences of commands that
will always be invoked together. In those situations, you can write a script to combine
these operations to save time and reduce errors.

Other times, you need only to accomplish a single task (for example, retrieving the results
of a WMI query) but need to invoke that task repeatedly for a large amount of data. In
those situations, PowerShell’s scripting statements, pipeline support, and data manage-
ment cmdlets help automate those tasks.

One of the options given by the Solution is the Import-Csv cmdlet. The Import-Csv
cmdlet reads a CSV file and, for each row, automatically creates an object with properties
that correspond to the names of the columns. Example 2-8 shows the results of a CSV
that contains a ComputerName and Class header.

Example 2-8. The Import-Csv cmdlet creating objects with ComputerName and Class
properties

PS > Sdata = Import-Csv WmiReport.csv

PS > $data

ComputerName Class

LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS > $data[0].ComputerName
LEE-DESK

As the Solution illustrates, you can use the Foreach-0bject cmdlet to provide data from
these objects to repetitive cmdlet calls. It does this by specifying each parameter name,
followed by the data (taken from a property of the current CSV object) that applies
to it.

A
. If you already have the comma-separated values in a variable (rather
:‘s‘ . thanafile), you can use the ConvertFrom-Csv cmdlet to convert these
01 values to objects.

While this is the most general solution, many cmdlet parameters can automatically
retrieve their value from incoming objects if any property of that object has the same

2.6. Automate Data-Intensive Tasks | 103

name. This enables you to omit the Foreach-0bject and property mapping steps alto-
gether. Parameters that support this feature are said to support value from pipeline by
property name. The Move-Item cmdlet is one example of a cmdlet with parameters that
support this, as shown by the Accept pipeline input? rows in Example 2-9.

Example 2-9. Help content of the Move-Item cmdlet showing a parameter that accepts
value from pipeline by property name

PS > Get-Help Move-Item -Full
(...)
PARAMETERS

-path <string[]>
Specifies the path to the current location of the items. The default
is the current directory. Wildcards are permitted.

Required? true

Position? 1

Default value <current location>

Accept pipeline input? true (ByValue, ByPropertyName)

Accept wildcard characters? true

-destination <string>
Specifies the path to the location where the items are being moved.
The default is the current directory. Wildcards are permitted, but
the result must specify a single location.

To rename the item being moved, specify a new name in the value of

Destination.

Required? false

Position? 2

Default value <current location>
Accept pipeline input? true (ByPropertyName)
Accept wildcard characters? True

(...)

If you purposefully name the columns in the CSV to correspond to parameters that take
their value from pipeline by property name, PowerShell can do some (or all) of the
parameter mapping for you. Example 2-10 demonstrates a CSV file that moves items in

bulk.

Example 2-10. Using the Import-Csv cmdlet to automate a cmdlet that accepts value
from pipeline by property name

PS > Get-Content ItemMoves.csv
Path,Destination

test.txt,TestiDirectory
test2.txt,Test2Directory

PS > dir test.txt,test2.txt | Select Name

104 | Chapter2: Pipelines

Name

test. txt
test2.txt

PS > Import-Csv ItemMoves.csv | Move-Item
PS > dir TestlDirectory | Select Name

Name

test. txt

PS > dir Test2Directory | Select Name
Name

test2.txt

For more information about the Foreach-Object cmdlet and foreach scripting key-
word, see Recipe 2.5, “Work with Each Item in a List or Command Output”. For more
information about working with CSV files, see Recipe 10.7, “Import CSV and Delimited
Data from a File”. For more information about working with Windows Management
Instrumentation (WMI), see Chapter 28.

See Also

Recipe 2.5, “Work with Each Item in a List or Command Output”
Recipe 10.7, “Import CSV and Delimited Data from a File”

Chapter 28, Windows Management Instrumentation

2.7. Program: Simplify Most Foreach-Object Pipelines

The Foreach-0bject cmdlet is incredibly powerful, in that it allows you to access meth-
ods and properties of arbitrary pipeline objects. For simple scenarios (such as retrieving
only a single property), though, the script-block-based syntax can get a little ungainly:

Get-Process | Foreach-Object { $_.Name }

In PowerShell version 3, the Foreach-0Object cmdlet (and by extension its % alias) was
extended to simplify property and method access dramatically:

Get-Process | Foreach-Object Name
Get-Process | % Name | % ToUpper

In addition to using the Foreach-0Object cmdlet to support full member invocation, the
PowerShell language has a quick way to easily enumerate properties. Just as you are able
to access a property on a single element, PowerShell lets you use a similar syntax to
access that property on each item of a collection:

2.7. Program: Simplify Most Foreach-Object Pipelines | 105

Start-Process PowerShell

Start-Process PowerShell

Sprocesses = Get-Process -Name PowerShell
Sprocesses[0].1d

PS > Sprocesses.Id

If you don't have access to PowerShell version 3, it is possible to write a similar script
(as shown in Example 2-11) to offload all the syntax to the script itself:

"Hello","World" | Invoke-Member Length
"Hello","World" | Invoke-Member -m ToUpper

With a shorter alias, this becomes even easier to type:

PS > Set-Alias :: Invoke-Member
PS > Get-ChildItem | :: Length

Example 2-11 implements this “simple foreach” functionality.

Example 2-11. Invoke-Member.ps1

B
#it

Invoke-Member

#t

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#H

THHERHHHE AR R

<#

.SYNOPSIS

Enables easy access to methods and properties of pipeline objects.
.EXAMPLE

PS > "Hello","World" | .\Invoke-Member Length

5

5

.EXAMPLE

PS > "Hello","World" | .\Invoke-Member -m ToUpper

HELLO

WORLD

.EXAMPLE

106 | Chapter2: Pipelines

PS > "Hello","World" | .\Invoke-Member Replace 1 w
Hewwo
Worwd

#>

[CmdletBinding(DefaultParameterSetName= "Member")]
param(

A switch parameter to identify the requested member as a method.
Only required for methods that take no arguments.
[Parameter(ParameterSetName = "Method")]

[Alias("M","Me")]

[switch] $Method,

The name of the member to retrieve
[Parameter(ParameterSetName = "Method", Position = 0)]
[Parameter(ParameterSetName = "Member", Position = 0)]
[string] S$Member,

Arguments for the method, if any
[Parameter(

ParameterSetName = "Method", Position = 1,

Mandatory = $false, ValueFromRemainingArguments = $true)]
[object[]] $ArgumentList = @(),

The object from which to retrieve the member
[Parameter(ValueFromPipeline = $true)]

$InputObject
)
process
{
If the user specified a method, invoke it
with any required arguments.
if($psCmdlet.ParameterSetName -eq "Method")
{
$inputObject.$member.Invoke(@($argumentList))
}
Otherwise, retrieve the property
else
{
$inputObject.$member
}
}
See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.3, “Program: Simplify Most Where-Object Filters”

2.7. Program: Simplify Most Foreach-Object Pipelines

107

2.8. Intercept Stages of the Pipeline

Problem

You want to intercept or take some action at different stages of the PowerShell pipeline.

Solution

Use the New-CommandWrapper script given in Recipe 11.23, “Program: Enhance or Ex-
tend an Existing Cmdlet” to wrap the Out-Default command, and place your custom
functionality in that.

Discussion

For any pipeline, PowerShell adds an implicit call to the Out-Default cmdlet at the end.
By adding a command wrapper over this function we can heavily customize the pipeline
processing behavior.

When PowerShell creates a pipeline, it first calls the BeginProcessing() method of each
command in the pipeline. For advanced functions (the type created by the New-
CommandWrapper script), PowerShell invokes the Begin block. If you want to do anything
at the beginning of the pipeline, then put your customizations in that block.

For each object emitted by the pipeline, PowerShell sends that object to the Process
Record() method of the next command in the pipeline. For advanced functions (the
type created by the New-CommandWrapper script), PowerShell invokes the Process block.
If you want to do anything for each element in the pipeline, put your customizations in
that block.

Finally, when PowerShell has processed all items in the pipeline, it calls the End
Processing() method of each command in the pipeline. For advanced functions (the
type created by the New-CommandWrapper script), PowerShell invokes the End block. If
you want to do anything at the end of the pipeline, then put your customizations in that
block.

For two examples of this approach, see Recipe 2.9, “Automatically Capture Pipeline
Output” and Recipe 11.22, “Invoke Dynamically Named Commands”.

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.9, “Automatically Capture Pipeline Output”

108 | Chapter2: Pipelines

Recipe 11.22, “Invoke Dynamically Named Commands”
Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.9. Automatically Capture Pipeline Output

Problem

You want to automatically capture the output of the last command without explicitly
storing its output in a variable.

Solution

Invoke the Add-ObjectCollector script (shown in Example 2-12), which in turn builds
upon the New-CommandWrapper script.

Example 2-12. Add-ObjectCollector.ps1

A
#it

Add-ObjectCollector

#it

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

B

<#
.SYNOPSIS

Adds a new Out-Default command wrapper to store up to 500 elements from
the previous command. This wrapper stores output in the $11 variable.

.EXAMPLE
PS > Get-Command $pshome\powershell.exe
CommandType Name Definition

Application powershell.exe C:\Windows\System32\Windo...

PS > $1l.Definition
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

.NOTES

This command builds on New-CommandWrapper, also included in the Windows
PowerShell Cookbook.

2.9. Automatically Capture Pipeline Output | 109

#>

Set-StrictMode -Version 3

New-CommandWrapper Out-Default °
-Begin {

)}

$cachedOutput = New-Object System.Collections.ArraylList

-Process {

3

If we get an input object, add it to our list of objects
if($_ -ne $null) { $null = ScachedOutput.Add($_) 3}
while(ScachedOutput.Count -gt 500) { $cachedOutput.RemoveAt(0) }

-End {

}

Be sure we got objects that were not just errors (

so that we don't wipe out the saved output when we get errors

trying to work with it.)

Also don't capture formatting information, as those objects

can't be worked with.

SuniqueOutput = $cachedOutput | Foreach-Object {
$_.GetType().FullName } | Select -Unique

ScontainsInterestingTypes = (SuniqueOutput -notcontains °
"System.Management.Automation.ErrorRecord") -and
(SuniqueOutput -notlike °

"Microsoft.PowerShell.Commands.Internal.Format.*")

If we actually had output, and it was interesting information,
save the output into the $11 variable
if(($cachedOutput.Count -gt 0) -and S$containsInterestingTypes)
{
SGLOBAL:11 = $cachedOutput | % { $_ }
}

Discussion

The example in the Solution builds a command wrapper over the Out-Default com-

mand by first creating an ArrayList during the Begin stage of the pipeline.

As each object passes down the pipeline (and is processed by the Process block of Out -
Default), the wrapper created by Add-ObjectCollector adds the object to the Array
List.

Once the pipeline completes, the Add-0bjectCollector wrapper stores the saved items

in the $11 variable, making them always available at the next prompt.

110

Chapter 2: Pipelines

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”
Recipe 2.8, “Intercept Stages of the Pipeline”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.10. Capture and Redirect Binary Process Qutput

Problem

You want to run programs that transfer complex binary data between themselves.

Solution

Use the Invoke-BinaryProcess script to invoke the program, as shown in
Example 2-13. If it is the source of binary data, use the -RedirectOutput parameter. If
it consumes binary data, use the -RedirectInput parameter.

Example 2-13. Invoke-BinaryProcess.ps1

B
##t

Invoke-BinaryProcess

##t

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#H

<#

.SYNOPSIS

Invokes a process that emits or consumes binary data.
.EXAMPLE

PS > Invoke-BinaryProcess binaryProcess.exe -RedirectOutput -ArgumentList "-Emit" |
Invoke-BinaryProcess binaryProcess.exe -RedirectInput -ArgumentList "-Consume"

#>
param(

The name of the process to invoke
[string] $ProcessName,

2.10. Capture and Redirect Binary Process Output | 111

Specifies that input to the process should be treated as
binary

[Alias("Input")]

[switch] $RedirectInput,

Specifies that the output of the process should be treated
as binary

[Alias("Output")]

[switch] $RedirectOutput,

Specifies the arguments for the process
[string] SArgumentList
)

Set-StrictMode -Version 3

Prepare to invoke the process

SprocessStartInfo = New-Object System.Diagnostics.ProcessStartInfo
SprocessStartInfo.FileName = (Get-Command $processname).Definition
$processStartInfo.WorkingDirectory = (Get-Location).Path
if(SargumentList) { $processStartInfo.Arguments = $argumentList }
$processStartInfo.UseShellExecute = $false

Always redirect the input and output of the process.

Sometimes we will capture it as binary, other times we will
just treat it as strings.
SprocessStartInfo.RedirectStandardOutput = $true
S$processStartInfo.RedirectStandardInput = $true

$process = [System.Diagnostics.Process]::Start($processStartInfo)

If we've been asked to redirect the input, treat it as bytes.

Otherwise, write any input to the process as strings.

if(SredirectInput)

{
$inputBytes = @(Sinput)
$process.StandardInput.BaseStream.Write($inputBytes, 0, $inputBytes.Count)
$process.StandardInput.Close()

}

else

{
S$input | % { Sprocess.StandardInput.WriteLine($_) }
$process.StandardInput.Close()

}

If we've been asked to redirect the output, treat it as bytes.
Otherwise, read any input from the process as strings.
if(SredirectOutput)
{

SbyteRead = -1

do

112 | Chapter2: Pipelines

SbyteRead = $process.StandardOutput.BaseStream.ReadByte()
if(SbyteRead -ge 0) { $SbyteRead }
} while($byteRead -ge 0)
}

else

{
}

$process.StandardOutput.ReadToEnd()

Discussion

When PowerShell launches a native application, one of the benefits it provides is allow-
ing you to use PowerShell commands to work with the output. For example:

PS > (ipconfig)[7]

Link-local IPv6 Address : fe80::20f9:871:8365:1368%8
PS > (ipconfig)[8]
IPv4 Address. : 10.211.55.3

PowerShell enables this by splitting the output of the program on its newline characters,
and then passing each line independently down the pipeline. This includes programs
that use the Unix newline (\n) as well as the Windows newline (\r\n).

If the program outputs binary data, however, that reinterpretation can corrupt data as
it gets redirected to another process or file. For example, some programs communicate
between themselves through complicated binary data structures that cannot be modi-
fied along the way. This is common in some image editing utilities and other non-
PowerShell tools designed for pipelined data manipulation.

We can see this through an example BinaryProcess.exe application that either emits
binary data or consumes it. Here is the C# source code to the BinaryProcess.exe
application:

using System;
using System.IO;

public class BinaryProcess

{
public static void Main(string[] args)
{
if(args[0] == "-consume"
{

using(Stream inputStream = Console.OpenStandardInput())

{
for(byte counter = 0; counter < 255; counter++)
{
byte received = (byte) inputStream.ReadByte();
if(received != counter)
{

Console.WriteLine(

2.10. Capture and Redirect Binary Process Output | 113

"Got an invalid byte: {0}, expected {1}.",
received, counter);

return;
}
else
{
Console.WriteLine(
"Properly received byte: {0}.", received, counter);
}
}
}
}
if(args[0] == "-emit")
{
using(Stream outputStream = Console.OpenStandardOutput())
{
for(byte counter = 0; counter < 255; counter++)
{
outputStream.WriteByte(counter);
}
}
}

}

When we run it with the -emit parameter, PowerShell breaks the output into three
objects:

PS > Soutput = .\binaryprocess.exe -emit
PS > Soutput.Count
3

We would expect this output to contain the numbers 0 through 254, but we see that it
does not:

PS > Soutput | Foreach-Object { "------------ "
$_.ToCharArray() | Foreach-Object { [int] $_ } }

114 | Chapter2: Pipelines

14
15
16
17
18
19
20
21
22
(..))
255
214
220
162
163
165
8359
402
225

At number 10, PowerShell interprets that byte as the end of the line, and uses that to
split the output into a new element. It does the same for number 13. Things appear to
get even stranger when we get to the higher numbers and PowerShell starts to interpret
combinations of bytes as Unicode characters from another language.

The Solution resolves this behavior by managing the output of the binary process di-
rectly. If you supply the -RedirectInput parameter, the script assumes an incoming
stream of binary data and passes it to the program directly. If you supply the
-RedirectOutput parameter, the script assumes that the output is binary data, and
likewise reads it from the process directly.

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

2.10. Capture and Redirect Binary Process Output | 115

CHAPTER 3
Variables and Objects

3.0. Introduction

As touched on in Chapter 2, PowerShell makes life immensely easier by keeping infor-
mation in its native form: objects. Users expend most of their effort in traditional shells
just trying to resuscitate information that the shell converted from its native form to
plain text. Tools have evolved that ease the burden of working with plain text, but that
job is still significantly more difficult than it needs to be.

Since PowerShell builds on Microsoft’s NET Framework, native information comes in
the form of .NET objects—packages of information and functionality closely related to
that information.

Let’s say that you want to get a list of running processes on your system. In other shells,
your command (such as tlist.exe or /bin/ps) generates a plain-text report of the
running processes on your system. To work with that output, you send it through a bevy
of text processing tools—if you are lucky enough to have them available.

PowerShell’s Get-Process cmdlet generates a list of the running processes on your
system. In contrast to other shells, though, these are full-fidelity System.
Diagnostics.Process objects straight out of the .NET Framework. The .NET Frame-
work documentation describes them as objects that “[provide] access to local and re-
mote processes, and [enable] you to start and stop local system processes.” With those
objects in hand, PowerShell makes it trivial for you to access properties of objects (such
as their process name or memory usage) and to access functionality on these objects
(such as stopping them, starting them, or waiting for them to exit).

117

3.1. Display the Properties of an Item as a List

Problem

You have an item (for example, an error record, directory item, or .NET object), and
you want to display detailed information about that object in a list format.

Solution

To display detailed information about an item, pass thatitem to the Format-List cmdlet.
For example, to display an error in list format, type the following commands:

ScurrentError = $Serror[0]

ScurrentError | Format-List -Force

Discussion

Many commands by default display a summarized view of their output in a table format,
for example, the Get-Process cmdlet:

PS > Get-Process PowerShell

Handles NPM(K) PM(K)
920 10 43808
149 6 18228
431 11 33308

WS(K) VM(M) CPU(s) Id ProcessName
48424 183 4.69 1928 powershell
8660 146 0.48 1940 powershell
19072 172 2816 powershell

In most cases, the output actually contains a great deal more information. You can use
the Format-List cmdlet to view it:

PS > Get-Process PowerShell | Format-List *

__NounName
Name
Handles

VM

WS

PM

NPM

Path

Company
CPU
FileVersion

ProductVersion
Description

(...)

: Process

: powershell

: 443

: 192176128

: 52363264

: 47308800

: 9996

: C:\WINDOWS\system32\WindowsPowerShell\vi.0\power

shell.exe

: Microsoft Corporation
. 4.921875
: 6.0.6002.18139 (vistasp2_gdr_win7ip_winman(wmbla

).090902-1426)

: 6.0.6002.18139
: Windows PowerShell

118

| Chapter 3: Variables and Objects

The Format-List cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The
Format-List cmdlet takes input and displays information about that input as a list.

By default, PowerShell takes the list of properties to display from the *.format.psIxml
files in PowerShell’s installation directory. In many situations, you'll only get a small set
of the properties:

PS > Get-Process PowerShell | Format-List

Id : 2816
Handles : 431

CPU

Name : powershell
Id . 5244
Handles : 665

CPU ¢ 10.296875
Name : powershell

To display all properties of the item, type Format-List *.If you type Format-List *
but still do not get a list of the item’s properties, then the item is defined in the *.for
mat.pslxml files, but does not define anything to be displayed for the list command. In
that case, type Format-List -Force.

One common stumbling block in PowerShell’s formatting cmdlets comes from putting
them in the middle of a script or pipeline:

PS > Get-Process PowerShell | Format-List | Sort Name

out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not valid or not in the correct sequence. This 1is
likely caused by a user-specified "format-*" command which is conflicting with
the default formatting.

Internally, PowerShell's formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it
to the end of the pipeline, PowerShell automatically sends them to an output cmdlet: by
default, Out-Default. These Out-* cmdlets assume that the objects arrive in a certain
order, so doing anything with the output of the formatting commands causes an error
in the output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself to
the object-based manipulation so synonymous with PowerShell.

If you want to use the formatted output directly, send the output through the Out-
String cmdlet as described in Recipe 1.23, “Program: Search Formatted Output for a
Pattern”.

For more information about the Format-List cmdlet, type Get-Help Format-List.

3.1. Display the Properties of an Itemasalist | 119

3.2. Display the Properties of an Item as a Table

Problem

You have a set of items (for example, error records, directory items, or .NET objects),
and you want to display summary information about them in a table format.

Solution

To display summary information about a set of items, pass those items to the Format-
Table cmdlet. This is the default type of formatting for sets of items in PowerShell and
provides several useful features.

To use PowerShell’s default formatting, pipe the output of a cmdlet (such as the Get-
Process cmdlet) to the Format-Table cmdlet:

Get-Process | Format-Table

To display specific properties (such as Name and WorkingSet) in the table formatting,
supply those property names as parameters to the Format-Table cmdlet:

Get-Process | Format-Table Name,WS

To instruct PowerShell to format the table in the most readable manner, supply the -Auto
flag to the Format-Table cmdlet. PowerShell defines WS as an alias of the WorkingSet
property for processes:

Get-Process | Format-Table Name,WS -Auto

To define a custom column definition (such as a process’s WorkingSet in megabytes),
supply a custom formatting expression to the Format-Table cmdlet:
$fields = "Name",@{

Label = "WS (MB)"; Expression = {$_.WS / 1mb}; Align = "Right"}
Get-Process | Format-Table $fields -Auto

Discussion

The Format-Table cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The
Format-Table cmdlet takes input and displays information about that input as a table.
By default, PowerShell takes the list of properties to display from the *.format.psIxml
files in PowerShell’s installation directory. You can display all properties of the items if
you type Format-Table *, although this is rarely a useful view.

The -Auto parameter to Format-Tab'le is a helpful way to automatically format the table
in the most readable way possible. It does come at a cost, however. To figure out the best
table layout, PowerShell needs to examine each item in the incoming set of items. For

120 | Chapter3:Variables and Objects

small sets of items, this doesnt make much difference, but for large sets (such as a
recursive directory listing) it does. Without the -Auto parameter, the Format-Table
cmdlet can display items as soon as it receives them. With the -Auto flag, the cmdlet
displays results only after it receives all the input.

Perhaps the most interesting feature of the Format-Table cmdlet is illustrated by the
last example: the ability to define completely custom table columns. You define a custom
table column similarly to the way that you define a custom column list. Rather than
specify an existing property of the items, you provide a hashtable. That hashtable in-
cludes up to three keys: the column’s label, a formatting expression, and alignment. The
Format-Table cmdlet shows the label as the column header and uses your expression
to generate data for that column. The label must be a string, the expression must be a
script block, and the alignment must be either "Left", "Center", or "Right". In the
expression script block, the $_ (or $PSItem) variable represents the current item being
formatted.

The Select-0bject cmdlet supports a similar hashtable to add calcu-
. lated properties, but uses Name (rather than Label) as the key to identify
%' the property. After realizing how confusing this was, version 2 of
PowerShell updated both cmdlets to accept both Name and Label.

The expression shown in the last example takes the working set of the current item and
divides it by 1 megabyte (1 MB).

One common stumbling block in PowerShell’s formatting cmdlets comes from putting
them in the middle of a script or pipeline:

PS > Get-Process | Format-Table | Sort Name

out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not valid or not in the correct sequence. This 1is
likely caused by a user-specified "format-*" command which is conflicting with
the default formatting.

Internally, PowerShell’s formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it
to the end of the pipeline, PowerShell then automatically sends them to an output cmdlet:
by default, Out-Default. These Out-* cmdlets assume that the objects arrive in a certain
order, so doing anything with the output of the formatting commands causes an error
in the output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself to
the object-based manipulation so synonymous with PowerShell.

3.2. Display the Properties of an Itemasa Table | 121

If you want to use the formatted output directly, send the output through the Out-
String cmdlet as described in Recipe 1.23, “Program: Search Formatted Output for a
Pattern”.

For more information about the Format-Table cmdlet, type Get-Help Format-Table.
For more information about hashtables, see Recipe 7.13, “Create a Hashtable or Asso-
ciative Array”. For more information about script blocks, see Recipe 11.4, “Write a Script
Block”.

See Also

Recipe 1.23, “Program: Search Formatted Output for a Pattern”
Recipe 7.13, “Create a Hashtable or Associative Array”

Recipe 11.4, “Write a Script Block”

3.3. Store Information in Variables

Problem

You want to store the output of a pipeline or command for later use or to work with it
in more detail.

Solution

To store output for later use, store the output of the command in a variable. You can
access this information later, or even pass it down the pipeline as though it were the
output of the original command:

PS > Sresult = 2 + 2
PS > S$result
4

PS > Soutput = ipconfig
PS > Soutput | Select-String "Default Gateway" | Select -First 1

Default Gateway : 192.168.11.1

PS > Sprocesses = Get-Process

PS > $processes.Count

85

PS > $processes | Where-Object { $_.ID -eq 0 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

122 | Chapter3:Variables and Objects

Discussion

Variables in PowerShell (and all other scripting and programming languages) let you
store the output of something so that you can use it later. A variable name starts with a
dollar sign ($) and can be followed by nearly any character. A small set of characters
have special meaning to PowerShell, so PowerShell provides a way to make variable
names that include even these.

For more information about the syntax and types of PowerShell variables, see “Vari-
ables” (page 864).

You can store the result of any pipeline or command in a variable to use it later. If that
command generates simple data (such as a number or string), then the variable contains
simple data. If the command generates rich data (such as the objects that represent
system processes from the Get-Process cmdlet), then the variable contains that list of
rich data. If the command (such as a traditional executable) generates plain text (such
as the output of traditional executable), then the variable contains plain text.

W 8
= If you've stored a large amount of data into a variable but no longer need
.‘& . that data, assign a new value (such as $null) to that variable. That will

"4k allow PowerShell to release the memory it was using to store that data.

In addition to variables that you create, PowerShell automatically defines several vari-
ables that represent things such as the location of your profile file, the process ID of
PowerShell, and more. For a full list of these automatic variables, type Get-Help
about_automatic_variables.

See Also
“Variables” (page 864)

3.4. Access Environment Variables

Problem

You want to use an environment variable (such as the system path or the current user’s
name) in your script or interactive session.

Solution
PowerShell offers several ways to access environment variables.

To list all environment variables, list the children of the env drive:

3.4. Access Environment Variables | 123

Get-ChildItem env:

To getan environment variable using a more concise syntax, precede its name with $env:
Senv:variablename

(For example, $env:username.)

To get an environment variable using its provider path, supply env: or Environ
ment:: to the Get-ChildItem cmdlet:

Get-ChildItem env:variablename
Get-ChildItem Environment::variablename

Discussion

PowerShell provides access to environment variables through its environment provider.
Providers let you work with data stores (such as the registry, environment variables, and
aliases) much as you would access the filesystem.

By default, PowerShell creates a drive (called env) that works with the environment
provider to let you access environment variables. The environment provider lets you
access items in the env: drive as you would any other drive: dir env:|variablename or
dir env:variablename. If you want to access the provider directly (rather than go
through its drive), you can also type dir Environment: : variablename.

However, the most common (and easiest) way to work with environment variables is by
typing $env:variablename. This works with any provider but is most typically used
with environment variables.

This is because the environment provider shares something in common with several
other providers—namely, support for the *-Content set of core cmdlets (see
Example 3-1).

Example 3-1. Working with content on different providers

PS > "hello world" > test

PS > Get-Content test

hello world

PS > Get-Content c:test

hello world

PS > Get-Content variable:ErrorActionPreference
Continue

PS > Get-Content function:more
param([string[]]Spaths)

$OutputEncoding = [System.Console]::OutputEncoding

if(Spaths)
{
foreach ($file in $paths)

{

Get-Content $file | more.com

124 | Chapter3:Variables and Objects

}

else

{

$input | more.com

}

PS > Get-Content env:systemroot
C:\WINDOWS

For providers that support the content cmdlets, PowerShell lets you interact with this
content through a special variable syntax (see Example 3-2).

Example 3-2. Using PowerShells special variable syntax to access content

PS > $function:more

param([string[]]$paths); if(($paths -ne $null) -and (Spaths.length -ne 0)) { ...
Get-Content $local:file | Out-Host -p } } else { $input | Out-Host ...

PS > $variable:ErrorActionPreference

Continue

PS > Sc:test

hello world

PS > S$env:systemroot

C:\WINDOWS

This variable syntax for content management lets you both get and set content:

PS > S$function:more = { $input | less.exe }
PS > $function:more
Sinput | less.exe

Now, when it comes to accessing complex provider paths using this method, you'll
quickly run into naming issues (even if the underlying file exists):

PS > Sc:\temp\test.txt

Unexpected token '\temp\test.txt' in expression or statement.
At line:1 char:17

+ Sc:\temp\test.txt <<<<

The solution to that lies in PowerShell’s escaping support for complex variable names.
To define a complex variable name, enclose it in braces:

PS > ${1234123!@#$!@#12!@#3$@!} = "Crazy Variable!"
PS > ${1234123!@#S!@#5125!@#3@!}

Crazy Variable!

PS > dir variable:\1*

Name Value

1234123 @#S! @#12 ! @#SQ! Crazy Variable!
The following is the content equivalent (assuming that the file exists):

PS > ${c:\temp\test.txt}
hello world

3.4. Access Environment Variables | 125

Since environment variable names do not contain special characters, this Get-Content
variable syntax is the best (and easiest) way to access environment variables.

For more information about working with PowerShell variables, see “Variables” (page
864). For more information about working with environment variables, type Get-Help
About_Environment_Variable.

See Also
“Variables” (page 864)

3.5. Program: Retain Changes to Environment Variables
Set by a Batch File

When a batch file modifies an environment variable, cmd.exe retains this change even
after the script exits. This often causes problems, as one batch file can accidentally pollute
the environment of another. That said, batch file authors sometimes intentionally
change the global environment to customize the path and other aspects of the environ-
ment to suit a specific task.

However, environment variables are private details of a process and disappear when that
process exits. This makes the environment customization scripts mentioned earlier stop
working when you run them from PowerShell—just as they fail to work when you run
them from another cmd.exe (for example, cmd.exe /c MyEnvironmentCustomiz
er.cmd).

The script in Example 3-3 lets you run batch files that modify the environment and
retain their changes even after cmd.exe exits. It accomplishes this by storing the envi-
ronment variables in a text file once the batch file completes, and then setting all those
environment variables again in your PowerShell session.

To run this script, type Invoke-CmdScript Scriptname.cmd or Invoke-CmdScript
Scriptname.bat—whichever extension the batch files uses.

If this is the first time you’ve run a script in PowerShell, you will need

. to configure your Execution Policy. For more information about se-

063 lecting an execution policy, see Recipe 18.1, “Enable Scripting Through
an Execution Policy”.

aqs
[N
N

Notice that this script uses the full names for cmdlets: Get-Content, Foreach-0bject,
Set-Content, and Remove-Item. This makes the script readable and is ideal for scripts
that somebody else will read. It is by no means required, though. For quick scripts and
interactive use, shorter aliases (such as gc, %, sc, and ri) can make you more productive.

126 | Chapter 3:Variables and Objects

Example 3-3. Invoke-CmdScript.ps1

BRI R
##t

Invoke-CmdScript

##t

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#H

<#
.SYNOPSIS

Invoke the specified batch file (and parameters), but also propagate any
environment variable changes back to the PowerShell environment that
called it.

.EXAMPLE

PS > type foo-that-sets-the-F00-env-variable.cmd
@set FOO=%*
echo FOO set to %FO0%.

PS > $env:F00
PS > Invoke-CmdScript "foo-that-sets-the-F00-env-variable.cmd" Test

C:\Temp>echo FOO set to Test.
FOO set to Test.

PS > $env:F00
Test

#>

param(
The path to the script to run
[Parameter(Mandatory = Strue)]
[string] $Path,

The arguments to the script
[string] SArgumentList
)

Set-StrictMode -Version 3
StempFile = [I0.Path]::GetTempFileName()
Store the output of cmd.exe. We also ask cmd.exe to output

the environment table after the batch file completes
cmd /c " ‘"$Path'" $SargumentList && set > '"StempFile'" "

3.5. Program: Retain Changes to Environment Variables Set by a Batch File | 127

Go through the environment variables in the temp file.
For each of them, set the variable in our local environment.
Get-Content StempFile | Foreach-Object {
1f(S_ -match "A(.*?2)=(.*)$")
{
Set-Content "env:\$($matches[1])" Smatches[2]

}
}

Remove-Item StempFile

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

3.6. Control Access and Scope of Variables and Other Items

Problem

You want to control how you define (or interact with) the visibility of variables, aliases,
functions, and drives.

Solution

PowerShell offers several ways to access variables.

To create a variable with a specific scope, supply that scope before the variable name:
$SCOPE:variable = value

To access a variable at a specific scope, supply that scope before the variable name:
$SCOPE:variable

To create a variable that remains even after the script exits, create it in the GLOBAL scope:
$GLOBAL:variable = value

To change a scriptwide variable from within a function, supply SCRIPT as its scope name:

$SCRIPT:variable = value

128 | Chapter 3:Variables and Objects

Discussion

PowerShell controls access to variables, functions, aliases, and drives through a mech-
anism known as scoping. The scope of an item is another term for its visibility. You are
always in a scope (called the current or local scope), but some actions change what that
means.

When your code enters a nested prompt, script, function, or script block, PowerShell
creates a new scope. That scope then becomes the local scope. When it does this,
PowerShell remembers the relationship between your old scope and your new scope.
From the view of the new scope, the old scope is called the parent scope. From the view
of the old scope, the new scope is called a child scope. Child scopes get access to all the
variables in the parent scope, but changing those variables in the child scope doesn’t
change the version in the parent scope.

¥ A

Trying to change a scriptwide variable from a function is often a

. “gotcha” because a function is a new scope. As mentioned previously,

063" changing something in a child scope (the function) doesn't affect the

parent scope (the script). The rest of this discussion describes ways to
change the value for the entire script.

aqs
[0

When your code exits a nested prompt, script, function, or script block, the opposite
happens. PowerShell removes the old scope, then changes the local scope to be the scope
that originally created it—the parent of that old scope.

Some scopes are so common that PowerShell gives them special names:

Global
The outermost scope. Items in the global scope are visible from all other scopes.

Script
The scope that represents the current script. Items in the script scope are visible
from all other scopes in the script.

Local
The current scope.

When you define the scope of an item, PowerShell supports two additional scope names
that act more like options: Private and AllScope. When you define an item to have a
Private scope, PowerShell does not make that item directly available to child scopes.
PowerShell does not hide it from child scopes, though, as child scopes can still use the
-Scope parameter of the Get-Variable cmdlet to get variables from parent scopes.
When you specify the Al1Scope option for an item (through one of the *-Variable, *-
Alias, or *-Drive cmdlets), child scopes that change the item also affect the value in
parent scopes.

3.6. Control Access and Scope of Variables and Other Items | 129

With this background, PowerShell provides several ways for you to control access and
scope of variables and other items.

Variables

To define a variable at a specific scope (or access a variable at a specific scope), use its
scope name in the variable reference. For example:

SSCRIPT:myVariable = value

Asillustrated in “Variables” (page 864), the *-Variable set of cmdlets also lets you specify
scope names through their -Scope parameter.

Functions

To define a function at a specific scope (or access a function at a specific scope), use its
scope name when creating the function. For example:

function GLOBAL:MyFunction { ... }
GLOBAL:MyFunction args

Aliases and drives

To define an alias or drive at a specific scope, use the Option parameter of the *-Alias
and *-Drive cmdlets. To access an alias or drive at a specific scope, use the Scope
parameter of the *-Alias and *-Drive cmdlets.

For more information about scopes, type Get-Help About-Scope.

See Also
“Variables” (page 864)

3.7. Program: Create a Dynamic Variable

When working with variables and commands, some concepts feel too minor to deserve
an entire new command or function, but the readability of your script suffers without
them.

A few examples where this becomes evident are date math (yesterday becomes
(Get-Date).AddDays(-1)) and deeply nested variables (windowTitle becomes
Shost.UI.RawUI.WindowTitle).

130 | Chapter3:Variables and Objects

There are innovative solutions on the Internet that use PowerShell’s de-
. bugging facilities to create a breakpoint that changes a variable’s value
%" whenever you attempt to read from it. While unique, this solution caus-
es PowerShell to think that any scripts that rely on the variable are in
debugging mode. This, unfortunately, prevents PowerShell from ena-

bling some important performance optimizations in those scripts.

Although we could write our own extensions to make these easier to access, Get-
Yesterday, Get-WindowTitle, and Set-WindowTitle feel too insignificant to deserve
their own commands.

PowerShell lets you define your own types of variables by extending its PSVariable class,
but that functionality is largely designed for developer scenarios, and not for scripting
scenarios. Example 3-4 resolves this quandary by creating a new variable type
(DynamicVariable) that supports dynamic script actions when you get or set the vari-
able’s value.

Example 3-4. New-DynamicVariable.ps1

A
#it

New-DynamicVariable

#it

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

B

<#
.SYNOPSIS
Creates a variable that supports scripted actions for its getter and setter
.EXAMPLE
PS > .\New-DynamicVariable GLOBAL:WindowTitle °
-Getter { $host.UI.RawUI.WindowTitle } °
-Setter { Shost.UI.RawUI.WindowTitle = $args[0] }
PS > SwindowTitle
Administrator: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
PS > SwindowTitle = "Test"
PS > SwindowTitle
Test
#>

param(

3.7. Program: Create a Dynamic Variable | 131

The name for the dynamic variable
[Parameter(Mandatory = $true)]
SName,

The script block to invoke when getting the value of the variable
[Parameter(Mandatory = $true)]
[ScriptBlock] SGetter,

The script block to invoke when setting the value of the variable
[ScriptBlock] S$Setter
)

Set-StrictMode -Version 3

Add-Type @"

using System;

using System.Collections.ObjectModel;
using System.Management.Automation;

namespace Lee.Holmes
{
public class DynamicVariable : PSVariable
{
public DynamicVariable(
string name,
ScriptBlock scriptGetter,
ScriptBlock scriptSetter)
: base(name, null, ScopedItemOptions.AllScope)

getter
setter

scriptGetter;
scriptSetter;

}
private ScriptBlock getter;
private ScriptBlock setter;

public override object Value
{
get
{
if(getter != null)
{
Collection<PSObject> results = getter.Invoke();
if(results.Count == 1)
{
return results[0];
}
else
{
PSObject[] returnResults =
new PSObject[results.Count];
results.CopyTo(returnResults, 0);
return returnResults;

132 | Chapter3:Variables and Objects

}

}
else { return null; }
}
set
{
if(setter != null) { setter.Invoke(value); }
}
}
}
}
'@

If we've already defined the variable, remove it.
if(Test-Path variable:\Sname)
{

Remove-Item variable:\$name -Force

}

Set the new variable, along with its getter and setter.
Sexecutioncontext.SessionState.PSVariable.Set(
(New-Object Lee.Holmes.DynamicVariable $name,$getter,Ssetter))

3.8. Work with .NET Objects

Problem

You want to use and interact with one of the features that makes PowerShell so pow-
erful: its intrinsic support for .NET objects.

Solution
PowerShell offers ways to access methods (both static and instance) and properties.

To call a static method on a class, place the type name in square brackets, and then
separate the class name from the method name with two colons:

[ClassName]: : MethodName(parameter list)

To call a method on an object, place a dot between the variable that represents that object
and the method name:

SobjectReference.MethodName(parameter list)

To access a static property on a class, place the type name in square brackets, and then
separate the class name from the property name with two colons:

[ClassName]: : PropertyName

3.8. Work with .NET Objects | 133

To access a property on an object, place a dot between the variable that represents that
object and the property name:

SobjectReference.PropertyName

Discussion

One feature that gives PowerShell its incredible reach into both system administration
and application development is its capability to leverage Microsoft’s enormous and
broad .NET Framework. The .NET Framework is a large collection of classes. Each class
embodies a specific concept and groups closely related functionality and information.
Working with the NET Framework is one aspect of PowerShell that introduces a rev-
olution to the world of management shells.

An example of a class from the NET Framework is System.Diagnostics.Process—
the grouping of functionality that “provides access to local and remote processes, and
enables you to start and stop local system processes.”

The terms type and class are often used interchangeably.

Classes contain methods (which let you perform operations) and properties (which let
you access information).

For example, the Get-Process cmdlet generates System.Diagnostics.Process objects,
not a plain-text report like traditional shells. Managing these processes becomes in-
credibly easy, as they contain a rich mix of information (properties) and operations
(methods). You no longer have to parse a stream of text for the ID of a process; you can
just ask the object directly!

PS > Sprocess = Get-Process Notepad
PS > $process.Id
3872
Static methods
[ClassName] : : MethodName (parameter list)

Some methods apply only to the concept the class represents. For example, retrieving
all running processes on a system relates to the general concept of processes instead of
a specific process. Methods that apply to the class/type as a whole are called static
methods.

For example:

PS > [System.Diagnostics.Process]::GetProcessById(0)

134 | Chapter3:Variables and Objects

This specific task is better handled by the Get-Process cmdlet, but it demonstrates
PowerShell’s capability to call methods on .NET classes. It calls the static GetProcess
ById method on the System.Diagnostics.Process class to get the process with the ID
of 0. This generates the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Instance methods

SobjectReference.MethodName(parameter list)

Some methods relate only to specific, tangible realizations (called instances) of a class.
An example of this would be stopping a process actually running on the system, as
opposed to the general concept of processes. If SobjectReference refers to a specific
System.Diagnostics.Process (as output by the Get-Process cmdlet, for example),
you may call methods to start it, stop it, or wait for it to exit. Methods that act on instances
of a class are called instance methods.

The term object is often used interchangeably with the term instance.

For example:

PS > $process = Get-Process Notepad
PS > $process.WaitForExit()

stores the Notepad process into the $process variable. It then calls the WaitForEx
it() instance method on that specific process to pause PowerShell until the process
exits. To learn about the different sets of parameters (overloads) that a given method
supports, type that method name without any parameters:

PS > $Snow = Get-Date
PS > Snow.ToString

OverloadDefinitions

string ToString()

string ToString(string format)

string ToString(System.IFormatProvider provider)

string ToString(string format, System.IFormatProvider provider)

string IFormattable.ToString(string format, System.IFormatProvider formatProvider)
string IConvertible.ToString(System.IFormatProvider provider)

3.8. Work with .NET Objects | 135

For both static methods and instance methods, you may sometimes run into situations
where PowerShell either generates an error or fails to invoke the method you expected.
In this case, review the output of the Trace-Command cmdlet, with MemberResolution
as the trace type (see Example 3-5).

Example 3-5. Investigating PowerShell's method resolution

PS > Trace-Command MemberResolution -PsHost {
[System.Diagnostics.Process]::GetProcessById(0) }

DEBUG: MemberResolution Information: O : cache hit, Calling Method: static
System.Diagnostics.Process GetProcessById(int processId)

DEBUG: MemberResolution Information: O : Method argument conversion.
DEBUG: MemberResolution Information: 0 : Converting parameter "0" to
"System.Int32".

DEBUG: MemberResolution Information: @ : Checking for possible references.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

If you are adapting a C# example from the Internet and PowerShell can't find a method
used in the example, the method may have been added through a relatively rare tech-
nique called explicit interface implementation. If this is the case, you can cast the object
to that interface before calling the method:

$sourceObject = 123

$result = ([IConvertible] $sourceObject).ToUint16($null)
Static properties

[ClassName]: : PropertyName
or:

[ClassName]: :PropertyName = value

Like static methods, some properties relate only to information about the concept that
the class represents. For example, the System.DateTime class “represents an instant in
time, typically expressed as a date and time of day.” It provides a Now static property that
returns the current time:

PS > [System.DateTime]: :Now
Saturday, June 2, 2010 4:57:20 PM

This specific task is better handled by the Get-Date cmdlet, but it demonstrates
PowerShell’s capability to access properties on .NET objects.

136 | Chapter3:Variables and Objects

Although they are relatively rare, some types let you set the value of some static prop-
erties as well: for example, the [System.Environment]::CurrentDirectory property.
This property represents the process’s current directory—which represents PowerShell’s
startup directory, as opposed to the path you see in your prompt.

Instance properties
SobjectReference.PropertyName

or:
SobjectReference.PropertyName = value

Like instance methods, some properties relate only to specific, tangible realizations
(called instances) of a class. An example of this would be the day of an actual instant in
time, as opposed to the general concept of dates and times. If SobjectReference refers
to a specific System.DateTime (as output by the Get-Date cmdlet or [System.Date
Time]: :Now, for example), you may want to retrieve its day of week, day, or month.
Properties that return information about instances of a class are called instance
properties.

For example:

PS > Stoday = Get-Date
PS > S$today.DayOfWeek
Saturday

This example stores the current date in the $today variable. It then calls the DayOf
Week instance property to retrieve the day of the week for that specific date.

With this knowledge, the next questions are: “How do I learn about the functionality
available in the .NET Framework?” and “How do I learn what an object does?”

For an answer to the first question, see Appendix F for a hand-picked list of the classes
in the NET Framework most useful to system administrators. For an answer to the
second, see Recipe 3.13, “Learn About Types and Objects” and Recipe 3.14, “Get Detailed
Documentation About Types and Objects”.

See Also

Recipe 3.13, “Learn About Types and Objects”

Recipe 3.14, “Get Detailed Documentation About Types and Objects”
Appendix E Selected .NET Classes and Their Uses

3.8. Work with .NET Objects | 137

3.9. Create an Instance of a .NET Object

Problem

You want to create an instance of a .NET object to interact with its methods and
properties.

Solution
Use the New-0bject cmdlet to create an instance of an object.

To create an instance of an object using its default constructor, use the New-Object
cmdlet with the class name as its only parameter:
PS > Sgenerator = New-Object System.Random

PS > Sgenerator.NextDouble()
0.853699042859347

To create an instance of an object that takes parameters for its constructor, supply those
parameters to the New-0Object cmdlet. In some instances, the class may exist in a separate
library not loaded in PowerShell by default, such as the System.Windows.Forms assem-
bly. In that case, you must first load the assembly that contains the class:

Add-Type -Assembly System.Windows.Forms
$image = New-Object System.Drawing.Bitmap source.gif
$image.Save("source_converted. jpg", "JPEG")
To create an object and use it at the same time (without saving it for later), wrap the call
to New-Object in parentheses:

PS > (New-Object Net.WebClient).DownloadString("http://live.com")

Discussion

Many cmdlets (such as Get-Process and Get-ChildItem) generate live NET objects
that represent tangible processes, files, and directories. However, PowerShell supports
much more of the NET Framework than just the objects that its cmdlets produce. These
additional areas of the NET Framework supply a huge amount of functionality that you
can use in your scripts and general system administration tasks.

W

To create an instance of a generic object, see Example 3-6.

When it comes to using most of these classes, the first step is often to create an instance
of the class, store that instance in a variable, and then work with the methods and

138 | Chapter3:Variables and Objects

properties on that instance. To create an instance of a class, you use the New-Object
cmdlet. The first parameter to the New-0bject cmdlet is the type name, and the second
parameter is the list of arguments to the constructor, if it takes any. The New-Object
cmdlet supports PowerShell’s type shortcuts, so you never have to use the fully qualified
type name. For more information about type shortcuts, see “Type Shortcuts” (page 893).

A common pattern when working with .NET objects is to create them, set a few prop-
erties, and then use them. The -Property parameter of the New-0Object cmdletlets you
combine these steps:

$startInfo = New-Object Diagnostics.ProcessStartInfo -Property @{

'Filename' = "powershell.exe";
'"WorkingDirectory' = $pshome;
'Verb' = "RunAs"

}

[Diagnostics.Process]::Start($startInfo)
Or even more simply through PowerShell’s built-in type conversion:

$startInfo = [Diagnostics.ProcessStartInfo] @{

'Filename' = "powershell.exe";
'"WorkingDirectory' = $pshome;
'Verb' = "RunAs"

}

When calling the New-Object cmdlet directly, you might encounter difficulty when
trying to specify a parameter that itself is a list. Assuming $byte is an array of bytes:
PS > SmemoryStream = New-Object System.IO.MemoryStream $bytes
New-Object : Cannot find an overload for ".ctor" and the argument count: "11".

At line:1 char:27
+ SmemoryStream = New-Object <<<< System.IO.MemoryStream S$bytes

To solve this, provide an array that contains an array:

PS > S$parameters = ,S$bytes
PS > SmemoryStream = New-Object System.IO.MemoryStream $parameters

or:

PS > SmemoryStream = New-Object System.IO.MemoryStream @(,S$bytes)

Load types from another assembly

PowerShell makes most common types available by default. However, many are available
only after you load the library (called the assembly) that defines them. The MSDN
documentation for a class includes the assembly that defines it. For more information
about loading types from another assembly, please see Recipe 17.8, “Access a.NET SDK
Library”.

3.9. Create an Instance of a .NET Object | 139

For a hand-picked list of the classes in the .NET Framework most useful to system
administrators, see Appendix F. To learn more about the functionality that a class sup-
ports, see Recipe 3.13, “Learn About Types and Objects”.

For more information about the New-0Object cmdlet, type Get-Help New-Object. For
more information about the Add-Type cmdlet, type Get-Help Add-Type.

See Also

Recipe 3.8, “Work with .NET Objects”

Recipe 3.13, “Learn About Types and Objects”
Recipe 17.8, “Access a .NET SDK Library”
Appendix E Selected .NET Classes and Their Uses
Example 3-6

3.10. Create Instances of Generic Objects

When you work with the NET Framework, you'll often run across classes that have the
primary responsibility of managing other objects. For example, the System.
Collections.ArraylList class lets you manage a dynamic list of objects. You can add
objects to an ArrayList, remove objects from it, sort the objects inside, and more. These
objects can be any type of object: String objects, integers, DateTime objects, and many
others. However, working with classes that support arbitrary objects can sometimes be
a little awkward. One example is type safety. If you accidentally add a String to a list of
integers, you might not find out until your program fails.

Although the issue becomes largely moot when you’re working only inside PowerShell,
a more common complaint in strongly typed languages (such as C#) is that you have to
remind the environment (through explicit casts) about the type of your object when you
work with it again:

// This is C# code

System.Collections.ArrayList list =
new System.Collections.ArrayList();

1ist.Add("Hello World");

string result = (String) list[0];

To address these problems, the .NET Framework includes a feature called generic
types: classes that support arbitrary types of objects but let you specify which type of
object. In this case, a collection of strings:

// This is C# code
System.Collections.ObjectModel.Collection<String> list =

140 | Chapter 3:Variables and Objects

new System.Collections.ObjectModel.Collection<String>();
1ist.Add("Hello World");

string result = list[0];

PowerShell version 2 and on support generic parameters by placing them between
square brackets, as demonstrated in Example 3-6. If you are using PowerShell version
1, see New-GenericObject included in the book’s sample downloads.

Example 3-6. Creating a generic object

PS > Scoll = New-Object System.Collections.ObjectModel.Collection[Int]
PS > Scoll.Add(15)
PS > $coll.Add("Test")
Cannot convert argument "0", with value: "Test", for "Add" to type "System
.Int32": "Cannot convert value "Test" to type "System.Int32". Error: "Input
string was not in a correct format.""
At line:1 char:10
+ $coll.Add <<<< ("Test")
+ CategoryInfo : NotSpecified: (:) [], MethodException
+ FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

For a generic type that takes two or more parameters, provide a comma-separated list
of types, enclosed in quotes (see Example 3-7).

Example 3-7. Creating a multiparameter generic object

PS > $map = New-Object "System.Collections.Generic.Dictionary[String,Int]"
PS > $map.Add("Test", 15)
PS > Smap.Add("Test2", "Hello")
Cannot convert argument "1", with value: "Hello", for "Add" to type "System
.Int32": "Cannot convert value "Hello" to type "System.Int32". Error:
"Input string was not in a correct format.""
At line:1 char:9
+ $map.Add <<<< ("Test2", "Hello")

+ CategoryInfo : NotSpecified: (:) [], MethodException

+ FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

3.11. Reduce Typing for Long Class Names

Problem

You want to reduce the amount of redundant information in your script when you
interact with classes that have long type names.

Solution

To reduce typing for static methods, store the type name in a variable:

3.11. Reduce Typing for Long Class Names | 141

$math = [System.Math]
$math::Min(1,10)
$math::Max(1,10)

To reduce typing for multiple objects in a namespace, use the -f operator:

$namespace = "System.Collections.{0}"
$arrayList = New-Object ($namespace -f "ArrayList")
$queue = New-Object ($namespace -f "Queue")

To reduce typing for static methods of multiple types in a namespace, use the - f operator
along with a cast:

$namespace = "System.Diagnostics.{0}"
([Type] (Snamespace -f "EventLog"))::GetEventLogs()
([Type] (Snamespace -f "Process"))::GetCurrentProcess()

Discussion

One thing you will notice when working with some .NET classes (or classes from a third-
party SDK) is that it quickly becomes tiresome to specify their fully qualified type names.
For example, many useful collection classes in the .NET Framework start with Sys
tem.Collections. This is called the namespace of that class. Most programming lan-
guages solve this problem with a using directive that lets you specify a list of namespaces
for that language to search when you type a plain class name such as ArrayList. Pow-
erShell lacks a using directive, but there are several options to get the benefits of one.

If you are repeatedly working with static methods on a specific type, you can store that
type in a variable to reduce typing, as shown in the Solution:

$math = [System.Math]
$math::Min(1,10)
S$math: :Max(1,10)

If you are creating instances of different classes from a namespace, you can store the
namespace in a variable and then use the PowerShell - f (format) operator to specify the
unique class name:

$namespace = "System.Collections.{0}"
$arrayList = New-Object ($namespace -f "ArrayList")
Squeue = New-Object (Snamespace -f "Queue")

If you are working with static methods from several types in a namespace, you can store
the namespace in a variable, use the - f operator to specify the unique class name, and
then finally cast that into a type:

$namespace = "System.Diagnostics.{0}"
([Type] (Snamespace -f "EventLog"))::GetEventLogs()
([Type] (Snamespace -f "Process"))::GetCurrentProcess()

For more information about PowerShell’s format operator, see Recipe 5.6, “Place For-
matted Information in a String”.

142 | Chapter 3:Variables and Objects

See Also

Recipe 5.6, “Place Formatted Information in a String”

3.12. Use a COM Object

Problem

You want to create a COM object to interact with its methods and properties.

Solution

Use the New-Object cmdlet (with the -ComObject parameter) to create a COM object
from its ProgID. You can then interact with the methods and properties of the COM
object as you would any other object in PowerShell.

Sobject = New-Object -ComObject ProgId
For example:

PS > S$sapi = New-Object -Com Sapi.SpVoice

PS > $sapi.Speak("Hello World")

Discussion

Historically, many applications have exposed their scripting and administration inter-
faces as COM objects. While .NET APIs (and PowerShell cmdlets) are by far the most
common, interacting with COM objects is still a routine administrative task.

As with classes in the .NET Framework, it is difficult to know what COM objects you
can use to help you accomplish your system administration tasks. For a hand-picked
list of the COM objects most useful to system administrators, see Appendix H.

For more information about the New-0Object cmdlet, type Get-Help New-Object.

See Also
Appendix H, Selected COM Objects and Their Uses

3.13. Learn About Types and Objects

Problem

You have an instance of an object and want to know what methods and properties it
supports.

3.12.Usea COM Object | 143

Solution

The most common way to explore the methods and properties supported by an object
is through the Get-Member cmdlet.

To get the instance members of an object you've stored in the $object variable, pipe it
to the Get-Member cmdlet:

Sobject | Get-Member
Get-Member -InputObject $Sobject

To get the static members of an object you've stored in the $Sobject variable, supply the
-Static flag to the Get-Member cmdlet:

Sobject | Get-Member -Static
Get-Member -Static -InputObject Sobject

To get the static members of a specific type, pipe that type to the Get-Member cmdlet,
and also specify the -Static flag:

[Type] | Get-Member -Static

Get-Member -InputObject [Type]
To get members of the specified member type (for example, Method or Property) from
an object you have stored in the $object variable, supply that member type to the
-Member Type parameter:

Sobject | Get-Member -MemberType MemberType
Get-Member -MemberType MemberType -InputObject $object

Discussion

The Get-Member cmdlet is one of the three commands you will use most commonly as
you explore Windows PowerShell. The other two commands are Get-Command and
Get-Help.

To interactively explore an objects methods and properties, see
. Recipe 1.25, “Program: Interactively View and Explore Objects™.

3,

If you pass the Get-Member cmdlet a collection of objects (such as an Array or Array
List) through the pipeline, PowerShell extracts each item from the collection and then
passes them to the Get-Member cmdlet one by one. The Get-Member cmdlet then returns
the members of each unique type that it receives. Although helpful the vast majority of
the time, this sometimes causes difficulty when you want to learn about the members
or properties of the collection class itself.

144 | Chapter 3:Variables and Objects

If you want to see the properties of a collection (as opposed to the elements it contains),
provide the collection to the -InputObject parameter instead. Alternatively, you can
wrap the collection in an array (using PowerShell’s unary comma operator) so that the
collection class remains when the Get-Member cmdlet unravels the outer array:

PS > $files = Get-ChildItem
PS > ,$files | Get-Member

TypeName: System.Object[]

Name MemberType Definition

Count AliasProperty Count = Length

Address Method System.Object& Address(Int32)
(...)

For another way to learn detailed information about types and objects, see Recipe 3.14,
“Get Detailed Documentation About Types and Objects”.

For more information about the Get-Member cmdlet, type Get-Help Get-Member.

See Also

Recipe 1.25, “Program: Interactively View and Explore Objects”
Recipe 3.14, “Get Detailed Documentation About Types and Objects”

3.14. Get Detailed Documentation About Types and
Objects

Problem

You have a type of object and want to know detailed information about the methods
and properties it supports.

Solution

The documentation for the NET Framework [available here] is the best way to get
detailed documentation about the methods and properties supported by an object. That
exploration generally comes in two stages:

1. Find the type of the object.

To determine the type of an object, you can either use the type name shown by the
Get-Member cmdlet (as described in Recipe 3.13, “Learn About Types and Ob-
jects”) or call the GetType() method of an object (if you have an instance of it):

3.14. Get Detailed Documentation About Types and Objects | 145

http://msdn.microsoft.com

PS > Sdate = Get-Date
PS > S$date.GetType().ToString()
System.DateTime

2. Enter that type name into the search box here.

Discussion

When the Get-Member cmdlet does not provide the information you need, the MSDN
documentation for a type is a great alternative. It provides much more detailed infor-
mation than the help offered by the Get-Member cmdlet—usually including detailed
descriptions, related information, and even code samples. MSDN documentation fo-
cuses on developers using these types through a language such as C#, though, so you
may find interpreting the information for use in PowerShell to be a little difficult at first.

Typically, the documentation for a class first starts with a general overview, and then
provides a hyperlink to the members of the class—the list of methods and properties it
supports.

W N
& To get to the documentation for the members quickly, search for them
.‘S‘ . more explicitly by adding the term “members” to your MSDN search
0 term: “typename members.”

Documentation for the members of a class lists the class’s methods and properties, as
does the output of the Get-Member cmdlet. The S icon represents static methods and
properties. Click the member name for more information about that method or

property.

Public constructors

This section lists the constructors of the type. You use a constructor when you create
the type through the New-0bject cmdlet. When you click on a constructor, the docu-
mentation provides all the different ways that you can create that object, including the
parameter list that you will use with the New-0bject cmdlet.

Public fields/public properties

This section lists the names of the fields and properties of an object. The Sicon represents
a static field or property. When you click on a field or property, the documentation also
provides the type returned by this field or property.

For example, you might see the following in the definition for System.DateTime.Now:

C#
public static DateTime Now { get; }

146 | Chapter 3:Variables and Objects

http://msdn.microsoft.com

Public means that the Now property is public—that you can access it from PowerShell.
Static means that the property is static (as described in Recipe 3.8, “Work with NET
Objects”). DateTime means that the property returns a DateTime object when you call
it. get; means that you can get information from this property but cannot set the in-
formation. Many properties support a set; as well (such as the IsReadOnly property
on System.I0.FileInfo), which means that you can change its value.

Public methods

This section lists the names of the methods of an object. The S icon represents a static
method. When you click on a method, the documentation provides all the different ways
that you can call that method, including the parameter list that you will use to call that
method in PowerShell.

For example, you might see the following in the definition for System.DateTime.Add
Days():

C#
public DateTime AddDays (
double value

)
Public means that the AddDays method is public—that you can access it from Power-
Shell. DateTime means that the method returns a DateTime object when you call it. The
text double value means that this method requires a parameter (of type double). In
this case, that parameter determines the number of days to add to the DateTime object
on which you call the method.
See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 3.13, “Learn About Types and Objects”

3.15. Add Custom Methods and Properties to Objects

Problem

You have an object and want to add your own custom properties or methods (mem-
bers) to that object.

Solution

Use the Add-Member cmdlet to add custom members to an object.

3.15. Add Custom Methods and Properties to Objects | 147

Discussion

The Add-Member cmdlet is extremely useful in helping you add custom members to
individual objects. For example, imagine that you want to create a report from the files
in the current directory, and that report should include each file's owner. The Owner
property is not standard on the objects that Get-ChildItem produces, but you could
write a small script to add them, as shown in Example 3-8.

Example 3-8. A script that adds custom properties to its output of file objects

#it

Get-OwnerReport

#it

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#H

B

<#
.SYNOPSIS

Gets a list of files in the current directory, but with their owner added
to the resulting objects.

.EXAMPLE

PS > Get-OwnerReport | Format-Table Name,LastWriteTime,Owner
Retrieves all files in the current directory, and displays the
Name, LastWriteTime, and Owner

#>

Set-StrictMode -Version 3

$files = Get-ChildItem
foreach($file in $files)

{
Sowner = (Get-Acl $file).Owner
$file | Add-Member NoteProperty Owner Sowner
sfile

}

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools”.

The most common type of information to add to an object is static information in a
NoteProperty. Add-Member even uses this as the default if you omit it:

148 | Chapter 3:Variables and Objects

PS > Sitem = Get-Item C:\

PS > $item | Add-Member VolumeName "Operating System"

PS > $item.VolumeName

Operating System
In addition to note properties, the Add-Member cmdlet supports several other property
and method types, including AliasProperty, ScriptProperty, CodeProperty, CodeMe
thod, and ScriptMethod. For a more detailed description of these other property types,
see “Working with the .NET Framework” (page 891), as well as the help documentation
for the Add-Member cmdlet.

To create entirely new objects (instead of adding information to existing
. ones), see Recipe 3.16, “Create and Initialize Custom Objects”.

Although the Add-Member cmdlet lets you customize specific objects, it does not let you
customize all objects of that type. For information on how to do that, see Recipe 3.17,
“Add Custom Methods and Properties to Types”.

Calculated properties

Calculated properties are another useful way to add information to output objects. If
your script or command uses a Format-Table or Select-0Object command to generate
its output, you can create additional properties by providing an expression that generates
their value. For example:

Get-ChildItem |
Select-Object Name,
@{Name="Size (MB)"; Expression={ "{0,8:0.00}" -f (S_.Length / 1MB) } }
In this command, we get the list of files in the directory. We use the Select-0Object
command to retrieve its name and a calculated property called Size (MB). This calcu-
lated property returns the size of the file in megabytes, rather than the default (bytes).

NN
& The Format-Table cmdlet supports a similar hashtable to add calcula-
t‘s‘.‘ . ted properties, but uses Label (rather than Name) as the key to identify
01 the property. To eliminate the confusion this produced, version 2 of

PowerShell updated the two cmdlets to accept both Name and Label.

For more information about the Add-Member cmdlet, type Get-Help Add-Member.

For more information about adding calculated properties, type Get-Help Select-
Object or Get-Help Format-Table.

3.15. Add Custom Methods and Properties to Objects | 149

See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”
Recipe 3.16, “Create and Initialize Custom Objects”

Recipe 3.17, “Add Custom Methods and Properties to Types”
“Working with the NET Framework” (page 891)

3.16. Create and Initialize Custom Objects

Problem

You want to return structured results from a command so that users can easily sort,
group, and filter them.

Solution

Use the [PSCustomObject] type cast to a new PSCustomObject, supplying a hashtable
with the custom information as its value, as shown in Example 3-9.

Example 3-9. Creating a custom object

Soutput = [PSCustomObject] @{
'User' = 'DOMAIN\User';
'Quota' = 100MB;
'ReportDate' = Get-Date;

}

If you want to create a custom object with associated functionality, place the function-
ality in a module, and load that module with the -AsCustomObject parameter:

$obj = Import-Module PlottingObject -AsCustomObject
$obj.Move(10,10)

$obj.Points = SineWave
while($true) { $obj.Rotate(10); $Sobj.Draw(); Sleep -m 20 }

Discussion

When your script outputs information to the user, always prefer richly structured data
over hand-formatted reports. By emitting custom objects, you give the end user as much
control over your script’s output as PowerShell gives you over the output of its own
commands.

150 | Chapter 3:Variables and Objects

Despite the power afforded by the output of custom objects, user-written scripts have
frequently continued to generate plain-text output. This can be partly blamed on
PowerShell’s previously cumbersome support for the creation and initialization of cus-
tom objects, as shown in Example 3-10.

Example 3-10. Creating a custom object in PowerShell version 1

Soutput = New-Object PsObject

Add-Member -InputObject Soutput NoteProperty User 'DOMAIN\user'
Add-Member -InputObject Soutput NoteProperty Quota 100MB
Add-Member -InputObject Soutput NoteProperty ReportDate (Get-Date)

Soutput

In PowerShell version 1, creating a custom object required creating a new object (of the
type PsObject), and then calling the Add-Member cmdlet multiple times to add the de-
sired properties. PowerShell version 2 made this immensely easier by adding the -
Property parameter to the New-Object cmdlet, which applied to the PSObject type as
well. PowerShell version 3 made this as simple as possible by directly supporting the
[PSCustomObject] type cast.

While creating a PSCustomObject makes it easy to create data-centric objects (often
called property bags), it does not let you add functionality to those objects. When you
need functionality as well, the next step is to create a module and import that module
with the -AsCustomObject parameter (see Example 3-11). Any variables exported by
that module become properties on the resulting object, and any functions exported by
that module become methods on the resulting object.

W S
& An important point about importing a module as a custom object is that
.‘& variables defined in that custom object are shared by all versions of that
e object. If you import the module again as a custom object (but store the

result in another variable), the two objects will share their internal state.

Example 3-11. Creating a module designed to be used as a custom object

T
##

PlottingObject.psml

##

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

<#

.SYNOPSIS

3.16. Create and Initialize Custom Objects | 151

Demonstrates a module designed to be imported as a custom object
.EXAMPLE

Remove-Module PlottingObject
function SineWave { -15..15 | % { ,(5_,(10 * [Math]::Sin(5_ / 3))) } }
function Box { -5..5 | % { ($_,-5),(5_,5),(-5,5_),(5,5_) } }

$obj = Import-Module PlottingObject -AsCustomObject
$obj.Move(10,10)

Sobj.Points = SineWave
while($true) { $Sobj.Rotate(10); $obj.Draw(); Sleep -m 20 }

Sobj.Points = Box
while($true) { Sobj.Rotate(10); $obj.Draw(); Sleep -m 20 }

#>

Declare some internal variables
$SCRIPT:x = 0

$SCRIPT:y = 0

SSCRIPT:angle = 0

SSCRIPT:xScale = -50,50
$SCRIPT:yScale = -50,50

And a variable that we will later export
S$SCRIPT:Points = @()
Export-ModuleMember -Variable Points

A function to rotate the points by a certain amount
function Rotate(Sangle)
{
$SCRIPT:angle += $angle
}

Export-ModuleMember -Function Rotate

A function to move the points by a certain amount
function Move($xDelta, $yDelta)
{
$SCRIPT:x += $xDelta
$SCRIPT:y += $yDelta
}

Export-ModuleMember -Function Move

A function to draw the given points
function Draw
{
$degToRad = 180 * [Math]::Pi
Clear-Host

152 | Chapter 3:Variables and Objects

Draw the origin
PutPixel @ 0 +

Go through each of the supplied points,
move them the amount specified, and then rotate them
by the angle specified
foreach($point in $points)
{
$pointX,$pointY = $point
SpointX = $pointX + $SCRIPT:x
$pointY = SpointY + $SCRIPT:y

SnewX = $pointX * [Math]::Cos($SCRIPT:angle / $degToRad) -
$pointY * [Math]::Sin($SCRIPT:angle / $degToRad)

S$newY = $pointY * [Math]::Cos(SSCRIPT:angle / $degToRad) +
$pointX * [Math]::Sin($SCRIPT:angle / $degToRad)

PutPixel SnewX $newY O
}

[Console]::WriteLine()

}

Export-ModuleMember -Function Draw

A helper function to draw a pixel on the screen
function PutPixel($x, Sy, Scharacter)

{
$scaledX = (Sx - $xScale[0]) / ($xScale[1] - $xScale[0])
$scaledX *= [Console]::WindowWidth

$scaledY = ((Sy * 4 / 3) - SyScale[0]) / (SyScale[1] - $SyScale[0])
$scaledY *= [Console]::WindowHeight

try
{

[Console]::SetCursorPosition($scaledX,
[Console]: :WindowHeight - $scaledY)
[Console]::Write(Scharacter)

}

catch

{
Take no action on error. We probably just rotated a point
out of the screen boundary.

}

For more information about creating modules, see Recipe 11.6, “Package Common
Commands in a Module”.

If neither of these options suits your requirements (or if you need to create an object
that can be consumed by other .NET libraries), use the Add-Type cmdlet. For more
information about this approach, see Recipe 17.6, “Define or Extend a NET Class”.

3.16. Create and Initialize Custom Objects | 153

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”
Recipe 11.6, “Package Common Commands in a Module”

Recipe 17.6, “Define or Extend a .NET Class”

3.17. Add Custom Methods and Properties to Types

Problem

You want to add your own custom properties or methods to all objects of a certain type.

Solution
Use the Update-TypeData cmdlet to add custom members to all objects of a type.

Update-TypeData -TypeName AddressRecord °
-MemberType AliasProperty -Membername Cell -Value Phone

Alternatively, use custom type extension files.

Discussion

Although the Add-Member cmdlet is extremely useful in helping you add custom mem-
bers to individual objects, it requires that you add the members to each object that you
want to interact with. It does not let you automatically add them to all objects of that
type. For that purpose, PowerShell supports another mechanism—custom type
extensions.

The simplest and most common way to add members to all instances of a type is through
the Update-TypeData cmdlet. This cmdlet supports aliases, notes, script methods, and
more:

$r = [PSCustomObject] @{
Name = "Lee";
Phone = "555-1212";
SSN = "123-12-1212"

}
$r.PSTypeNames .Add("AddressRecord")
Update-TypeData -TypeName AddressRecord °
-MemberType AliasProperty -Membername Cell -Value Phone

Custom type extensions let you easily add your own features to any type exposed by the
system. If you write code (for example, a script or function) that primarily interacts with
a single type of object, then that code might be better suited as an extension to the type
instead.

154 | Chapter 3:Variables and Objects

For example, imagine a script that returns the free disk space on a given drive. That
might be helpful as a script, but instead you might find it easier to make PowerShell’s
PSDrive objects themselves tell you how much free space they have left.

In addition to the Update-TypeData approach, PowerShell supports type extensions
through XML-based type extension files. Since type extension files are XML files, make
sure that your customizations properly encode the characters that have special meaning
in XML files, such as <, >, and &.

For more information about the features supported by these formatting XML files, type
Get-Help about_format.psixml.

Getting started

If you haven't done so already, the first step in creating a type extension file is to create
an empty one. The best location for this is probably in the same directory as your custom
profile, with the filename Types.Custom.pslxml, as shown in Example 3-12.

Example 3-12. Sample Types.Custom.ps1xml file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
</Types>

Next, add a few lines to your PowerShell profile so that PowerShell loads your type
extensions during startup:
StypeFile = (Join-Path (Split-Path $profile) "Types.Custom.psixml")
Update-TypeData -PrependPath StypeFile
By default, PowerShell loads several type extensions from the Types.psIxml file in
PowerShell’s installation directory. The Update - TypeData cmdlet tells PowerShell to also
look in your Types.Custom.pslxml file for extensions. The -PrependPath parameter
makes PowerShell favor your extensions over the built-in ones in case of conflict.

Once you have a custom types file to work with, adding functionality becomes relatively
straightforward. As a theme, these examples do exactly what we alluded to earlier: add
functionality to PowerShell’s PSDrive type.

A
o)

PowerShell version 2 does this automatically. Type Get-PSDrive to see
. theresult.

To support this, you need to extend your custom types file so that it defines additions
to the System.Management.Automation.PSDriveInfo type, shown in Example 3-13.
System.Management.Automation.PSDriveInfo is the type that the Get-PSDrive
cmdlet generates.

3.17. Add Custom Methods and Properties to Types | 155

Example 3-13. A template for changes to a custom types file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
<Type>
<Name>System.Management.Automation.PSDriveInfo</Name>
<Members>
add members such as <ScriptProperty> here
<Members>
</Type>
</Types>

Add a ScriptProperty

A ScriptProperty lets you add properties (that get and set information) to types, using
PowerShell script as the extension language. It consists of three child elements: the Name
of the property, the getter of the property (via the GetScriptBlock child), and the setter
of the property (via the SetScriptBlock child).

In both the GetScriptBlock and SetScriptBlock sections, the $this variable refers to
the current object being extended. In the SetScriptBlock section, the $args[0] variable
represents the value that the user supplied as the righthand side of the assignment.

Example 3-14 adds an AvailableFreeSpace ScriptProperty to PSDriveInfo, and
should be placed within the members section of the template given in Example 3-13.
When you access the property, it returns the amount of free space remaining on the
drive. When you set the property, it outputs what changes you must make to obtain that
amount of free space.

Example 3-14. A ScriptProperty for the PSDrivelnfo type

<ScriptProperty>
<Name>AvailableFreeSpace</Name>
<GetScriptBlock>
Ensure that this is a FileSystem drive
if(Sthis.Provider.ImplementingType -eq
[Microsoft.PowerShell.Commands.FileSystemProvider])
{
Also ensure that it is a local drive
$driveRoot = $this.Root
$fileZone = [System.Security.Policy.Zone]::CreateFromUrl("’
SdriveRoot).SecurityZone
if(S$fileZone -eq "MyComputer")
{
$drive = New-Object System.IO.DrivelInfo S$driveRoot
Sdrive.AvailableFreeSpace
}
}
</GetScriptBlock>
<SetScriptBlock>

156 | Chapter 3:Variables and Objects

Get the available free space
SavailableFreeSpace = $this.AvailableFreeSpace

Find out the difference between what is available, and what they
asked for.
S$spaceDifference = (([long] $args[0]) - SavailableFreeSpace) / 1MB

If they want more free space than they have, give that message
if(SspaceDifference -gt 0)

{
$message = "To obtain $args bytes of free space, " +
" free S$spaceDifference megabytes."
Write-Host Smessage
}
If they want less free space than they have, give that message
else
{
$spaceDifference = $spaceDifference * -1
S$message = "To obtain $args bytes of free space, " +
" use up $spaceDifference more megabytes."
Write-Host Smessage
}
</SetScriptBlock>
</ScriptProperty>

Add an AliasProperty

An AliasProperty gives an alternative name (alias) for a property. The referenced
property does not need to exist when PowerShell processes your type extension file,
since you (or another script) might later add the property through mechanisms such as
the Add-Member cmdlet.

Example 3-15 adds a Free AliasProperty to PSDriveInfo, and it should also be placed
within the members section of the template given in Example 3-13. When you access
the property, it returns the value of the AvailableFreeSpace property. When you set
the property, it sets the value of the AvailableFreeSpace property.

Example 3-15. An AliasProperty for the PSDrivelnfo type

<AliasProperty>
<Name>Free</Name>
<ReferencedMemberName>AvailableFreeSpace</ReferencedMemberName>
</AliasProperty>

Add a ScriptMethod

A ScriptMethod lets you define an action on an object, using PowerShell script as the
extension language. It consists of two child elements: the Name of the property and the
Script.

3.17. Add Custom Methods and Properties to Types | 157

In the script element, the $this variable refers to the current object you are extending.
Like a standalone script, the $args variable represents the arguments to the method.
Unlike standalone scripts, ScriptMethods do not support the param statement for
parameters.

Example 3-16 adds a Remove ScriptMethod to PSDriveInfo. Like the other additions,
place these customizations within the members section of the template given in
Example 3-13. When you call this method with no arguments, the method simulates
removing the drive (through the -WhatIf option to Remove-PSDrive). If you call this
method with $true as the first argument, it actually removes the drive from the
PowerShell session.

Example 3-16. A ScriptMethod for the PSDrivelnfo type

<ScriptMethod>
<Name>Remove</Name>
<Script>
$force = [bool] $args[0]
Remove the drive if they use $true as the first parameter
if($force)
{

$this | Remove-PSDrive

}
Otherwise, simulate the drive removal
else

{
$this | Remove-PSDrive -WhatIf

}
</Script>
</ScriptMethod>

Add other extension points

PowerShell supports several additional features in the types extension file, including
CodeProperty, NoteProperty, CodeMethod, and MemberSet. Although not generally
useful to end users, developers of PowerShell providers and cmdlets will find these
features helpful. For more information about these additional features, see the Windows
PowerShell SDK or the MSDN documentation.

3.18. Define Custom Formatting for a Type

Problem

You want to emit custom objects from a script and have them formatted in a specific
way.

158 | Chapter 3:Variables and Objects

Solution

Use a custom format extension file to define the formatting for that type, followed by a
call to the Update-FormatData cmdlet to load them into your session:

S$formatFile = Join-Path (Split-Path $profile) "Format.Custom.Ps1Xml"
Update-FormatData -PrependPath StypesFile

If a file-based approach is not an option, use the Formats property of the [Run
space]::DefaultRunspace.InitialSessionState type to add new formatting defi-
nitions for the custom type.

Discussion

When PowerShell commands produce output, this output comes in the form of richly
structured objects rather than basic streams of text. These richly structured objects stop
being of any use once they make it to the screen, though, so PowerShell guides them
through one last stage before showing them on screen: formatting and output.

The formatting and output system is based on the concept of views. Views can take
several forms: table views, list views, complex views, and more. The most common view
type is a table view. This is the form you see when you use Format-Table in a command,
or when an object has four or fewer properties.

As with the custom type extensions described in Recipe 3.17, “Add Custom Methods
and Properties to Types”, PowerShell supports both file-based and in-memory updates
of type formatting definitions.

The simplest and most common way to define formatting for a type is through the
Update-FormatData cmdlet, as shown in the Solution. The Update-FormatData cmdlet
takes paths to Format.pslxml files as input. There are many examples of formatting
definitions in the PowerShell installation directory that you can use. To create your own
formatting customizations, use these files as a source of examples, but do not modify
them directly. Instead, create a new file and use the Update-FormatData cmdlet to load
your customizations.

For more information about the features supported by these formatting XML files, type
Get-Help about_format.psixml.

In addition to file-based formatting, PowerShell makes it possible (although not easy)
to create formatting definitions from scratch. Example 3-17 provides a script to simplify
this process.

Example 3-17. Add-FormatData.ps1

#H
Add-FormatData
#H

3.18. Define Custom Formatting foraType | 159

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#H

THHERHHHE AR

<#

.SYNOPSIS

Adds a table formatting definition for the specified type name.
.EXAMPLE

PS > $r = [PSCustomObject] @{
Name = "Lee";
Phone = "555-1212";
SSN = "123-12-1212"
}
PS > $r.PSTypeNames.Add("AddressRecord")
PS > Add-FormatData -TypeName AddressRecord -TableColumns Name, Phone
PS > $r

Name Phone

Lee 555-1212
#>

param(
The type name (or PSTypeName) that the table definition should
apply to.
$TypeName,

The columns to be displayed by default
[string[]] $TableColumns
)

Set-StrictMode -Version 3

Define the columns within a table control row
$rowDefinition = New-Object Management.Automation.TableControlRow

Create left-aligned columns for each provided column name
foreach($column in $TableColumns)

{
SrowDefinition.Columns.Add(
(New-Object Management.Automation.TableControlColumn "Left",
(New-Object Management.Automation.DisplayEntry $column,"Property")))
}

StableControl = New-Object Management.Automation.TableControl
StableControl.Rows.Add($rowDefinition)

160 | Chapter 3:Variables and Objects

And then assign the table control to a new format view,
which we then add to an extended type definition. Define this view for the
supplied custom type name.
$formatViewDefinition =

New-Object Management.Automation.FormatViewDefinition "TableView",S$tableControl
SextendedTypeDefinition =

New-Object Management.Automation.ExtendedTypeDefinition $TypeName
SextendedTypeDefinition.FormatViewDefinition.Add($formatViewDefinition)

Add the definition to the session, and refresh the format data
[Runspace]::DefaultRunspace.InitialSessionState.Formats.Add($extendedTypeDefinition)
Update-FormatData

3.18. Define Custom Formatting foraType | 161

CHAPTER 4
Looping and Flow Control

4.,0. Introduction

As you begin to write scripts or commands that interact with unknown data, the con-
cepts of looping and flow control become increasingly important.

PowerShell’s looping statements and commands let you perform an operation (or set of
operations) without having to repeat the commands themselves. This includes, for ex-
ample, doing something a specified number of times, processing each item in a collec-
tion, or working until a certain condition comes to pass.

PowerShell’s flow control and comparison statements let you adapt your script or com-
mand to unknown data. They let you execute commands based on the value of that data,
skip commands based on the value of that data, and more.

Together, looping and flow control statements add significant versatility to your
PowerShell toolbox.

4.1. Make Decisions with Comparison and Logical
Operators

Problem

You want to compare some data with other data and make a decision based on that
comparison.

Solution

Use PowerShell’s logical operators to compare pieces of data and make decisions based
on them.

163

Comparison operators
-eq, -ne, -ge, -gt, -in, -notin, -1t, -le, -1like, -notlike, -match, -notmatch,
-contains, -notcontains, -is, -isnot

Logical operators
-and, -or, -xor, -not

For a detailed description (and examples) of these operators, see “Comparison Opera-
tors” (page 879).

Discussion

PowerShell’s logical and comparison operators let you compare pieces of data or test
data for some condition. An operator either compares two pieces of data (a binary
operator) or tests one piece of data (a unary operator). All comparison operators are
binary operators (they compare two pieces of data), as are most of the logical operators.
The only unary logical operator is the -not operator, which returns the true/false
opposite of the data that it tests.

Comparison operators compare two pieces of data and return a result that depends on
the specific comparison operator. For example, you might want to check whether a
collection has at least a certain number of elements:

PS > (dir).Count -ge 4
True

or check whether a string matches a given regular expression:

PS > "Hello World" -match "H.*World"
True

Most comparison operators also adapt to the type of their input. For example, when you
apply them to simple data such as a string, the - like and -match comparison operators
determine whether the string matches the specified pattern. When you apply them to
a collection of simple data, those same comparison operators return all elements in that
collection that match the pattern you provide.

A
o The -match operator takes a regular expression as its argument. One of
:‘s‘ . the more common regular expression symbols is the $ character, which
053" represents the end of line. The $ character also represents the start of a

PowerShell variable, though! To prevent PowerShell from interpreting
characters as language terms or escape sequences, place the string in
single quotes rather than double quotes:

PS > "Hello World" -match "Hello"

True

PS > "Hello World" -match 'Hello$'
False

164 | Chapter4: Looping and Flow Control

By default, PowerShell’s comparison operators are case-insensitive. To use the case-
sensitive versions, prefix them with the character c:

-ceq, -cne, -cge, -cgt, -cin, -clt, -cle, -clike, -cnotlike,

-cmatch, -cnotmatch, -ccontains, -cnotcontains

For a detailed description of the comparison operators, their case-sensitive counter-
parts, and how they adapt to their input, see “Comparison Operators” (page 879).

Logical operators combine true or false statements and return a result that depends
on the specific logical operator. For example, you might want to check whether a string
matches the wildcard pattern you supply and that it is longer than a certain number of
characters:

PS > $data = "Hello World"

PS > ($data -like "*1lo W*") -and ($data.Length -gt 10)
True

PS > ($data -like "*1lo W*") -and ($data.Length -gt 20)
False

Some of the comparison operators actually incorporate aspects of the logical operators.
Since using the opposite of a comparison (such as -like) is so common, PowerShell
provides comparison operators (such as -not1like) that save you from having to use the
-not operator explicitly.

For a detailed description of the individual logical operators, see “Comparison Opera-
tors” (page 879).

Comparison operators and logical operators (when combined with flow control state-
ments) form the core of how we write a script or command that adapts to its data and
input.

See also “Conditional Statements” (page 882) for detailed information about these
statements.

For more information about PowerShell’s operators, type Get-Help About_Operators.

See Also
“Comparison Operators” (page 879)
“Conditional Statements” (page 882)

4.2. Adjust Script Flow Using Conditional Statements

Problem

You want to control the conditions under which PowerShell executes commands or
portions of your script.

4.2. Adjust Script Flow Using Conditional Statements | 165

Solution

Use PowerShell’s 1f, elseif, and else conditional statements to control the flow of
execution in your script.

For example:

Stemperature = 90

if(Stemperature -le 0)

{
"Balmy Canadian Summer"
}
elseif(Stemperature -le 32)
{
"Freezing"
}
elseif(Stemperature -le 50)
{
||CO‘Ldll
}
elseif(Stemperature -le 70)
{
"Warm"
}
else
{
"Hot"
}
Discussion

Conditional statements include the following:

if statement
Executes the script block that follows it if its condition evaluates to true

elseif statement
Executes the script block that follows it if its condition evaluates to true and none
of the conditions in the 1f or elseif statements before it evaluate to true

else statement
Executes the script block that follows it if none of the conditions in the if or elseif
statements before it evaluate to true

In addition to being useful for script control flow, conditional statements are often a
useful way to assign data to a variable. PowerShell makes this very easy by letting you
assign the results of a conditional statement directly to a variable:

Sresult = if(Get-Process -Name notepad) { "Running" } else { "Not running" }

166 | Chapter4: Looping and Flow Control

This technique is the equivalent of a ternary operator in other programming languages,
or can form the basis of one if youd like a more compact syntax.

For more information about these flow control statements, type Get-Help
About_Flow_Control.

4.3. Manage Large Conditional Statements with Switches

Problem

You want to find an easier or more compact way to represent a large 1f ... elseif ...
else conditional statement.

Solution

Use PowerShell’s switch statement to more easily represent alarge if ... elseif ... else
conditional statement.

For example:

Stemperature = 20

switch(Stemperature)

{
{$ -1t 32} { "Below Freezing"; break }
32 { "Exactly Freezing"; break }
{$_ -les50} { "Cold"; break }
{$_-le70} { "Warm"; break }
default { "Hot" }

}

Discussion

PowerShell’s switch statement lets you easily test its input against a large number of
comparisons. The switch statement supports several options that allow you to configure
how PowerShell compares the input against the conditions—such as with a wildcard,
regular expression, or even an arbitrary script block. Since scanning through the text in
afileis such a common task, PowerShell’s switch statement supports that directly. These
additions make PowerShell switch statements a great deal more powerful than those in
Cand C++.

As another example of the switch statement in action, consider how to determine the
SKU of the current operating system. For example, is the script running on Windows 7
Ultimate? Windows Server Cluster Edition? The Get-CimInstance cmdlet lets you
determine the operating system SKU, but unfortunately returns its result as a simple
number. A switch statement lets you map these numbers to their English equivalents
based on the official documentation listed at this site:

4.3. Manage Large Conditional Statements with Switches | 167

http://bit.ly/ZfOMtC

R
#it

Get-OperatingSystemSku

##

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

<#

.SYNOPSIS

Gets the sku information for the current operating system
.EXAMPLE

PS > Get-OperatingSystemSku
Professional with Media Center

#>

param($Sku =
(Get-CimInstance Win32_OperatingSystem).OperatingSystemSku)

Set-StrictMode -Version 3

switch ($Sku)

{
0 { "An unknown product"; break; }
1 { "Ultimate"; break; }
2 { "Home Basic"; break; }
3 { "Home Premium"; break; }
4 { "Enterprise"; break; }
5 { "Home Basic N"; break; }
6 { "Business"; break; }
7 { "Server Standard"; break; }
8 { "Server Datacenter (full installation)"; break; }
9 { "Windows Small Business Server"; break; }
10 { "Server Enterprise (full installation)"; break; }
11 { "Starter"; break; }
12 { "Server Datacenter (core installation)"; break; }
13 { "Server Standard (core installation)"; break; }
14 { "Server Enterprise (core installation)"; break; }
15 { "Server Enterprise for Itanium-based Systems"; break; }
16 { "Business N"; break; }
17 { "Web Server (full installation)"; break; }
18 { "HPC Edition"; break; }
19 { "Windows Storage Server 2008 R2 Essentials"; break; }
20 { "Storage Server Express"; break; }
21 { "Storage Server Standard"; break; }
22 { "Storage Server Workgroup"; break; }

168

| Chapter 4: Looping and Flow Control

23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
46
a7
48
49
50
51
52
53
54
55
56
59
60
61
62
63
64
72
76
77
79
80
84
95
9%
98
99

Lt W W e W e W e W e W e W e W W e W s W e W |

Lt W W e W e W e W e W e W e W e W e W e W WY e B et W e O ot M W e W s W e W e W e W e W e W e W e W e W e W e W e W e W W e W e W o W e W e W |

"Storage Server Enterprise"; break; }

"Windows Server 2008 for Windows Essential Server Solutions"; break; }
"Small Business Server Premium"; break; }

"Home Premium N"; break; }

"Enterprise N"; break; }

"Ultimate N"; break; }

"Web Server (core installation)"; break; }

"Windows Essential Business Server Management Server"; break; }
"Windows Essential Business Server Security Server"; break; }
"Windows Essential Business Server Messaging Server"; break; }
"Server Foundation"; break; }

"Windows Home Server 2011"; break; }

"Windows Server 2008 without Hyper-V for Windows Essential Server
Solutions"; break; }

"Server Standard without Hyper-V"; break; }

"Server Datacenter without Hyper-V (full installation)"; break; }
"Server Enterprise without Hyper-V (full installation)"; break; }
"Server Datacenter without Hyper-V (core installation)"; break; }
"Server Standard without Hyper-V (core installation)"; break; }
"Server Enterprise without Hyper-V (core installation)"; break; }
"Microsoft Hyper-V Server"; break; }

"Storage Server Express (core installation)"; break; }

"Storage Server Standard (core installation)"; break; }

"Storage Server Workgroup (core installation)"; break; }

"Storage Server Enterprise (core installation)"; break; }
"Storage Server Enterprise (core installation)"; break; }
"Starter N"; break; }

"Professional”; break; }

"Professional N"; break; }

"Windows Small Business Server 2011 Essentials"; break; }

"Server For SB Solutions"; break; }

"Server Solutions Premium"; break; }

"Server Solutions Premium (core installation)"; break; }

"Server For SB Solutions EM"; break; }

"Server For SB Solutions EM"; break; }

"Windows MultiPoint Server"; break; }

"Windows Essential Server Solution Management"; break; }

"Windows Essential Server Solution Additional"; break; }

"Windows Essential Server Solution Management SVC"; break; }
"Windows Essential Server Solution Additional SVC"; break; }
"Small Business Server Premium (core installation)"; break; }
"Server Hyper Core V"; break; }

"Server Enterprise (evaluation installation)"; break; }

"Windows MultiPoint Server Standard (full installation)"; break; }
"Windows MultiPoint Server Premium (full installation)"; break; }
"Server Standard (evaluation installation)"; break; }

"Server Datacenter (evaluation installation)"; break; }
"Enterprise N (evaluation installation)"; break; }

"Storage Server Workgroup (evaluation installation)"; break; }
"Storage Server Standard (evaluation installation)"; break; }
"Windows 8 N"; break; }

"Windows 8 China"; break; }

4.3. Manage Large Conditional Statements with Switches | 169

100 { "Windows 8 Single Language"; break; }
101 { "Windows 8"; break; }
103 { "Professional with Media Center"; break; }

default {"UNKNOWN: " + SSKU }
}

Although used as a way to express large conditional statements more cleanly, a switch
statement operates much like a large sequence of if statements, as opposed to a large
sequence of if ... elseif ... elseif ... else statements. Given the input that you pro-
vide, PowerShell evaluates that input against each of the comparisons in the switch
statement. If the comparison evaluates to true, PowerShell then executes the script block
that follows it. Unless that script block contains a break statement, PowerShell continues
to evaluate the following comparisons.

For more information about PowerShell’s switch statement, see “Conditional State-
ments” (page 882) or type Get-Help About_Switch.

See Also
“Conditional Statements” (page 882)

4.4. Repeat Operations with Loops

Problem

You want to execute the same block of code more than once.

Solution

Use one of PowerShell'slooping statements (for, foreach, while,and do) or PowerShell’s
Foreach-Object cmdlet to run a command or script block more than once. For a de-
tailed description of these looping statements, see “Looping Statements” (page 885). For
example:

for loop
for(Scounter = 1; $Scounter -le 10; $counter++)
{
"Loop number $counter"
}

foreach loop

foreach($file in dir)

{
"File length: " + $file.Length

}

170 | Chapter 4: Looping and Flow Control

Foreach-Object cmdlet

Get-ChildItem | Foreach-Object { "File length: " + $_.Length }

while loop
$response = ""
while($response -ne "QUIT")
{
Sresponse = Read-Host "Type something"
}

do. .while loop
$response = ""
do
{
Sresponse = Read-Host "Type something'
} while(Sresponse -ne "QUIT")

do. .until loop
$response = ""
do
{
Sresponse = Read-Host "Type something'
} until(Sresponse -eq "QUIT")

Discussion

Although any of the looping statements can be written to be functionally equivalent to
any of the others, each lends itself to certain problems.

You usually use a for loop when you need to perform an operation an exact number of
times. Because using it this way is so common, it is often called a counted for loop.

You usually use a foreach loop when you have a collection of objects and want to visit
each item in that collection. If you do not yet have that entire collection in memory (as
in the dir collection from the foreach example shown earlier), the Foreach-0Object
cmdlet is usually a more efficient alternative.

Unlike the foreach loop, the Foreach-0bject cmdlet lets you process each element in
the collection as PowerShell generates it. This is an important distinction; asking
PowerShell to collect the entire output of a large command (such as Get-Content huge
file. txt) in a foreach loop can easily drag down your system.

4.4. Repeat Operations with Loops | 171

A handy shortcut to repeat an operation on the command line is:

PS > 1..10 | foreach { "Working" }
Working
Working
Working
Working
Working
Working
Working
Working
Working
Working

Like pipeline-oriented functions, the Foreach-0bject cmdletlets you define commands
to execute before the looping begins, during the looping, and after the looping
completes:
PS > "a","b","c" | Foreach-Object °
-Begin { "Starting"; Scounter = 0 } °
-Process { "Processing $_"; Scounter++ } °
-End { "Finishing: S$counter" }

Starting

Processing a

Processing b

Processing c

Finishing: 3
The while and do. .while loops are similar, in that they continue to execute the loop
as long as its condition evaluates to true. A while loop checks for this before running
your script block, whereas a do. .while loop checks the condition after running your
script block. A do. .untilloop is exactlylike a do. .while loop, except that it exits when
its condition returns $true, rather than when its condition returns $false.

For a detailed description of these looping statements, see “Looping Statements” (page
885) or type Get-Help About_For,Get-Help About_Foreach, Get-Help about_While,
or Get-Help about_Do.

See Also
“Looping Statements” (page 885)

4.5. Add a Pause or Delay

Problem

You want to pause or delay your script or command.

172 | Chapter4: Looping and Flow Control

Solution

To pause until the user presses the Enter key, use the pause command :

PS > pause
Press Enter to continue...:

To pause until the user presses any key, use the ReadKey () method on the $host object:
PS > Shost.UI.RawUI.ReadKey()
To pause a script for a given amount of time, use the Start-Sleep cmdlet:

PS > Start-Sleep 5
PS > Start-Sleep -Milliseconds 300

Discussion

When you want to pause your script until the user presses a key or for a set amount of
time, pause and Start-Sleep are the two cmdlets you are most likely to use.

W8
If you want to retrieve user input rather than just pause, the Read-
t';:‘ . Host cmdlet lets you read input from the user. For more information,
063 see Recipe 13.1, “Read a Line of User Input”.

In other situations, you may sometimes want to write a loop in your script that runs at
a constant speed—such as once per minute or 30 times per second. That is typically a
difficult task, as the commands in the loop might take up a significant amount of time,
or even an inconsistent amount of time.

In the past, many computer games suffered from solving this problem incorrectly. To
control their game speed, game developers added commands to slow down their game.
For example, after much tweaking and fiddling, the developers might realize that the
game plays correctly on a typical machine if they make the computer count to 1 million
every time it updates the screen. Unfortunately, the speed of these commands (such as
counting) depends heavily on the speed of the computer. Since a fast computer can count
to 1 million much more quickly than a slow computer, the game ends up running much
more quickly (often to the point of incomprehensibility) on faster computers!

To make your loop run at a regular speed, you can measure how long the commands in
a loop take to complete, and then delay for whatever time is left, as shown in
Example 4-1.

Example 4-1. Running a loop at a constant speed

$loopDelayMilliseconds = 650
while(S$true)
{

4.5.AddaPauseorDelay | 173

$startTime = Get-Date

Do commands here
"Executing"

SendTime = Get-Date
S$loopLength = ($endTime - $startTime).TotalMilliseconds
StimeRemaining = $loopDelayMilliseconds - $loopLength

if($timeRemaining -gt 0)
{

}

Start-Sleep -Milliseconds $timeRemaining

}

For more information about the Start-Sleep cmdlet, type Get-Help Start-Sleep.

See Also
Recipe 13.1, “Read a Line of User Input”

174 | Chapter4: Looping and Flow Control

CHAPTER 5
Strings and Unstructured Text

5.0. Introduction

Creating and manipulating text has long been one of the primary tasks of scripting
languages and traditional shells. In fact, Perl (the language) started as a simple (but
useful) tool designed for text processing. It has grown well beyond those humble roots,
but its popularity provides strong evidence of the need it fills.

In text-based shells, this strong focus continues. When most of your interaction with
the system happens by manipulating the text-based output of programs, powerful text
processing utilities become crucial. These text parsing tools, such as awk, sed, and
grep, form the keystones of text-based systems management.

In PowerShell’s object-based environment, this traditional tool chain plays a less critical
role. You can accomplish most of the tasks that previously required these tools much
more effectively through other PowerShell commands. However, being an object-based
shell does not mean that PowerShell drops all support for text processing. Dealing with
strings and unstructured text continues to play an important part in a system admin-
istrator’s life. Since PowerShell lets you manage the majority of your system in its full
fidelity (using cmdlets and objects), the text processing tools can once again focus pri-
marily on actual text processing tasks.

5.1. Create a String

Problem

You want to create a variable that holds text.

175

Solution
Use PowerShell string variables as a way to store and work with text.

To define a string that supports variable expansion and escape characters in its defini-
tion, surround it with double quotes:

$myString = "Hello World"

To define a literal string (one that does not interpret variable expansion or escape char-
acters), surround it with single quotes:

$myString = 'Hello World'

Discussion

String literals come in two varieties: literal (nonexpanding) and expanding strings. To
create a literal string, place single quotes ($myString = 'Hello World') around the
text. To create an expanding string, place double quotes ($myString = "Hello
World") around the text.

In a literal string, all the text between the single quotes becomes part of your string. In
an expanding string, PowerShell expands variable names (such as $replacement

String) and escape sequences (such as "n) with their values (such as the content of
$replacementString and the newline character, respectively).

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” (page 865).

One exception to the “all text in a literal string is literal” rule comes from the quote
characters themselves. In either type of string, PowerShell lets you place two of that
string’s quote characters together to add the quote character itself:

smyString = "This string includes ""double quotes"" because it combined quote
characters."
smyString = 'This string includes
characters.'

single quotes'' because it combined quote

This helps prevent escaping atrocities that would arise when you try to include a single
quote in a single-quoted string. For example:

$myString = 'This string includes ' + + 'single quotes' + "'"

176 | Chapter 5: Strings and Unstructured Text

This example shows how easy PowerShell makes it to create new strings
. by adding other strings together. This is an attractive way to build a
%' formatted report in a script but should be used with caution. Because
of the way that the .NET Framework (and therefore PowerShell) man-
ages strings, adding information to the end of a large string this way
causes noticeable performance problems. If you intend to create large

reports, see Recipe 5.15, “Generate Large Reports and Text Streams”.

aqs
[N
N

See Also
Recipe 5.15, “Generate Large Reports and Text Streams”

“Strings” (page 865)

5.2. Create a Multiline or Formatted String

Problem

You want to create a variable that holds text with newlines or other explicit formatting.

Solution

Use a PowerShell here string to store and work with text that includes newlines and other
formatting information.

$myString = @"

This is the first line

of a very long string. A "here string"

lets you create blocks of text

that span several lines.
"e

Discussion

PowerShell begins a here string when it sees the characters @" followed by a newline. It
ends the string when it sees the characters "@ on their own line. These seemingly odd
restrictions let you create strings that include quote characters, newlines, and other
symbols that you commonly use when you create large blocks of preformatted text.

5.2. Create a Multiline or Formatted String | 177

These restrictions, while useful, can sometimes cause problems when
. you copy and paste PowerShell examples from the Internet. Web pages
%' often add spaces at the end of lines, which can interfere with the strict
requirements of the beginning of a here string. If PowerShell produces
an error when your script defines a here string, check that the here string
does not include an errant space after its first quote character.

aqs
[N
N

Like string literals, here strings may be literal (and use single quotes) or expanding (and
use double quotes).

5.3. Place Special Characters in a String

Problem

You want to place special characters (such as tab and newline) in a string variable.

Solution

In an expanding string, use PowerShell’s escape sequences to include special characters
such as tab and newline.

PS > $myString = "Report for Today'n----------------
PS > SmyString
Report for Today

Discussion

As discussed in Recipe 5.1, “Create a String”, PowerShell strings come in two varieties:
literal (or nonexpanding) and expanding strings. A literal string uses single quotes
around its text, whereas an expanding string uses double quotes around its text.

In a literal string, all the text between the single quotes becomes part of your string. In
an expanding string, PowerShell expands variable names (such as $ENV:SystemRoot)
and escape sequences (such as "n) with their values (such as the SystemRoot environ-
ment variable and the newline character).

& Unlike many languages that use a backslash character (\) for escape
.‘s . sequences, PowerShell uses a backtick (*) character. This stems from its
063 focus on system administration, where backslashes are ubiquitous in

pathnames.

178 | Chapter5: Strings and Unstructured Text

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” (page 865).

See Also
Recipe 5.1, “Create a String”
“Strings” (page 865)

5.4. Insert Dynamic Information in a String

Problem

You want to place dynamic information (such as the value of another variable) in a
string.

Solution

In an expanding string, include the name of a variable in the string to insert the value
of that variable:

PS > Sheader = "Report for Today"

PS > SmyString = "Sheader 'n----------------
PS > SmyString

Report for Today

To include information more complex than just the value of a variable, enclose it in a
subexpression:

PS > Sheader = "Report for Today"

PS > SmyString = "S$header 'n$('-' * Sheader.Length)"

PS > SmyString

Report for Today

Discussion

Variable substitution in an expanding string is a simple enough concept, but
subexpressions deserve a little clarification.

A subexpression is the dollar sign character, followed by a PowerShell command (or set
of commands) contained in parentheses:

$(subexpression)

5.4. Insert Dynamic InformationinaString | 179

When PowerShell sees a subexpression in an expanding string, it evaluates the
subexpression and places the result in the expanding string. In the Solution, the ex-

pression '-' * S$header.Length tells PowerShell to make a line of dashes $head
er.Length long.

Another way to place dynamic information inside a string is to use PowerShell’s string
formatting operator, which uses the same rules that NET string formatting does:

PS > Sheader = "Report for Today"

PS > SmyString = "{0} n{1}" -f Sheader,('-' * Sheader.Length)
PS > $myString

Report for Today

For an explanation of PowerShell’s formatting operator, see Recipe 5.6, “Place Formatted
Information in a String”. For more information about PowerShell’s escape characters,
type Get-Help About_Escape_Characters or type Get-Help About_Special_
Characters.

See Also

Recipe 5.6, “Place Formatted Information in a String”

5.5. Prevent a String from Including Dynamic Information

Problem

You want to prevent PowerShell from interpreting special characters or variable names
inside a string.

Solution

Use a nonexpanding string to have PowerShell interpret your string exactly as entered.
A nonexpanding string uses the single quote character around its text.

PS > SmyString = 'Useful PowerShell characters include: $, *, " and { }'
PS > $myString
Useful PowerShell characters include: $, °, " and { }

If you want to include newline characters as well, use a nonexpanding here string, as in
Example 5-1.

Example 5-1. A nonexpanding here string that includes newline characters

PS > $myString = @'
Tip of the Day

Useful PowerShell characters include: $, *, ', " and { }
'@

180 | Chapter5: Strings and Unstructured Text

PS > $myString
Tip of the Day
Useful PowerShell characters include: §, °, ', " and { }

Discussion

In aliteral string, all the text between the single quotes becomes part of your string. This
is in contrast to an expanding string, where PowerShell expands variable names (such
as $myString) and escape sequences (such as “n) with their values (such as the content
of $myString and the newline character).

Nonexpanding strings are a useful way to manage files and folders con-
. taining special characters that might otherwise be interpreted as escape
063" sequences. For more information about managing files with special
characters in their name, see Recipe 20.7, “Manage Files That Include
Special Characters”.

As discussed in Recipe 5.1, “Create a String”, one exception to the “all text in a literal
string is literal” rule comes from the quote characters themselves. In either type of string,
PowerShell lets you place two of that string’s quote characters together to include the
quote character itself:

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

See Also

Recipe 5.1, “Create a String”

Recipe 20.7, “Manage Files That Include Special Characters”

5.6. Place Formatted Information in a String

Problem

You want to place formatted information (such as right-aligned text or numbers rounded
to a specific number of decimal places) in a string.

Solution

Use PowerShell’'s formatting operator to place formatted information inside a string:

5.6. Place Formatted InformationinaString | 181

PS > SformatString = "{0,8:D4} {1:C} 'n"

PS > S$report = "Quantity Price'n"

PS > $report += "-----o-aaooo-- n"

PS > S$report += $formatString -f 50,2.5677
PS > Sreport += S$formatString -f 3,9

PS > S$report
Quantity Price

0050 $2.57
0003 $9.00

Discussion

PowerShell’s string formatting operator (- f) uses the same string formatting rules as the
String.Format() method in the NET Framework. It takes a format string on its left
side and the items you want to format on its right side.

In the Solution, you format two numbers: a quantity and a price. The first number ({0})
represents the quantity and is right-aligned in a box of eight characters (,8). It is for-
matted as a decimal number with four digits (:D4). The second number ({1}) represents
the price, which you format as currency (:C).

¥ A
) If you find yourself hand-crafting text-based reports, STOP! Let
.‘s . PowerShell’s built-in commands do all the work for you. Instead, emit
013" custom objects so that your users can work with your script as easily as

they work with regular PowerShell commands. For more information,
see Recipe 3.16, “Create and Initialize Custom Objects”.

For a detailed explanation of PowerShell’s formatting operator, see “Simple Opera-
tors” (page 873). For a detailed list of the formatting rules, see Appendix D.

Although primarily used to control the layout of information, the string-formatting
operator is also a readable replacement for what is normally accomplished with string
concatenation:

PS > Snumberl = 10

PS > $Snumber2 = 32

PS > "$Snumber2 divided by $numberl is
32 divided by 10 is 3.2

+ $number2 / S$numberi1

The string formatting operator makes this much easier to read:

PS > "{0} divided by {1} is {2}" -f Snumber2, Snumberl, ($number2 / Snumber1)
32 divided by 10 is 3.2

If you want to support named replacements (rather than index-based replacements),
you can use the Format-String script given in Recipe 5.16, “Generate Source Code and
Other Repetitive Text”.

182 | Chapter5: Strings and Unstructured Text

In addition to the string formatting operator, PowerShell provides three formatting
commands (Format-Table, Format-Wide,and Format-List) thatlet you easily generate
formatted reports. For detailed information about those cmdlets, see “Custom Format-
ting Files” (page 913).

See Also

Recipe 3.16, “Create and Initialize Custom Objects”
“Simple Operators” (page 873)

“Custom Formatting Files” (page 913)

Appendix D, .NET String Formatting

5.7. Search a String for Text or a Pattern

Problem

You want to determine whether a string contains another string, or you want to find the
position of a string within another string.

Solution
PowerShell provides several options to help you search a string for text.

Use the -like operator to determine whether a string matches a given DOS-like
wildcard:

PS > "Hello World" -like "*1lo W*"
True

Use the -match operator to determine whether a string matches a given regular
expression:

PS > "Hello World" -match '.*1[l-z]Jo W.*$'
True

Use the Contains() method to determine whether a string contains a specific string:

PS > "Hello World".Contains("World")
True

Use the Index0f () method to determine the location of one string within another:

PS > "Hello World".IndexOf("World")
6

5.7.Search a String for Textora Pattern | 183

Discussion

Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The Contains() and Index0f () methods are two examples
of the many features that the String class supports. To learn what other functionality
the String class supports, see Recipe 3.13, “Learn About Types and Objects”.

To search entire files for text or a pattern, see Recipe 9.2, “Search a File
. for Text or a Pattern”.

Although they use similar characters, simple wildcards and regular expressions serve
significantly different purposes. Wildcards are much simpler than regular expressions,
and because of that, more constrained. While you can summarize the rules for wildcards
in just four bullet points, entire books have been written to help teach and illuminate
the use of regular expressions.

W S
¥ A common use of regular expressions is to search for a string that spans
XS
o multiple lines. By default, regular expressions do not search across lines,
¢4 but you can use the singleline (2s) option to instruct them to do so:

PS > "Hello "n World" -match "Hello.*World"
False

PS > "Hello 'n World" -match "(?s)Hello.*World"
True

Wildcards lend themselves to simple text searches, whereas regular expressions lend
themselves to more complex text searches.

Foradetailed description of the - Like operator, see “Comparison Operators” (page 879).
For a detailed description of the -match operator, see “Simple Operators” (page 873). For
a detailed list of the regular expression rules and syntax, see Appendix B.

One difficulty sometimes arises when you try to store the result of a PowerShell com-
mand in a string, as shown in Example 5-2.

Example 5-2. Attempting to store output of a PowerShell command in a string
PS > Get-Help Get-ChildItem

NAME
Get-ChildItem

SYNOPSIS
Gets the items and child items in one or more specified locations.

184 | Chapter5: Strings and Unstructured Text

(...

PS > ShelpContent = Get-Help Get-ChildItem
PS > $ShelpContent -match "location"
False

The -match operator searches a string for the pattern you specify but seems to fail in
this case. This is because all PowerShell commands generate objects. If you don’t store
that output in another variable or pass it to another command, PowerShell converts the
output to a text representation before it displays it to you. In Example 5-2, $helpCon
tent is a fully featured object, not just its string representation:

PS > ShelpContent.Name
Get-ChildItem

To work with the text-based representation of a PowerShell command, you can explicitly
send it through the Out-String cmdlet. The Out-String cmdlet converts its input into
the text-based form you are used to seeing on the screen:

PS > S$helpContent = Get-Help Get-ChildItem | Out-String -Stream
PS > ShelpContent -match "location"
True

For a script that makes searching textual command output easier, see Recipe 1.23, “Pro-
gram: Search Formatted Output for a Pattern”.

See Also

Recipe 1.23, “Program: Search Formatted Output for a Pattern”
Recipe 3.13, “Learn About Types and Objects”

“Simple Operators” (page 873)

“Comparison Operators” (page 879)

Appendix B, Regular Expression Reference

5.8. Replace Text in a String

Problem

You want to replace a portion of a string with another string.

Solution
PowerShell provides several options to help you replace text in a string with other text.

Use the Replace() method on the string itself to perform simple replacements:

5.8.Replace TextinaString | 185

PS > "Hello World".Replace("World", "PowerShell")
Hello PowerShell

Use PowerShell’s regular expression - replace operator to perform more advanced reg-
ular expression replacements:

PS > "Hello World" -replace '(.*) (.*)','$2 $1'
World Hello

Discussion

The Replace() method and the -replace operator both provide useful ways to replace
text in a string. The Replace() method is the quickest but also the most constrained. It
replaces every occurrence of the exact string you specify with the exact replacement
string that you provide. The - replace operator provides much more flexibility because
its arguments are regular expressions that can match and replace complex patterns.

Given the power of the regular expressions it uses, the -replace operator carries with
it some pitfalls of regular expressions as well.

First, the regular expressions that you use with the -replace operator often contain
characters (such as the dollar sign, which represents a group number) that PowerShell
normally interprets as variable names or escape characters. To prevent PowerShell from
interpreting these characters, use a nonexpanding string (single quotes) as shown in the
Solution.

Another, less common pitfall is wanting to use characters that have special meaning to
regular expressions as part of your replacement text. For example:

PS > "Power[Shell]" -replace "[Shell]","ful"
Powfulr[fulfulfulfulful]

That’s clearly not what we intended. In regular expressions, square brackets around a
set of characters means “match any of the characters inside of the square brackets” In
our example, this translates to “Replace the characters S, h, e, and 1 with “ful”

To avoid this, we can use the regular expression escape character to escape the square
brackets:

PS > "Power[Shell]" -replace "\[Shell\]","ful"
Powerful

However, this means knowing all of the regular expression special characters and mod-
ifying the input string. Sometimes we don’t control that, so the [Regex]: :Escape()
method comes in handy:

PS > "Power[Shell]" -replace ([Regex]::Escape("[Shell]")),"ful"
Powerful

186 | Chapter5: Strings and Unstructured Text

For extremely advanced regular expression replacement needs, you can use a script block
to accomplish your replacement tasks, as described in Recipe 32.6, “Use a Script Block
as a .NET Delegate or Event Handler”. For example, to capitalize the first character (\w)
after a word boundary (\b):

PS > [Regex]::Replace("hello world", '\b(\w)', { $args[0].Value.ToUpper() })
Hello World

For more information about the - replace operator, see “Simple Operators” (page 873)
and Appendix B.

See Also
“Simple Operators” (page 873)
Appendix B, Regular Expression Reference

5.9. Split a String on Text or a Pattern

Problem

You want to split a string based on some literal text or a regular expression pattern.

Solution

Use PowerShell’s - split operator to split on a sequence of characters or specific string:

PS > "a-b-c-d-e-f" -split "-c-"
a-b
d-e-f
To split on a pattern, supply a regular expression as the first argument:
PS > "a-b-c-d-e-f" -split "b|[d-e]"
a -
-

-f
Discussion
To split a string, many beginning scripters already comfortable with C# use the
String.Split() and [Regex]::Split() methods from the .NET Framework. While
still available in PowerShell, PowerShell’s - split operator provides a more natural way

to split a string into smaller strings. When used with no arguments (the unary split
operator), it splits a string on whitespace characters, as in Example 5-3.

5.9.SplitaString on TextoraPattern | 187

Example 5-3. PowerShell's unary split operator

PS > -split "Hello World "t How 'n are you?"
Hello

World

How

are

you?

When used with an argument, it treats the argument as a regular expression and then
splits based on that pattern.

PS > "a-b-c-d-e-f" -split 'b|[d-e]'

If the replacement pattern avoids characters that have special meaning in a regular
expression, you can use it to split a string based on another string.

PS > "a-b-c-d-e-f" -split '-c-'

a-b

d-e-f
If the replacement pattern has characters that have special meaning in a regular ex-
pression (such as the . character, which represents “any character”), use the -split
operator’s SimpleMatch option, as in Example 5-4.

Example 5-4. PowerShell’s SimpleMatch split option

PS > "a.b.c" -split '.'
(A bunch of newlines. Something went wrong!)

PS > "a.b.c" -split '.',0,"SimpleMatch"
a
b
c

For more information about the -split operator’s options, type Get-Help
about_split.

While regular expressions offer an enormous amount of flexibility, the -split operator
gives you ultimate flexibility by letting you supply a script block for a split operation.
For each character, it invokes the script block and splits the string based on the result.
In the script block, $_ (or $PSItem) represents the current character. For example,
Example 5-5 splits a string on even numbers.

188 | Chapter5: Strings and Unstructured Text

Example 5-5. Using a script block to split a string
PS > "1234567890" -split { ($_ % 2) -eq 0 }

O NV W

When you're using a script block to split a string, $_ represents the current character.
Forarguments, $args[0] represents the entire string, and $args[1] represents the index
of the string currently being examined.

To split an entire file by a pattern, use the -Delimiter parameter of the Get-Content
cmdlet:

PS > Get-Content test.txt

Hello

World

PS > (Get-Content test.txt)[0]

Hello

PS > Get-Content test.txt -Delimiter 1

Hel

1

o

Worl

d

PS > (Get-Content test.txt -Delimiter 1)[0]
Hel

PS > (Get-Content test.txt -Delimiter 1)[1]
1

PS > (Get-Content test.txt -Delimiter 1)[2]
o

Worl

PS > (Get-Content test.txt -Delimiter 1)[3]
d

For more information about the -split operator, see “Simple Operators” (page 873) or
type Get-Help about_split.

See Also
“Simple Operators” (page 873)
Appendix B, Regular Expression Reference

5.9.SplitaString on Text ora Pattern | 189

5.10. Combine Strings into a Larger String

Problem

You want to combine several separate strings into a single string.

Solution

Use PowerShell’s unary - join operator to combine separate strings into a larger string
using the default empty separator:

PS > -join ("A","B","C")

ABC
If you want to define the operator that PowerShell uses to combine the strings, use
PowerShell’s binary - join operator:

PS > ("A"’“B”’"C") _jo_'Ln ll‘r‘nH

A

B
C

Discussion

In PowerShell version 1, the [String]::Join() method was the primary option avail-
able for joining strings. While these methods are still available in PowerShell, the - join
operator provides a more natural way to combine strings. When used with no arguments
(the unary join operator), it joins the list using the default empty separator. When used
between a list and a separator (the binary join operator), it joins the strings using the
provided separator.

Aside from its performance benefit, the - join operator solves an extremely common
difficulty that arises from trying to combine strings by hand.

When first writing the code to join a list with a separator (for example, a comma and a
space), you usually end up leaving a lonely separator at the beginning or end of the
output:

PS > $list = "Hello","World"
PS > Soutput = ""
PS >
PS > foreach($item in $list)
{

Soutput += Sitem + ", "
}

PS > Soutput
Hello, World,

190 | Chapter5: Strings and Unstructured Text

You can resolve this by adding some extra logic to the foreach loop:

PS > $list = "Hello","World"

PS > Soutput = ""

PS >

PS > foreach($item in $list)

{
if(Soutput -ne "") { Soutput += ", " }
Soutput += Sitem

}

PS > Soutput
Hello, World

Or, save yourself the trouble and use the - join operator directly:
PS > $list = "Hello","World"
PS > $list -join ", "
Hello, World

For a more structured way to join strings into larger strings or reports, see Recipe 5.6,
“Place Formatted Information in a String”.

See Also

Recipe 5.6, “Place Formatted Information in a String”

5.11. Convert a String to Uppercase or Lowercase

Problem

You want to convert a string to uppercase or lowercase.

Solution

Use the ToUpper () or ToLower () methods of the string to convert it to uppercase or
lowercase, respectively.

To convert a string to uppercase, use the ToUpper () method:

PS > "Hello World".ToUpper()
HELLO WORLD

To convert a string to lowercase, use the ToLower () method:

PS > "Hello World".ToLower()
hello world

5.11. Convert a String to Uppercase or Lowercase | 191

Discussion

Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The ToUpper () and ToLower () methods are two examples
of the many features that the String class supports. To learn what other functionality
the String class supports, see Recipe 3.13, “Learn About Types and Objects”.

Neither PowerShell nor the methods of the NET String class directly support capital-
izing only the first letter of a word. If you want to capitalize only the first character of a
word or sentence, try the following commands:

PS > $text = "hello"

PS > SnewText = Stext.Substring(0,1).ToUpper() +
Stext.Substring(1)

SnewText

Hello

You can also use an advanced regular expression replacement, as described in
Recipe 32.6, “Use a Script Block as a .NET Delegate or Event Handler™:

[Regex]::Replace("hello world", '\b(\w)', { $args[0].Value.ToUpper() })

One thing to keep in mind as you convert a string to uppercase or lowercase is your
motivation for doing it. One of the most common reasons is for comparing strings, as
shown in Example 5-6.

Example 5-6. Using the ToUpper() method to normalize strings

##t Stext comes from the user, and contains the value "quit"
if(Stext.ToUpper() -eq "QUIT") { ... }

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways when
your script runs in different cultures. Many cultures follow different capitalization and
comparison rules than you may be used to. For example, the Turkish language includes
two types of the letter I: one with a dot and one without. The uppercase version of the
lowercase letter i corresponds to the version of the capital I with a dot, not the capital I
used in QUIT. Those capitalization rules cause the string comparison code in
Example 5-6 to fail in the Turkish culture.

Recipe 13.8, “Program: Invoke a Script Block with Alternate Culture Settings” shows us
this quite clearly:

PS > Use-Culture tr-TR { "quit".ToUpper() -eq "QUIT" }
False

PS > Use-Culture tr-TR { "quIt".ToUpper() -eq "QUIT" }
True

PS > Use-Culture tr-TR { "quit".ToUpper() }

QuiT

192 | Chapter5: Strings and Unstructured Text

For comparing some input against a hardcoded string in a case-insensitive manner, the
better solution is to use PowerShell’s -eq operator without changing any of the casing
yourself. The -eq operator is case-insensitive and culture-neutral by default:

PS > Stextl = "Hello"
PS > Stext2 = "HELLO"
PS > S$textl -eq Stext2
True

PS > Use-Culture tr-TR { "quit" -eq "QUIT" }
True

For more information about writing culture-aware scripts, see Recipe 13.6, “Write
Culture-Aware Scripts”.

See Also

Recipe 3.13, “Learn About Types and Objects”

Recipe 13.6, “Write Culture- Aware Scripts”

Recipe 32.6, “Use a Script Block as a .NET Delegate or Event Handler”

5.12. Trim a String

Problem

You want to remove leading or trailing spaces from a string or user input.

Solution

Use the Trim() method of the string to remove all leading and trailing whitespace char-
acters from that string.
PS > Stext = " 't Test String't "t"

PS > "|" + Stext.Trim() + "|"
|Test String|

Discussion

The Trim() method cleans all whitespace from the beginning and end of a string. If you
want just one or the other, you can call the TrimStart() or TrimEnd() method to remove
whitespace from the beginning or the end of the string, respectively. If you want to
remove specific characters from the beginning or end of a string, the Trim(), Trim
Start(), and TrimEnd() methods provide options to support that. To trim a list of
specific characters from the end of a string, provide that list to the method, as shown in
Example 5-7.

5.12.TrimaString | 193

Example 5-7. Trimming a list of characters from the end of a string

PS > "Hello World".TrimEnd('d','l','r','o','W'," ")
He

At first blush, the following command that attempts to trim the text
. "World" from the end of a string appears to work incorrectly:

PS > "Hello World".TrimEnd(" World")
He

This happens because the TrimEnd() method takes a list of characters
to remove from the end of a string. PowerShell automatically converts
a string to a list of characters if required, and in this case converts your
string to the characters W, o, r, 1, d, and a space. These are in fact the
same characters as were used in Example 5-7, so it has the same effect.

If you want to replace text anywhere in a string (and not just from the beginning or end),
see Recipe 5.8, “Replace Text in a String”.

See Also
Recipe 5.8, “Replace Text in a String”

5.13. Format a Date for Qutput

Problem

You want to control the way that PowerShell displays or formats a date.

Solution

To control the format of a date, use one of the following options:

o The Get-Date cmdlets -Format parameter:

PS > Get-Date -Date "05/09/1998 1:23 PM" -Format "dd-MM-yyyy @ hh:mm:ss"
09-05-1998 @ 01:23:00

 PowerShell’s string formatting (-f) operator:

PS > Sdate = [DateTime] "05/09/1998 1:23 PM"
PS > "{0:dd-MM-yyyy @ hh:mm:ss}" -f Sdate
09-05-1998 @ 01:23:00

o The object’s ToString() method:

PS > Sdate = [DateTime] "05/09/1998 1:23 PM"
PS > Sdate.ToString("dd-MM-yyyy @ hh:mm:ss")
09-05-1998 @ 01:23:00

194 | Chapter5: Strings and Unstructured Text

o The Get-Date cmdlets -UFormat parameter, which supports Unix date format
strings:
PS > Get-Date -Date "05/09/1998 1:23 PM" -UFormat "%d-%m-%Y @ %I:%M:%S"
09-05-1998 @ 01:23:00

Discussion

Except for the -UFormat parameter of the Get-Date cmdlet, all date formatting in
PowerShell uses the standard .NET DateTime format strings. These format strings enable
you to display dates in one of many standard formats (such as your system’s short or
long date patterns), or in a completely custom manner. For more information on how
to specify standard .NET DateTime format strings, see Appendix E.

If you are already used to the Unix-style date formatting strings (or are converting an
existing script that uses a complex one), the -UFormat parameter of the Get-Date cmdlet
may be helpful. It accepts the format strings accepted by the Unix date command, but
does not provide any functionality that standard .NET date formatting strings cannot.

When working with the string version of dates and times, be aware that they are the
most common source of internationalization issues—problems that arise from running
a script on a machine with a different culture than the one it was written on. In North
America, “05/09/1998” means “May 9, 1998 In many other cultures, though, it means
“September 5, 1998” Whenever possible, use and compare DateTime objects (rather
than strings) to other DateTime objects, as that avoids these cultural differences.
Example 5-8 demonstrates this approach.

Example 5-8. Comparing DateTime objects with the -gt operator

PS > $dueDate = [DateTime] "01/01/2006"
PS > if([DateTime]::Now -gt SdueDate)
{

}

"Account is now due"

Account is now due

PowerShell always assumes the North American date format when it
interpretsaDateTime constantsuch as [DateTime] "05/09/1998". This

" is for the same reason that all languages interpret numeric constants
(suchas 12.34) in the North American format. If it did otherwise, nearly
every script that dealt with dates and times would fail on international
systems.

5.13. Format a Date for Output | 195

For more information about the Get-Date cmdlet, type Get-Help Get-Date. For more
information about dealing with dates and times in a culture-aware manner, see
Recipe 13.6, “Write Culture- Aware Scripts”.

See Also

Recipe 13.6, “Write Culture- Aware Scripts”
Appendix E, NET DateTime Formatting

5.14. Program: Convert Text Streams to Objects

One of the strongest features of PowerShell is its object-based pipeline. You don’t waste
your energy creating, destroying, and recreating the object representation of your data.
In other shells, you lose the full-fidelity representation of data when the pipeline converts
it to pure text. You can regain some of it through excessive text parsing, but not all of it.

However, you still often have to interact with low-fidelity input that originates from
outside PowerShell. Text-based data files and legacy programs are two examples.

PowerShell offers great support for two of the three text-parsing staples:

Sed
Replaces text. For that functionality, PowerShell offers the -replace operator.

Grep
Searches text. For that functionality, PowerShell offers the Select-String cmdlet,
among others.

The third traditional text-parsing tool, Awk, lets you chop a line of text into more in-
tuitive groupings. PowerShell offers the -split operator for strings, but that lacks some
of the power you usually need to break a string into groups.

The Convert-TextObject script presented in Example 5-9 lets you convert text streams
into a set of objects that represent those text elements according to the rules you specify.
From there, you can use all of PowerShell’s object-based tools, which gives you even
more power than you would get with the text-based equivalents.

Example 5-9. Convert-TextObject.ps1

A
#i#t

Convert-TextObject

#i#t

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#it

196 | Chapter5: Strings and Unstructured Text

<#

.SYNOPSIS

Convert a simple string into a custom PowerShell object.
.EXAMPLE

PS > "Hello World" | Convert-TextObject
Generates an Object with "Pil=Hello" and "P2=World"

.EXAMPLE

PS > "Hello World" | Convert-TextObject -Delimiter "11"
Generates an Object with "P1=He" and "P2=0 World"

.EXAMPLE

PS > "Hello World" | Convert-TextObject -Pattern "He(ll.*o)r(ld)"
Generates an Object with "P1=11o Wo" and "P2=1d"

.EXAMPLE

PS > "Hello World" | Convert-TextObject -PropertyName FirstWord,SecondWord
Generates an Object with "FirstWord=Hello" and "SecondWord=World

.EXAMPLE

PS > "123 456" | Convert-TextObject -PropertyType S$([string],[int])
Generates an Object with "Property1=123" and "Property2=456"
The second property is an integer, as opposed to a string

.EXAMPLE

PS > $ipAddress = (ipconfig | Convert-TextObject -Delim ": ")[2].P2
PS > $ipAddress
192.168.1.104

#>

[CmdletBinding(DefaultParameterSetName = "ByDelimiter")]

param(
If specified, gives the .NET regular expression with which to
split the string. The script generates properties for the
resulting object out of the elements resulting from this split.
If not specified, defaults to splitting on the maximum amount
of whitespace: "\s+", as long as Pattern is not
specified either.
[Parameter(ParameterSetName = "ByDelimiter", Position = 0)]
[string] $Delimiter = "\s+",

5.14. Program: Convert Text Streams to Objects

197

If specified, gives the .NET regular expression with which to
parse the string. The script generates properties for the
resulting object out of the groups captured by this regular
expression.
[Parameter(Mandatory = S$true,

ParameterSetName = "ByPattern",

Position = 0)]
[string] SPattern,

##t If specified, the script will pair the names from this object
definition with the elements from the parsed string. If not
specified (or the generated object contains more properties
than you specify,) the script uses property names in the

pattern of P1,P2,...,PN

[Parameter(Position = 1)]

[Alias("PN")]

[string[]] $PropertyName = @(),

If specified, the script will pair the types from this list with
the properties from the parsed string. If not specified (or the
generated object contains more properties than you specify,) the
script sets the properties to be of type [string]
[Parameter(Position = 2)]

[Alias("PT")]

[type[]1] $PropertyType = @(),

The input object to process
[Parameter(ValueFromPipeline = $true)]
[string] $InputObject

)

begin {
Set-StrictMode -Version 3
}

process {
$returnObject = New-Object PSObject

$matches = $null
$matchCount = 0

if(SPSBoundParameters["Pattern"])

{
Verify that the input contains the pattern
Populates the matches variable by default
if(-not ($InputObject -match $pattern))
{

return

}

$matchCount = Smatches.Count

198 | Chapter5: Strings and Unstructured Text

$startIndex = 1

}
else
{
Verify that the input contains the delimiter
if(-not ($InputObject -match $delimiter))
{
return
}
If so, split the input on that delimiter
S$matches = $InputObject -split $delimiter
$matchCount = S$matches.Length
$startIndex = 0
}

Go through all of the matches, and add them as notes to the output
object.
for(Scounter = $startIndex; $counter -1t $matchCount; Scounter++)
{
ScurrentPropertyName = "P$(Scounter - $startIndex + 1)"
ScurrentPropertyType = [string]

Get the property name
if(Scounter -1t S$propertyName.Length)

{
if(SpropertyName[Scounter])
{
ScurrentPropertyName = $propertyName[$counter - 1]
}
}

Get the property value
if(Scounter -1t SpropertyType.Length)

{
if($propertyType[$counter])
{
ScurrentPropertyType = $propertyType[$counter - 1]
}
}

Add-Member -InputObject SreturnObject NoteProperty °
-Name $currentPropertyName °
-Value ($matches[$Scounter].Trim() -as $currentPropertyType)

}
$returnObject
}
See Also

Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

5.14. Program: Convert Text Streams to Objects

5.15. Generate Large Reports and Text Streams

Problem

You want to write a script that generates a large report or large amount of data.

Solution

The best approach to generating a large amount of data is to take advantage of
PowerShell’s streaming behavior whenever possible. Opt for solutions that pipeline data
between commands:

Get-ChildItem C:*.txt -Recurse | Out-File c:\temp\AllTextFiles.txt
rather than collect the output at each stage:

$files = Get-ChildItem C:*.txt -Recurse
$files | Out-File c:\temp\AllTextFiles.txt

If your script generates a large text report (and streaming is not an option), use the
StringBuilder class:

Soutput = New-Object System.Text.StringBuilder
Get-ChildItem C:*.txt -Recurse |

Foreach-Object { [voild] Soutput.AppendLine($_.FullName) }
Soutput.ToString()

rather than simple text concatenation:

Soutput =
Get-ChildItem C:*.txt -Recurse | Foreach-Object { Soutput += $_.FullName }
Soutput

Discussion

In PowerShell, combining commands in a pipeline is a fundamental concept. As scripts
and cmdlets generate output, PowerShell passes that output to the next command in the
pipeline as soon as it can. In the Solution, the Get-ChildItem commands that retrieve
all text files on the C: drive take a very long time to complete. However, since they begin
to generate data almost immediately, PowerShell can pass that data on to the next com-
mand as soon as the Get-ChildItem cmdlet produces it. This is true of any commands
that generate or consume data and is called streaming. The pipeline completes almost
as soon as the Get-ChildItem cmdlet finishes producing its data and uses memory very
efficiently as it does so.

200 | Chapter5:Strings and Unstructured Text

The second Get-ChildItem example (which collects its data) prevents PowerShell from
taking advantage of this streaming opportunity. It first stores all the files in an array,
which, because of the amount of data, takes a long time and an enormous amount of
memory. Then, it sends all those objects into the output file, which takes a long time as
well.

However, most commands can consume data produced by the pipeline directly, as il-
lustrated by the Out-File cmdlet. For those commands, PowerShell provides streaming
behavior as long as you combine the commands into a pipeline. For commands that do
not support data coming from the pipeline directly, the Foreach-0bject cmdlet (with
the aliases of foreach and %) lets you work with each piece of data as the previous
command produces it, as shown in the StringBuilder example.

Creating large text reports

When you generate large reports, it is common to store the entire report into a string,
and then write that string out to a file once the script completes. You can usually ac-
complish this most effectively by streaming the text directly to its destination (a file or
the screen), but sometimes this is not possible.

Since PowerShell makes it so easy to add more text to the end of a string (as in $out
put += $_.FullName), many initially opt for that approach. This works great for small-
to-medium strings, but it causes significant performance problems for large strings.

W8

) As an example of this performance difference, compare the following:
qs
[N PS > Measure-Command {

Soutput = New-Object Text.StringBuilder
1..10000 |
Foreach-Object { Soutput.Append("Hello World") }
}

(...)
TotalSeconds : 2.3471592

PS > Measure-Command {
Soutput = ""
1..10000 | Foreach-Object { Soutput += "Hello World" }

}
(...)
TotalSeconds : 4.9884882

In the NET Framework (and therefore PowerShell), strings never change after you
create them. When you add more text to the end of a string, PowerShell has to build a

5.15. Generate Large Reports and Text Streams | 201

new string by combining the two smaller strings. This operation takes a long time for
large strings, which is why the .NET Framework includes the System.Text.String
Builder class. Unlike normal strings, the StringBuilder class assumes that you will
modify its data—an assumption that allows it to adapt to change much more efficiently.

5.16. Generate Source Code and Other Repetitive Text

Problem

You want to simplify the creation of large amounts of repetitive source code or other
text.

Solution

Use PowerShell’s string formatting operator (-f) to place dynamic information inside
of a preformatted string, and then repeat that replacement for each piece of dynamic
information.

Discussion

Code generation is a useful technique in nearly any technology that produces output
from some text-based input. For example, imagine having to create an HTML report to
show all of the processes running on your system at that time. In this case, “code” is the
HTML code understood by a web browser.

HTML pages start with some standard text (<html>, <head>, <body>), and then you
would likely include the processes in an HTML <table>. Each row would include col-
umns for each of the properties in the process youre working with.

Generating this by hand would be mind-numbing and error-prone. Instead, you can
write a function to generate the code for the row:

function Get-HtmlRow(Sprocess)

{
$template = "<TR> <TD>{0}</TD> <TD>{1}</TD> </TR>"
Stemplate -f $process.Name,$process.ID

}
and then generate the report in milliseconds, rather than hours:

"<HTML><BODY><TABLE>" > report.html

Get-Process | Foreach-Object { Get-HtmlRow $_ } >> report.html
"</TABLE></BODY></HTML>" >> report.html

Invoke-Item .\report.html

In addition to the formatting operator, you can sometimes use the String.Replace
method:

202 | Chapter5:Strings and Unstructured Text

$string = @'

Name is __NAME__

Id is __ID__

'@

$string = $string.Replace("__NAME__", S$process.Name)
$string = $string.Replace("__ID__", $process.Id)

This works well (and is very readable) if you have tight control over the data you’ll be
using as replacement text. If it is at all possible for the replacement text to contain one
of the special tags (__NAME__ or __ID__, for example), then they will also get replaced
by further replacements and corrupt your final output.

To avoid this issue, you can use the Format-String script shown in Example 5-10.

Example 5-10. Format-String.ps1

#Ht

Format-String

#Ht

From Windows PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

##
B

<#

.SYNOPSIS

Replaces text in a string based on named replacement tags
.EXAMPLE

PS > Format-String "Hello {NAME}" @{ NAME = 'PowerShell' }
Hello PowerShell

.EXAMPLE

PS > Format-String "Your score is {SCORE:P}" @{ SCORE = 0.85 }
Your score is 85.00 %

#>

param(
The string to format. Any portions in the form of {NAME}
will be automatically replaced by the corresponding value
from the supplied hashtable.
$String,

The named replacements to use in the string
[hashtable] SReplacements

5.16. Generate Source Code and Other Repetitive Text | 203

Set-StrictMode -Version 3

ScurrentIndex = 0
SreplacementList = @()

if($String -match "{{|}}")
{

throw "Escaping of replacement terms are not supported."

}

Go through each key in the hashtable

foreach($key in Sreplacements.Keys)

{
Convert the key into a number, so that it can be used by
String.Format
SinputPattern = '{(.*)' + Skey + '(.*)}'
SreplacementPattern = '{${1}' + ScurrentIndex + 'S${2}}'
$string = $string -replace S$inputPattern,SreplacementPattern
SreplacementList += $replacements[Skey]

ScurrentIndex++

}

Now use String.Format to replace the numbers in the
format string.
$string -f S$replacementList

PowerShell includes several commands for code generation that you've probably used
without recognizing their “code generation” aspect. The ConvertTo-Html cmdlet applies
code generation of incoming objects to HTML reports. The ConvertTo-Csv cmdlet
applies code generation to CSV files. The ConvertTo-Xml cmdlet applies code genera-
tion to XML files.

Code generation techniques seem to come up naturally when you realize you are writing
a report, but they are often missed when writing source code of another programming
or scripting language. For example, imagine you need to write a C# function that outputs
all of the details of a process. The System.Diagnostics.Process class has alot of prop-
erties, so that’s going to be a long function. Writing it by hand is going to be difficult, so
you can have PowerShell do most of it for you.

For any object (for example, a process that you've retrieved from the Get-Process
command), you can access its PsObject.Properties property to get a list of all of its
properties. Each of those has a Name property, so you can use that to generate the C#
code:

$process.PsObject.Properties |
Foreach-Object {
'Console.WriteLine("{0}: " + process.{0});' -f $_.Name }

204 | Chapter5:Strings and Unstructured Text

This generates more than 60 lines of C# source code, rather than having you do it by
hand:

Console.WriteLine("Name:
Console.WriteLine("Handles:

+ process.Name);
" + process.Handles);

Console.WriteLine("VM: " + process.VM);
Console.WriteLine("WS: " + process.WS);
Console.WriteLine("PM: " + process.PM);
Console.WriteLine("NPM: " + process.NPM);
Console.WriteLine("Path: " + process.Path);

Console.WriteLine("Company: + process.Company);
Console.WriteLine("CPU: " + process.CPU);
Console.WriteLine("FileVersion: " + process.FileVersion);
Console.WriteLine("ProductVersion: " + process.ProductVersion);

(...)

Similar benefits come from generating bulk SQL statements, repetitive data structures,
and more.

PowerShell code generation can still help you with large-scale administration tasks, even
when PowerShell is not available. Given a large list of input (for example, a complex list
of files to copy), you can easily generate a cmd.exe batch file or Unix shell script to
automate the task. Generate the script in PowerShell, and then invoke it on the system
of your choice!

5.16. Generate Source Code and Other Repetitive Text | 205

CHAPTER 6
Calculations and Math

6.0. Introduction

Math is an important feature in any scripting language. Math support in a language
includes addition, subtraction, multiplication, and division, of course, but extends into
more advanced mathematical operations. So it should not surprise you that PowerShell
provides a strong suite of mathematical and calculation-oriented features.

Since PowerShell provides full access to its scripting language from the command line,
this keeps a powerful and useful command-line calculator always at your fingertips! In
addition to its support for traditional mathematical operations, PowerShell also caters
to system administrators by working natively with concepts such as megabytes and
gigabytes, simple statistics (such as sum and average), and conversions between bases.

6.1. Perform Simple Arithmetic

Problem

You want to use PowerShell to calculate simple mathematical results.

Solution
Use PowerShell’s arithmetic operators:
+ Addition
Subtraction
* Multiplication
/ Division
% Modulus

207

+=,-=,%=,/=,and %= Assignment variations of the previously listed operators

() Precedence/order of operations

For a detailed description of these mathematical operators, see “Simple Operators” (page
873).

Discussion

One difficulty in many programming languages comes from the way that they handle
data in variables. For example, this C# snippet stores the value of 1 in the result variable,
when the user probably wanted the result to hold the floating-point value of 1.5:

double result = 0;

result = 3/2;
This is because C# (along with many other languages) determines the result of the di-
vision from the type of data being used in the division. In the previous example, it decides
that you want the answer to be an integer because you used two integers in the division.

PowerShell, on the other hand, avoids this problem. Even if you use two integers in a
division, PowerShell returns the result as a floating-point number if required. This is
called widening.

PS > Sresult = 0
PS > Sresult = 3/2
PS > Sresult

1.5

One exception to this automatic widening is when you explicitly tell PowerShell the type
of result you want. For example, you might use an integer cast ([int]) to say that you
want the result to be an integer after all:

PS > Sresult = [int] (3/2)

PS > S$result
2

Many programming languages drop the portion after the decimal point when they con-
vert them from floating-point numbers to integers. This is called truncation. PowerShell,
on the other hand, uses banker’s rounding for this conversion. It converts floating-point
numbers to their nearest integer, rounding to the nearest even number in case of a tie.

Several programming techniques use truncation, though, so it is still important that a
scripting language somehow support it. PowerShell does not have a built-in operator
that performs truncation-style division, but it does support it through the
[Math]::Truncate() method in the .NET Framework:

PS > Sresult = 3/2

PS > [Math]::Truncate($result)
1

208 | Chapter6: Calculations and Math

If that syntax seems burdensome, the following example defines a trunc function that
truncates its input:

PS > function trunc($number) { [Math]::Truncate($number) }
PS > S$result = 3/2

PS > trunc $result

1

See Also
“Simple Operators” (page 873)

6.2. Perform Complex Arithmetic

Problem

You want to use PowerShell to calculate more complex or advanced mathematical
results.

Solution

PowerShell supports more advanced mathematical tasks primarily through its support
for the System.Math class in the .NET Framework.

To find the absolute value of a number, use the [Math]: :Abs() method:

PS > [Math]::Abs(-10.6)
10.6

To find the power (such as the square or the cube) of a number, use the [Math]: : Pow()
method. In this case, the method is finding 123 squared:

PS > [Math]::Pow(123, 2)
15129

To find the square root of a number, use the [Math]: :Sqrt() method:

PS > [Math]::Sqrt(100)
10

To find the sine, cosine, or tangent of an angle (given in radians), use the [Math]: : Sin(),
[Math]::Cos(), or [Math]::Tan() method:

PS > [Math]::Sin([Math]::PI / 2)
1

To find the angle (given in radians) of a sine, cosine, or tangent value, use the
[Math]::ASin(), [Math]::ACos(), or [Math]::ATan() method:

PS > [Math]::ASin(1)
1.5707963267949

6.2. Perform Complex Arithmetic | 209

See Recipe 3.13, “Learn About Types and Objects” to learn how to find out what other
features the System.Math class provides.

Discussion

Once you start working with the System.Math class, it may seem as though its designers
left out significant pieces of functionality. The class supports the square root of a number,
but doesn’t support other roots (such as the cube root). It supports sine, cosine, and
tangent (and their inverses) in radians, but not in the more commonly used measure of
degrees.

Working with any root

To determine any root (such as the cube root) of a number, you can use the function
given in Example 6-1.

Example 6-1. A root function and some example calculations

PS > function root($Snumber, S$root) { [Math]::Pow($number, 1 / Sroot) }
PS > root 64 3

4

PS > root 25 5

1.90365393871588

PS > [Math]::Pow(1.90365393871588, 5)

25.0000000000001

PS > [Math]::Pow($(root 25 5), 5)

25

This function applies the mathematical fact that the square root of a number is the same
as raising that number to the power of 1/2, the cube of a number is the same as raising
it to the power of 1/3, etc.

The example also illustrates a very important point about math on computers. When
you use this function (or anything else that manipulates floating-point numbers), always
be aware that the results of floating-point answers are only ever approximations of the
actual result. If you combine multiple calculations in the same statement (or store in-
termediate results into variables), programming and scripting languages can sometimes
keep an accurate answer (such as in the second [Math]: :Pow() attempt), but that ex-
ception is rare.

Some mathematical systems avoid this problem by working with equations and calcu-
lations as symbols (and not numbers). Like humans, these systems know that taking the
square of a number that you just took the square root of gives you the original number
right back—so they don’t actually have to do either of those operations. These systems,
however, are extremely specialized and usually very expensive.

210 | Chapter6: Calculations and Math

Working with degrees instead of radians

Converting radians (the way that mathematicians commonly measure angles) to degrees
(the way that most people commonly measure angles) is much more straightforward
than the root function. A circle has 2 * P1i radians if you measure in radians, and 360
degrees if you measure in degrees. That gives the following two functions:

function Convert-RadiansToDegrees(Sangle) { $angle / (2 * [Math]::Pi) * 360 }
function Convert-DegreesToRadians($Sangle) { Sangle / 360 * (2 * [Math]::Pi) }

and their usage:

PS > Convert-RadiansToDegrees ([Math]::Pi)

180

PS > Convert-RadiansToDegrees ([Math]::Pi / 2)

90

PS > Convert-DegreesToRadians 360
6.28318530717959

PS > Convert-DegreesToRadians 45
0.785398163397448

PS > [Math]::Tan((Convert-DegreesToRadians 45))
1

Working with large numbers

In addition to its support for all of the standard .NET data types (bytes, integers, floats,
and decimals), PowerShell also lets you work with extremely large numbers that these
standard data types cannot handle:

PS > [Math]::Pow(12345, 123)
Infinity

PS > [BigInt]::Pow(12345, 123)
17922747853679707527695216231943419712992696443062340535140391466684
40953031931423861053031289352606613314821666096691426463815891552569
61299625923906846736377224598990446854741893321648522851663303862851
16587975372427272838604280411617304001701448802369380754772495091658
80584554994292720483269340987503673640044881128194397555564034430275
23561951313385041616743787240003466700321402142800004483416756392021
35945746171990585436418152506177298295938033884123488041067995268917
9117442108690738677978515625

In addition to the static methods offered by the BigInt class, you can do standard
mathematical operations (addition, subtraction, multiplication, division) with big in-
tegers directly:

PS > Snuml = [BigInt] "962822088399213984108510902933777372323"

PS > Snum2 = [BigInt] "986516486816816168176871687167106806788"

PS > $numl * $num2
949839864077222593647087206583370147511597229917261205272142276616785899728524

6.2. Perform Complex Arithmetic | 211

As an important note, be sure to always enclose BigInt numbers in strings, and then
cast them to the BigInt type. If you don't, PowerShell thinks that you are trying to
provide a number of type Double (which loses data for extremely large numbers), and
then converts that number to the big integer.

PS > $r = 962822088399213984108510902933777372323
PS > S$r
9.62822088399214E+38

PS > [BigInt] Sr
962822088399213912109618944997163270144

PS > [BigInt] 962822088399213984108510902933777372323
962822088399213912109618944997163270144

PS > [BigInt] "962822088399213984108510902933777372323"
962822088399213984108510902933777372323

Working with imaginary and complex numbers

When you need to work with calculations that involve the square root of -1, the Sys
tem.Numerics.Complex class provides a great deal of support:

PS > [System.Numerics.Complex]::ImaginaryOne | Format-List

Real : 0
Imaginary : 1
Magnitude : 1
Phase ¢ 1.5707963267949

In addition to the static methods offered by the Complex class, you can do standard
mathematical operations (addition, subtraction, multiplication, division) with complex
numbers directly:

PS > [System.Numerics.Complex]::ImaginaryOne *
[System.Numerics.Complex]::ImaginaryOne | Format-List

Real -
Imaginary : 0
Magnitude : 1
Phase 3

1

.14159265358979

See Also
Recipe 3.13, “Learn About Types and Objects”

212 | Chapter6: Calculations and Math

6.3. Measure Statistical Properties of a List

Problem

You want to measure the numeric (minimum, maximum, sum, average) or textual
(characters, words, lines) features of a list of objects.

Solution
Use the Measure-0Object cmdlet to measure these statistical properties of a list.

To measure the numeric features of a stream of objects, pipe those objects to the
Measure-Object cmdlet:

PS > 1..10 | Measure-Object -Average -Sum

Count : 10
Average : 5.5
Sum ¢ 55
Maximum
Minimum
Property :

To measure the numeric features of a specific property in a stream of objects, supply
that property name to the -Property parameter of the Measure-Object cmdlet. For
example, in a directory with files:

PS > Get-ChildItem | Measure-Object -Property Length -Max -Min -Average -Sum

Count t 427

Average : 10617025.4918033
Sum : 4533469885
Maximum : 647129088
Minimum : 0

Property : Length

To measure the textual features of a stream of objects, use the -Character, -Word, and
-Line parameters of the Measure-0Object cmdlet:

PS > Get-ChildItem > output.txt
PS > Get-Content output.txt | Measure-Object -Character -Word -Line

Lines Words Characters Property

6.3. Measure Statistical Properties of aList | 213

Discussion

By default, the Measure-0bject cmdlet counts only the number of objects it receives. If
you want to measure additional properties (such as the maximum, minimum, average,
sum, characters, words, or lines) of those objects, then you need to specify them as
options to the cmdlet.

For the numeric properties, though, you usually don’t want to measure the objects
themselves. Instead, you probably want to measure a specific property from the list—
such as the Length property of a file. For that purpose, the Measure-Object cmdlet
supports the -Property parameter to which you provide the property you want to
measure.

Sometimes you might want to measure a property that isn’t a simple number—such as
the LastWriteTime property of a file. Since the LastWriteTime property is a Date
Time, you can't determine its average immediately. However, if any property allows you
to convert it to a number and back in a meaningful way (such as the Ticks property of
a DateTime), then you can still compute its statistical properties. Example 6-2 shows
how to get the average LastWriteTime from a list of files.

Example 6-2. Using the Ticks property of the DateTime class to determine the average
LastWriteTime of a list of files

PS > ## Get the LastWriteTime from each file
PS > S$times = dir | Foreach-Object { $_.LastWriteTime }

PS > ## Measure the average Ticks property of those LastWriteTime
PS > $results = Stimes | Measure-Object Ticks -Average

PS > ## Create a new DateTime out of the average Ticks
PS > New-Object DateTime $results.Average

Sunday, June 11, 2006 6:45:01 AM

For more information about the Measure-Object cmdlet, type Get-Help Measure-
Object.

6.4. Work with Numbers as Binary

Problem

You want to work with the individual bits of a number or work with a number built by
combining a series of flags.

Solution

To directly enter a hexadecimal number, use the 0x prefix:

214 | Chapter6: Calculations and Math

PS > ShexNumber = 0x1234
PS > ShexNumber
4660

To convert a number to its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 2)
10011010010

To convert a binary number into its decimal representation, supply a base of 2 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("10011010010", 2)
1234

To manage the individual bits of a number, use PowerShell’s binary operators. In this
case, the Archive flag is just one of the many possible attributes that may be true of a
given file:

PS > Sarchive = [System.IO.FileAttributes] "Archive"
PS > attrib +a test.txt
PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name

Name

test.txt

PS > attrib -a test.txt

PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name
PS >

Discussion

In some system administration tasks, it is common to come across numbers that seem
to mean nothing by themselves. The attributes of a file are a perfect example:

PS > (Get-Item test.txt).Encrypt()

PS > (Get-Item test.txt).IsReadOnly = S$true

PS > [int] (Get-Item test.txt -force).Attributes
16417

PS > (Get-Item test.txt -force).IsReadOnly = $false
PS > (Get-Item test.txt).Decrypt()

PS > [int] (Get-Item test.txt).Attributes

32

What can the numbers 16417 and 32 possibly tell us about the file?

The answer to this comes from looking at the attributes in another light—as a set of
features that can be either true or false. Take, for example, the possible attributes for an
item in a directory shown by Example 6-3.

6.4. Work with Numbers as Binary | 215

Example 6-3. Possible attributes of a file

PS > [Enum]::GetNames([System.IO.FileAttributes])
ReadOnly

Hidden

System

Directory

Archive

Device

Normal

Temporary

SparseFile

ReparsePoint

Compressed

offline
NotContentIndexedEncrypted

If a file is ReadOnly, Archive, and Encrypted, then you might consider the following as

a succinct description of the attributes on that file:

ReadOnly = True
Archive = True
Encrypted = True

It just so happens that computers have an extremely concise way of representing sets of
true and false values—a representation known as binary. To represent the attributes of
a directory item as binary, you simply put them in a table. We give the item a 1 if the
attribute applies to the item and a 0 otherwise (see Table 6-1).

Table 6-1. Attributes of a directory item

Attribute True (1) or false (0)
Encrypted 1
NotContentIndexed
offline
Compressed
ReparsePoint
SparseFile
Temporary

Normal

O O O O O o o o

Device

—_

Archive
Directory
<Unused>
System
Hidden

o O o o

216 | Chapter6: Calculations and Math

Attribute True (1) orfalse (0)
ReadOnly 1

If we treat those features as the individual binary digits in a number, that gives us the
number 100000000100001. If we convert that number to its decimal form, it becomes

clear where the number 16417 came from:

PS > [Convert]::ToInt32("100000000100001", 2)
16417

This technique sits at the core of many properties that you can express as a combination
of features or flags. Rather than list the features in a table, though, the documentation
usually describes the number that would result from that feature being the only one
active—such as FILE_ATTRIBUTE_REPARSEPOINT = 0x400. Example 6-4 shows the var-

ious representations of these file attributes.

Example 6-4. Integer, hexadecimal, and binary representations of possible file attributes

PS > Sattributes = [Enum]::GetValues([System.IO.FileAttributes])

PS > Sattributes | Select-Object °
@{"Name"="Property";
"Expression"= { $_ } },
@{"Name"="Integer";
"Expression"= { [int] $_ } },
@{"Name"="Hexadecimal";
"Expression"= { [Convert]::ToString([int] $_, 16) } },
@{"Name"="Binary";
"Expression"= { [Convert]::ToString([int] $_, 2) } } |
Format-Table -auto

Property Integer Hexadecimal Binary

ReadOnly 11 1
Hidden 22 10
System 4 4 100
Directory 16 10 10000
Archive 32 20 100000
Device 64 40 1000000
Normal 128 80 10000000
Temporary 256 100 100000000
SparseFile 512 200 1000000000
ReparsePoint 1024 400 10000000000
Compressed 2048 800 100000000000
offline 4096 1000 1000000000000
NotContentIndexed 8192 2000 10000000000000
Encrypted 16384 4000 100000000000000

6.4. Work with Numbers as Binary

217

Knowing how that 16417 number was formed, you can now use the properties in mean-
ingful ways. For example, PowerShell’s -band operator allows you to check whether a
certain bit has been set:

PS > Sencrypted = 16384

PS > Sattributes = (Get-Item test.txt -force).Attributes
PS > ($attributes -band $encrypted) -eq S$encrypted

True

PS > S$Scompressed = 2048

PS > ($Sattributes -band $compressed) -eq $compressed
False

PS >

Although that example uses the numeric values explicitly, it would be more common to
enter the number by its name:

PS > Sarchive = [System.IO.FileAttributes] "Archive"
PS > ($attributes -band Sarchive) -eq $archive
True

For mor