|
ARDUINO

CONTENTS IN DETAIL

REVIEWS FOR THE FIRST EDITION OF ARDUINO WORKSHOP

TITLE PAGE
COPYRIGHT
DEDICATION

ABOUT THE AUTHOR

ACKNOWLEDGMENTS

CHAPTER 1: GETTING STARTED

The Possibilities Are Endless
Strength in Numbers

Parts and Accessories
Required Software

macOS
Windows 10
Ubuntu Linux

Using_Arduino Safely
Looking Ahead

CHAPTER 2: EXPLORING THE ARDUINO BOARD AND THE IDE

The Arduino Board
Taking_a Look Around the IDE

The Command Area

The Text Area
The Output Window

Creating_Your First Sketch in the IDE

Comments

The setup()_Function

Controlling_the Hardware

The loop()_Function

Verifying_Your Sketch
Uploading_and Running_Your Sketch
Maodifying_Your Sketch

Looking_Ahead

CHAPTER 3: FIRST STEPS

Planning_Your Projects
About Electricity,

Current

Voltage

Power

Electronic Components

The Resistor

The Light-Emitting_Diode

The Solderless Breadboard

Project #1: Creating_a Blinking LED Wave

The Algorithm
The Hardware

The Schematic
The Sketch
Running_the Sketch

Using_Variables

Project #2: Repeating_with for Loops

Varying_LED Brightness with Pulse-Width Modulation
Project #3: Demonstrating PWM

More Electric Components

The Transistor

The Rectifier Diode
The Relay
Higher-Voltage Circuits
Looking_ Ahead

CHAPTER 4: BUILDING BLOCKS
Using_Schematic Diagrams

|dentifying_Components
Wires in Schematics
Dissecting_a Schematic

The Capacitor

Measuring_the Capacity of a Capacitor
Reading_Capacitor Values

Types of Capacitors

Digital Inputs

Project #4: Demonstrating_a Digital Input
The Algorithm

The Hardware

The Schematic

The Sketch

Understanding_the Sketch
Modifying_Your Sketch: Making More Decisions with if-else

Boolean Variables

Comparison Operators
Making_Two or More Comparisons

Project #5: Controlling_Traffic

The Goal

The Algorithm

The Hardware

The Schematic

The Sketch

Running_the Sketch
Analog_vs. Digital Signals
Project #6: Creating_a Single-Cell Battery Tester
The Goal

The Algorithm

The Hardware

The Schematic

The Sketch

Doing_Arithmetic with an Arduino

Float Variables
Comparison Operators for Calculations

Improving_Analog_Measurement Precision with a Reference Voltage

Using_an External Reference Voltage
Using_the Internal Reference Voltage

The Variable Resistor
Piezoelectric Buzzers

Piezo Schematic

Project #7: Trying_ Out a Piezo Buzzer
Project #8: Creating_a Quick-Read Thermometer

The Goal

The Hardware
The Schematic
The Sketch

Looking Ahead

CHAPTER 5: WORKING WITH FUNCTION

Project #9: Creating_a Function to Repeat an Action
Project #10: Creating_a Function to Set the Number of Blinks
Creating_a Function to Return a Value

Project #11: Creating_a Quick-Read Thermometer That Blinks the
Temperature

The Hardware
The Schematic
The Sketch

Displaying_Data from the Arduino in the Serial Monitor

The Serial Monitor

Project #12: Displaying_the Temperature in the Serial Monitor

Debugging_with the Serial Monitor

Making_Decisions with while Statements

while

do-while

Sending_Data from the Serial Monitor to the Arduino
Project #13: Multiplying_a Number by Two
long_Variables

Project #14: Using_long_Variables

Looking Ahead

CHAPTER 6: NUMBERS, VARIABLES, AND ARITHMETIC
Generating_ Random Numbers

Using Ambient Current to Generate a Random Number

Project #15: Creating_an Electronic Die
The Hardware

The Schematic

The Sketch

Modifying_the Sketch

A Quick Course in Binary

Binary Numbers
Byte Variables

Increasing_Digital Outputs with Shift Registers
Project #16: Creating_an LED Binary Number Display.

The Hardware
The Schematic
The Sketch

Project #17: Making_a Binary Quiz Game

The Algorithm
The Sketch

Arrays

Defining_an Array.
Referring_to Values in an Array,
Writing_to and Reading_from Arrays

Seven-Segment LED Displays
Controlling_the LED
Project #18: Creating_a Single-Digit Display

The Hardware
The Schematic
The Sketch

Modifying_the Sketch: Displaying_Double Digits

Project #19: Controlling Two Seven-Segment LED Display Modules

The Hardware
The Schematic
Modulo

Project #20: Creating_a Digital Thermometer

The Hardware
The Sketch

Looking Ahead

CHAPTER 7: EXPANDING YOUR ARDUINO

Shields
ProtoShields
Project #21: Creating_a Custom Shield

The Hardware

The Schematic

The Layout of the ProtoShield Board
The Design

Soldering_the Components
Testing_Your ProtoShield

Expanding_Sketches with Libraries
Downloading_an Arduino Library as a ZIP File

Importing_an Arduino Library with Library Manager

SD Memory Cards
Connecting_the Card Module
Testing_Your SD Card

Project #22: Writing_Data to the Memory Card
The Sketch

Project #23: Creating_a Temperature-Logging_Device

The Hardware

The Sketch

Timing_Applications with millis()_.and micros(),
Project #24: Creating_a Stopwatch

The Hardware
The Schematic
The Sketch

Interrupts

Interrupt Modes
Configuring_Interrupts

Activating_or Deactivating_Interrupts
Project #25: Using_Interrupts

The Sketch

Looking Ahead

CHAPTER 8: LED NUMERIC DISPLAYS AND MATRICES
LED Numeric Displays

Installing_the Library,

Project #26: Digital Stopwatch
Project #27: Using LED Matrix Modules

Installing_the Library
Editing_the Display Font
Looking Ahead

CHAPTER 9: LIQUID CRYSTAL DISPLAYS
Character LCD Modules
Using_a Character LCD in a Sketch

Displaying_Text
Displaying_Variables or Numbers

Project #28: Defining_Custom Characters
Graphic LCD Modules

Connecting_the Graphic LCD

Using_the LCD

Controlling_the Display

Project #29: Seeing_the Text Functions in Action

The Sketch
Running_the Sketch

Creating_More Complex Display_Effects with Graphic Functions
Project #30: Seeing_the Graphic Functions in Action

The Sketch

Project #31: Creating_a Temperature History Monitor

The Algorithm

The Hardware

The Sketch

Running_the Sketch

Madifying_the Sketch

Looking_Ahead

CHAPTER 10: CREATING YOUR OWN ARDUINO LIBRARIES
Creating_Your First Arduino Library

Anatomy _of an Arduino Library
The Header File

The Source File

The KEYWORDS.TXT File

Installing_Your New Arduino Library

Creating_a ZIP File Using Windows 7 and Later
Creating_a ZIP File Using Mac OS X or Later
Installing_Your New Library

Creating_a Library That Accepts Values to Perform a Function
Creating_a Library That Processes and Displays Sensor Values
Looking_Ahead

CHAPTER 11: NUMERIC KEYPADS
Using_a Numeric Keypad

Wiring_a Keypad

Programming_for the Keypad

Testing_the Sketch

Making_Decisions with switch case

Project #32: Creating_a Keypad-Controlled Lock
The Sketch

Understanding_the Sketch

Testing_the Sketch

Looking Ahead

CHAPTER 12: ACCEPTING USER INPUT WITH
TOUCHSCREENS

Touchscreens

Connecting_the Touchscreen

Project #33: Addressing_Areas on the Touchscreen
The Hardware

The Sketch

Testing_the Sketch
Mapping_the Touchscreen

Project #34: Creating_a Two-Zone On/Off Touch Switch

The Sketch
Understanding_the Sketch
Testing the Sketch

Using_the map()_Function
Project #35: Creating_a Three-Zone Touch Switch

The Touchscreen Map
The Sketch
Understanding_the Sketch

Looking Ahead

CHAPTER 13: MEET THE ARDUINO FAMILY
Project #36: Creating_Your Own Breadboard Arduino

The Hardware

The Schematic
Running_the Sketch

The Many Arduino and Alternative Boards

Arduino Uno

Freetronics Eleven

The Adafruit Pro Trinket
The Arduino Nano

The LilyPad

The Arduino Mega 2560
The Freetronics EtherMega
The Arduino Due

Looking_Ahead

CHAPTER 14: MOTORS AND MOVEMENT
Making_Small Motions with Servos

Selecting_a Servo

Connecting_a Servo
Putting_a Servo to Work

Project #37: Building_an Analog_Thermometer

The Hardware
The Schematic
The Sketch

Using_Electric Motors

Selecting_a Motor
The TIP120 Darlington Transistor

Project #38: Controlling_the Motor

The Hardware
The Schematic
The Sketch

Using_Small Stepper Motors
Project #39: Building_and Controlling_a Robot Vehicle

The Hardware

The Schematic

Connecting_the Motor Shield

The Sketch

Connecting_Extra Hardware to the Robot

Sensing_Collisions
Project #40: Detecting_Robot Vehicle Collisions with a Microswitch

The Schematic
The Sketch

Infrared Distance Sensors

Wiring_It Up
Testing_the IR Distance Sensor

Project #41: Detecting_Robot Vehicle Collisions with an IR Distance
Sensor

The Sketch
Modifying_the Sketch: Adding_More Sensors

Ultrasonic Distance Sensors

Connecting_the Ultrasonic Sensor
Testing_the Ultrasonic Sensor

Project #42: Detecting_Collisions with an Ultrasonic Distance Sensor
The Sketch
Looking_Ahead

CHAPTER 15: USING GPS WITH YOUR ARDUINO

What Is GPS?
Testing the GPS Shield
Project #43: Creating_a Simple GPS Receiver

The Hardware
The Sketch
Running_the Sketch

Project #44: Creating_an Accurate GPS-Based Clock

The Hardware
The Sketch

Project #45: Recording_the Position of a Moving_Object over Time

The Hardware
The Sketch
Running_the Sketch

Looking_Ahead

CHAPTER 16: WIRELESS DATA
Using_Low-Cost Wireless Modules

Project #46: Creating_a Wireless Remote Control

The Transmitter Circuit Hardware
The Transmitter Schematic

The Receiver Circuit Hardware
The Receiver Schematic

The Transmitter Sketch

The Receiver Sketch

Using_LoRa Wireless Data Modules for Greater Range and Faster
Speed

Project #47: Remote Control over LoRa Wireless

The Transmitter Circuit Hardware
The Transmitter Schematic

The Receiver Circuit Hardware
The Receiver Schematic

The Transmitter Sketch

The Receiver Sketch

Project #48: Remote Control over LoRa Wireless with Confirmation

The Transmitter Circuit Hardware
The Transmitter Schematic

The Transmitter Sketch

The Receiver Sketch

Project #49: Sending_ Remote Sensor Data Using_LoRa Wireless

The Transmitter Circuit Hardware
The Receiver Circuit Hardware
The Receiver Schematic

The Transmitter Sketch

The Receiver Sketch

Looking_Ahead

CHAPTER 17: INFRARED REMOTE CONTROL

What Is Infrared?
Setting_Up for Infrared

The IR Receiver
The Remote Control
A Test Sketch
Testing_the Setup

Project #50: Creating_an IR Remote Control Arduino

The Hardware

The Schematic

The Sketch
Modifying_the Sketch

Project #51: Creating_an IR Remote Control Robot Vehicle

The Hardware
The Sketch

Looking_Ahead

CHAPTER 18: READING RFID TAGS

Inside RFID Devices
Testing the Hardware

The Schematic

Testing_the Schematic

The Test Sketch

Displaying_the RFID Tag_ID Number

Project #52: Creating_a Simple RFID Control System

The Sketch
Understanding_the Sketch

Storing_Data in the Arduing’s Built-in EEPROM

Reading_and Writing_to the EEPROM
Project #53: Creating_an RFID Control with “Last Action” Memory.

The Sketch
Understanding_the Sketch

Looking_Ahead

CHAPTER 19: DATA BUSES
The 12C Bus
Project #54: Using_an External EEPROM

The Hardware

The Schematic
The Sketch
Running_the Sketch

Project #55: Using_a Port Expander IC

The Hardware

The Schematic

The Sketch

The SPI Bus

Pin Connections
Implementing_the SPI
Sending_Data to an SPI Device

Project #56: Using_a Digital Rheostat

The Hardware
The Schematic
The Sketch

Looking Ahead

CHAPTER 20: REAL-TIME CLOCKS
Connecting_the RTC Module

Project #57: Adding_and Displaying_Time and Date with an RTC

The Hardware
The Sketch
Understanding_and Running_the Sketch

Project #58: Creating_a Simple Digital Clock

The Hardware
The Sketch
Understanding_and Running_the Sketch

Project #59: Creating_an RFID Time-Clock System

The Hardware
The Sketch
Understanding_the Sketch

Looking_Ahead

CHAPTER 21: THE INTERNET

What You'll Need
Project #60: Building_a Remote Monitoring_Station

The Hardware

The Sketch
Troubleshooting
Understanding_the Sketch

Project #61: Creating_an Arduino Tweeter

The Hardware
The Sketch

Controlling_Your Arduino from the Web
Project #62: Setting Up a Remote Control for Your Arduino

The Hardware
The Sketch

Controlling_Your Arduino Remotely

Looking_Ahead

CHAPTER 22: CELLULAR COMMUNICATIONS
The Hardware

Hardware Configuration and Testing

Project #63: Building_an Arduino Dialer

The Hardware

The Schematic

The Sketch

Understanding_the Sketch

Project #64: Building_an Arduino Texter

The Sketch

Understanding_the Sketch

Project #65: Setting_ Up an SMS Remote Control
The Hardware

The Schematic

The Sketch

Understanding_the Sketch

Looking Ahead

INDEX

REVIEWS FOR THE FIRST EDITION OF
ARDUINO WORKSHOP

“When it comes to technology, there’s really something to be
said for learning by example, and with each key point
focused around a specific project, the information in this
book is easy to learn and retain.”

—DAVE RANKIN, ABOUT.COM OPEN SOURCE
“Arduino Workshop was the first book I’ve read that helped

me really make sense of the practical applications the
Arduino is capable of.”

—AMATEURRADIO.COM
“A very thorough primer for those wishing to jump on the
[Arduino] bandwagon.”
—KEVIN WIERZBICKI, CAMPUS CIRCLE
“I’ve checked out several Arduino ‘primers,’ and found the

best one for my purposes to be Arduino Workshop: A Hands-
on Introduction with 65 Projects by John Boxall.”

—JEFF Rowe, MCADCAFE.coM BLOG
“A good book for getting started . . . I highly recommend it

if you’re thinking about getting into Arduino projects and
you’re brand new to this stuff.”

—NATHAN YAU, FLOWINGDATA

ARDUINO WORKSHOP

2nd Edition

A Hands-on Introduction with 65 Projects

John Boxall

¢

no starch
press

San Francisco

ARDUINO WORKSHOP, 2ND EDITION. Copyright © 2021 by John Boxall.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0058-7 (print)
ISBN-13: 978-1-7185-0059-4 (ebook)

Publisher: William Pollock

Executive Editor: Barbara Yien
Production Editor: Rachel Monaghan
Developmental Editors: Patrick DiJusto and Nathan Heidelberger
Cover [llustration: Charlie Wylie

Interior Design: Octopod Studios
Technical Reviewer: Xander Soldaat
Copyeditor: Paula L. Fleming
Compositor: Happenstance Type-O-Rama
Proofreader: Rachel Head

Indexer: JoAnne Burek

Circuit diagrams made using Fritzing (http:/fritzing.org/).
For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for the first edition:

Boxall, John, 1975-

Arduino workshop : a hands-on introduction with 65 projects / by John Boxall.
pages cm

Includes index.

ISBN-13: 978-1-59327-448-1

ISBN-10: 1-59327-448-3

1. Arduino (Microcontroller) I. Title.

TJ223.P76B68 2013

629.8'95--dc23

2013008261

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

http://fritzing.org/
mailto:info@nostarch.com
http://www.nostarch.com/

For the two
people who
have always
believed in me:
my mother and
my dearest
Kathleen

About the Author

John Boxall has been in the electronics design, distribution, and e-
commerce field for over 26 years. He has lately been writing Arduino
tutorials, projects, and kit reviews during his spare time.

About the Technical Reviewer

Xander Soldaat is a former Mindstorms Community Partner for LEGO
MINDSTORMS. He was an IT infrastructure architect and engineer for 18
years before becoming a full-time software developer, first for Robomatter
and VEX Robotics and now as an R&D engineer for an embedded Wi-Fi
solutions provider. In his spare time, he likes to tinker with robots, 3D
printing, and home-built retro-computers.

ACKNOWLEDGMENTS

First of all, a huge thank you to the Arduino team: Massimo Banzi, David
Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis. Without your
vision, thought, and hard work, none of this would have been possible.

Thank you to all the readers of the first edition for your feedback and
constructive criticism.

Many thanks to my technical reviewer, Xander Soldaat, for his
contributions and for having the tenacity to follow through with such a large
project.

I also want to thank the following organizations for their images and
encouragement: Adafruit, Keysight Technologies, Freetronics, PMD Way,
Seeed Studio, Sharp Corporation, SparkFun, and Tronixlabs.

Furthermore, a big thanks to Freetronics and PMD Way for the use of their
excellent hardware products. And thank you to all those who have
contributed their time making Arduino libraries, which makes life much
easier for everyone. Kudos and thanks to the Fritzing team for their open
source circuit schematic design tool, which I’ve used throughout this book.

Thanks also to the following people (in no particular order) from whom
I’ve received encouragement, inspiration, and support: Elizabeth Pryce,
Jonathan Oxer, Philip Lindsay, Ken Shirriff, Nathan Kennedy, and David L.
Jones.

Finally, thank you to everyone at No Starch Press for their efforts in this
updated edition, including Patrick DiJusto for his editorial input, Dapinder
Dosanjh and Nathan Heidelberger for their endless patience, Rachel
Monaghan for guiding the book through the production process, Paula
Fleming for copyediting, Rachel Head for proofreading, JoAnne Burek for
indexing, and of course Bill Pollock for his support and guidance and for
convincing me that sometimes there is a better way to explain something.

1
GETTING STARTED

Have you ever looked at some gadget and wondered
how it really worked? Maybe it was a remote control
boat, an elevator, a vending machine, or an electronic
toy. Or have you wanted to create your own robot or
make electronic signals for a model railroad? Or
perhaps you’d like to capture and analyze weather
data over time? Where and how do you start?

The Arduino microcontroller board (shown in Figure 1-1) can help you find
the answers to some of the mysteries of electronics in a hands-on way. The
original creation of Massimo Banzi and David Cuartielles, the Arduino

system offers an inexpensive way to build interactive projects, such as
remote-controlled robots, GPS tracking systems, and electronic games.

The Arduino project has grown exponentially since its introduction in 2005.
It’s now a thriving industry, supported by a community of people united
with the common bond of creating something new. You’ll find individuals
and groups ranging from small clubs to local hackerspaces to educational
institutions, all interested in trying to make things with the Arduino.

UI\J -

.
=,

¥ O HEH

- S R R S RS

Figure 1-1: The Arduino board

To get a sense of the variety of Arduino projects in the wild, simply search
the internet. There, you’ll find an incredible number of projects, blogs,
experiences, and ideas that show what is possible with the Arduino.

The Possibilities Are Endless

A quick scan through this book will show you that you can use the Arduino
to do something as simple as blinking a small light or something as
complicated as interacting with a cellular phone—and many different things
in between.

For example, look at Becky Stern’s Wi-Fi Weather Display, different
examples of which are shown in Figure 1-2. It uses an Arduino-compatible
board with a Wi-Fi interface to receive the local weather forecast. It then

displays the daily maximum temperature and illuminates a colored triangle
to represent the weather forecast for the day.

Figure 1-2: Various examples of a weather forecast display device

Thanks to the ease of interrogating various internet-based information
services, you can use this to display data other than the weather. For more
information, visit https:/www.instructables.com/id/WiFi-Weather-Display-
With-ESP8266/.

How about reproducing a classic computer from the past? Thanks to the
power of the Arduino’s internal processor, you can emulate computers from
days gone by. One example is Oscar Vermeulen’s KIM Uno, shown in
Figure 1-3, which emulates the 1976 KIM-1 computer. Visit
https://en.wikipedia.org/wiki/KIM-1 to learn more.

https://www.instructables.com/id/WiFi-Weather-Display-With-ESP8266/
https://en.wikipedia.org/wiki/KIM-1

Figure 1-3: An Arduino-powered KIM-1 emulator

By building this project, the user can gain an understanding of how the first
microprocessors worked, and this will give them the foundational
knowledge to understand the computers of today. You can reproduce the
Kim Uno for less than $50, and this low price tag makes this project an
ideal tool to share with others with a technological interest. For more
information, visit https://obsolescence.wixsite.com/obsolescence/kim-uno-
summary-cluuh/.

Then there’s Michalis Vasilakis, who also enjoys making his own tools on a
budget. A great example is his Arduino Mini CNC Plotter. This project uses

https://obsolescence.wixsite.com/obsolescence/kim-uno-summary-c1uuh/

an Arduino, mechanisms from old CD drives, and other inexpensive items
to create a computer numerical control (CNC) device that can draw with
precision on a flat surface (see Figure 1-4). For more information, visit
http://www.ardumotive.com/new-cnc-plotter.html.

Figure 1-4: The Arduino Mini CNC Plotter

These are only a few random examples of what is possible using an
Arduino. You can create your own simple projects without much difficulty
—and after you’ve worked through this book, even more complex projects
will certainly be within your reach.

Strength in Numbers

http://www.ardumotive.com/new-cnc-plotter.html

If you’re more of a social learner and enjoy class-oriented situations, search
the web for a local hackerspace or enthusiasts’ group to see what people are
making and to find Arduino-related groups. Members of Arduino groups
can do such things as introduce the world of Arduino from an artist’s
perspective or work together to create a small Arduino-compatible board.
These groups can be a lot of fun, introduce you to interesting people, and let
you share your Arduino knowledge with others.

You can also download the sketch files and find any updates at the
book’s website: https://nostarch.com/arduino-workshop-2nd-
edition/.

Parts and Accessories

As with any other electronic device, the Arduino is available from many
retailers offering a range of products and accessories. When you’re
shopping, be sure to purchase the original Arduino, or a quality derivative.
Otherwise, you run the risk of receiving faulty or poorly performing goods.
Why risk your project with an inferior board that could end up costing you
more in the long run? For a list of authorized Arduino distributors, visit
http://arduino.cc/en/Main/Buy/.

Here’s a list of current suppliers (in alphabetical order) that I recommend
for your purchases of Arduino-related parts and accessories:

Adafruit Industries (http:/www.adafruit.con/)

Arduino Store USA (https://store.arduino.cc/usa/)
PMD Way (https:/pmdway.com/)
SparkFun Electronics (https://sparkfun.com/)

You can download a list of the parts used in this book and find any updates
at the book’s website: https://nostarch.com/arduino-workshop-2nd-edition/.
All the required parts are easily available from the various resellers listed
above, as well as other retailers you may already be familiar with.

https://nostarch.com/arduino-workshop-2nd-edition/
http://arduino.cc/en/Main/Buy/
http://www.adafruit.com/
https://store.arduino.cc/usa/
https://pmdway.com/
https://sparkfun.com/
https://nostarch.com/arduino-workshop-2nd-edition/

But don’t go shopping yet. Take the time to read the first few chapters to get
an idea of what you’ll need so that you won’t waste money buying
unnecessary things.

Required Software

You should be able to program your Arduino with just about any computer.
You’ll begin by installing a piece of software called an integrated
development environment (IDE). To run this software, your computer
should have an internet connection and one of the following operating
systems installed:

macOS 10.14 64-bit, or higher
Windows 10 Home 32- or 64-bit, or higher
Linux 32- or 64-bit (Ubuntu or similar)

The IDE has been a work in progress since 2005 and is currently up to
version 2.x (the exact number may change, but the instructions in this book
should still work). Compared to version 1.x, version 2.x has some features
that make writing and editing sketches easier, including interactive
autocomplete, improved navigation through sketches, and more user-
friendly board and library managers. Furthermore, a live debugger allows
you to start and stop your Arduino sketch interactively when used with
certain Arduino boards. However, if you’re new to the world of Arduino,
you don’t need to worry about these features. Just remember that the
Arduino team and community are always working on improvements.

Now is a good time to download and install the IDE, so jump to the heading
that matches your operating system and follow the instructions. Make sure
you have or buy the matching USB cable for your Arduino from the
supplier as well. Even if you don’t have your Arduino board yet, you can
still download and explore the IDE.

macOS

In this section, you’ll find instructions for downloading and configuring the
Arduino IDE in macOS.

. Visit the software download page (https:/www.arduino.cc/en/software/) and
download the latest available version of the IDE for your operating system.

. Double-click the Arduino .dmg file in your Downloads folder. When the
installation window pops up, drag the Arduino icon to the Applications
folder.

. Open the IDE, as shown in Figure 1-5.

® ArduinoIDE File Edit Sketch Tools Help
sketch_aprGa | Arduino IDE

0@ |
ooO0 DOIEEmENEEN 0

sketch_apaing -

void setup() {
ff put your Setup code here, to run once:

}

110 COOE NEreg, te run r";!!'-lil'::.'r':

1

F

3

4

5

] void loop() {

7 i et wAHE B
B

9)

]

1

UTF-8 no board salacted M

Figure 1-5: The IDE in macOS

. Now to configure the IDE for the Arduino Uno board. Click the top icon in
the left sidebar of the IDE to open the Boards Manager. Find the option that
includes the Arduino Uno and click Install.

. Expand the drop-down menu at the top of the IDE that reads No Board
Selected and choose Select Other Board & Port. Then select the Arduino
Uno from the list of boards.

You may be prompted to install Apple’s Command Line Developer tools.

Now your hardware and software are ready to work for you. Next, move on
to “Using Arduino Safely” on page 8.

https://www.arduino.cc/en/software/

Windows 10

In this section, you’ll find instructions for downloading and configuring the
IDE in Windows.

. Visit the software download page (http://arduino.cc/en/software/) and
download the latest available version of the IDE for your operating system.

. Your browser software may ask you to save or run the downloaded file.
Click Run so the installation starts automatically once downloading has
finished. Otherwise, launch the Arduino .exe file in your Downloads folder
to install the IDE. When you’re finished, run the IDE.

. Now to configure the IDE for the Arduino Uno board. Click the top icon in
the left sidebar of the IDE to open the Boards Manager. Find the option that
includes the Arduino Uno and click Install.

. Expand the drop-down menu at the top of the IDE that reads No Board
Selected and choose Select Other Board & Port. Then select the Arduino
Uno from the list of boards.

Now that your Arduino IDE is set up, you can move on to “Using Arduino
Safely” on page 8.
Ubuntu Linux

If you are running Ubuntu Linux, here are instructions for downloading and
setting up the Arduino IDE.

. Visit the software download page (http://arduino.cc/en/software/) and
download the latest available version of the IDE for your operating system.

. If prompted, choose Save File and click OK.

. Find the Arduino .zip file in the Archive Manager and extract it, saving it to
the desktop.

. Navigate to the extracted folder in a terminal and enter ./arduino-ide to
launch the IDE.

. Now to configure the IDE. Connect your Arduino to your PC with the USB
cable.

http://arduino.cc/en/software/
http://arduino.cc/en/software/

. Select Toolsp- Port in the IDE and select the /dev/ttyACMXx port, where x is
a single digit (there should be only one port with a name like this).

Now your hardware and software are ready to work for you.

Using Arduino Safely

As with any hobby or craft, it’s up to you to take care of yourself and those
around you. As you’ll see in this book, I discuss working with basic hand
tools, battery-powered electrical devices, sharp knives, and cutters—and
sometimes soldering irons. At no point in your projects should you work
with the main household current. Leave that to a licensed electrician who is
trained for such work. Remember that coming into contact with the wall
power will kill you.

Looking Ahead

You’re about to embark on a fun and interesting journey, and you’ll be
creating things you may never have thought possible. You’ll find 65
Arduino projects in this book, ranging from the very simple to the relatively
complex. All are designed to help you learn and make something useful. So
let’s go!

2
EXPLORING THE ARDUINO BOARD
AND THE IDE

In this chapter, you’ll explore the Arduino board as
well as the IDE software that you’ll use to create and
upload Arduino sketches (Arduino’s name for its
programs) to the board itself. You’ll learn the basic
framework of a sketch and some basic functions that
you can implement in a sketch, and you’ll create and
upload your first sketch.

The Arduino Board

What exactly is Arduino? According to the Arduino website
(http://www.arduino.cc/), it is:

An open-source electronics platform based on easy-to-use hardware and software. It’s intended
for anyone making interactive projects.

In simple terms, the Arduino is a tiny computer system that can be
programmed with your instructions to interact with various forms of input
and output. The current Arduino board model, the Uno, is quite small
compared to the adult human hand, as you can see in Figure 2-1.

http://www.arduino.cc/

DIEITM PM~
L '<

B OG) UNOEES

'IH'. e

«» ARDUINO

A R M e

o
=
=

Aruwimy . CC

Figure 2-1: An Arduino Uno is quite small.

Although it might not look like much to the uninitiated, the Arduino system
allows you to create devices that can interact with the world around you.
With an almost unlimited range of input and output devices, such as
sensors, indicators, displays, motors, and more, you can program the exact
interactions you need to create a functional device. For example, artists
have created installations with patterns of blinking lights that respond to the
movements of passers-by, high school students have built autonomous
robots that can detect an open flame and extinguish it, and geographers
have designed systems that monitor temperature and humidity and transmit
this data back to their offices via text message. In fact, a quick internet
search will turn up an almost infinite number of examples of Arduino-based
devices.

Let’s explore our Arduino Uno hardware (in other words, the “physical
part”) in more detail and see what we have. Don’t worry too much about

understanding what you see here, because all these things will be discussed
in greater detail in later chapters.

Starting at the left side of the board, you’ll see two connectors, as shown in
Figure 2-2.

Figure 2-2: The USB and power connectors

On the left is the Universal Serial Bus (USB) connector. This connects the
board to your computer, for three reasons: to supply power to the board, to
upload your instructions to the Arduino, and to send data to and receive it
from a computer. On the right is the power connector. Through this
connector, you can power the Arduino with a standard wall power adapter
(stepped down to 5 volts, of course).

At the lower middle is the heart of the board: the microcontroller, as shown
in Figure 2-3.

Figure 2-3: The microcontroller

The microcontroller is the “brains” of the Arduino. It is a tiny computer that
contains a processor to execute instructions, includes various types of
memory to hold data and instructions from our sketches, and provides
various avenues for sending and receiving data. Just below the
microcontroller are two groups of small sockets, as shown in Figure 2-4.

T T T TP 13 S o PV e T3 R TV,

Figure 2-4: The power and analog sockets

The group on the left offers power connections and the ability to use an
external RESET button. The group on the right offers six analog inputs that
are used to measure electrical signals that vary in voltage. Furthermore, pins
A4 and A5 can also be used for sending data to and receiving it from other
devices.

Along the top of the board are two more groups of sockets, as shown in
Figure 2-5.

A G, A—— e, . EEEY WO PTUYE. SES ey S e r— e T R s v

LM N A N0 NV M A
TN Z R - 2

o
W

A
F

| L S |
' _JDIGITAL - PWM~ &

Figure 2-5: The digital input/output pins

The sockets (or pins) numbered 0 to 13 are digital input/output (I/O) pins.
They can either detect whether or not an electrical signal is present or
generate a signal on command. Pins 0 and 1 are also known as the serial
port, which is used to exchange data with other devices, such as a computer
via the USB connector circuitry. The pins labeled with a tilde (~) can also
generate a varying electrical signal (which looks like an ocean wave on an
oscilloscope—thus the wavy tilde). This can be useful for such things as
creating lighting effects or controlling electric motors.

The Arduino has some very useful devices called light-emitting diodes
(LEDs); these very tiny devices light up when a current passes through
them. The Arduino board has four LEDs: one on the far right labeled ON,
which indicates when the board has power, and three in another group, as
shown in Figure 2-6.

The LEDs labeled TX and RX light up when data is being transmitted or
received, respectively, between the Arduino and attached devices via the
serial port and USB. The L LED is for your own use (it is connected to the
digital I/O pin number 13). The little black square to the left of the LEDs is
a tiny microcontroller that controls the USB interface that allows your
Arduino to send data to and receive it from a computer, but you don’t
generally have to concern yourself with it.

Figure 2-7: The RESET button

Finally, the RESET button is shown in Figure 2-7.

As with a normal computer, sometimes things can go wrong with the
Arduino. When all else fails, you might need to reset the system and restart
your Arduino. The simple RESET button on the board is used to restart the
system to resolve these problems.

One of the great advantages of the Arduino system is its ease of
expandability—that is, it’s easy to add more hardware functions. The two
rows of sockets along each side of the Arduino allow the connection of a
shield, another circuit board with pins that allow it to plug into the Arduino.
For example, the shield shown in Figure 2-8 contains an Ethernet interface
that allows the Arduino to communicate over networks and the internet.

Figure 2-8: Arduino Ethernet interface shield

Notice that the Ethernet shield also has rows of sockets. These enable you
to insert one or more shields on top. For example, Figure 2-9 shows that
another shield with a large numeric display, a temperature sensor, extra data
storage space, and a large LED has been inserted.

If you use Arduino shields in your devices, you will need to remember
which shield uses which individual inputs and outputs to ensure that
“clashes” do not occur. You can also purchase completely blank shields that
allow you to add your own circuitry. This will be explained further in
Chapter 7.

Figure 2-9: Numeric display and temperature shield

The companion to the Arduino hardware is the software, a collection of
instructions that tell the hardware what to do and how to do it.

Back in Chapter 1, you installed the IDE software on your personal
computer and configured it for your Arduino. Now you’re going to look
more closely at the IDE and then write a simple program—known as a
sketch—for the Arduino.

Taking a Look Around the IDE

As shown in Figure 2-10, the Arduino IDE resembles a simple word
processor. The IDE is divided into three main areas: the command area, the
text area, and the message window area.

The Command Area

The command area, shown at the top of Figure 2-10, includes the title bar,
menu items, and icons. The title bar displays the sketch’s filename (such as
Blink), as well as the version of the IDE (such as Arduino 2.0.0-beta.4).
Below this is a series of menu items (File, Edit, Sketch, Tools, and Help)
and icons, as described next.

& Biink | Areluina IDE 20.0-beta A _ ¥

et S ™~ Tille bar

Command ketch Tools_Felp .
oo o] e
™~ lcons

Blirk inn

Text areq

1l
=,

Uupud

Message
window crea

1 UTF8 WardinaUnoon COMG &1 O

Figure 2-10: The Arduino IDE

Menu Items

As with any word processor or text editor, you can click one of the menu
items to display its various options:

File Contains options to save, load, and print sketches; a thorough set of
example sketches to open; and the Preferences submenu

Edit Contains the usual copy, paste, and search functions common to any
word processor

Sketch Contains a function to verify your sketch before uploading it to a
board, as well as some sketch folder and import options

Tools Contains a variety of functions as well as the commands to select the
Arduino board type and USB port

Help Contains links to various topics of interest and the version of the IDE

The Icons

Below the menu toolbar are six icons. Mouse over each icon to display its
name. The icons, from left to right, are as follows:

Verify Click this to check that the Arduino sketch is valid and doesn’t
contain any programming mistakes.

Upload Click this to verify and then upload your sketch to the Arduino
board.

New Click this to open a new blank sketch in a new window.
Debug Used with more complex Arduino boards for real-time debugging.
Open Click this to open a saved sketch.

Save Click this to save the open sketch. If the sketch doesn’t have a name,
you will be prompted to create one.

Serial Monitor Click this to open a new window for use in sending and
receiving data between your Arduino and the IDE.

The Text Area

The text area is shown in the middle of Figure 2-10. This is where you’ll
create your sketches. The name of the current sketch is displayed in the tab
at the upper left of the text area. (The default name is the current date.)
You'’ll enter the contents of your sketch here as you would in any text
editor.

The Output Window

The output window is shown at the bottom of Figure 2-10. Messages from
the IDE appear in the black area. The messages you see will vary and will
include messages about verifying sketches, status updates, and so on.

At the bottom right of the output window, you should see the name of your
Arduino board type as well as its connected USB port—Arduino/Genuino
Uno on COM4 in this case.

Creating Your First Sketch in the IDE

An Arduino sketch is a set of instructions that you create to accomplish a
particular task; in other words, a sketch is a program. In this section, you’ll
create and upload a simple sketch that will cause the Arduino’s LED
(shown in Figure 2-11) to blink repeatedly, by turning it on and then off at
one second intervals.

Figure 2-11: The LED on the Arduino board, next to the capital L

Don'’t worry too much about the specific commands in the sketch
we’re creating here. The goal is to show you how easy it is to get the

Arduino to do something so that you’ll keep reading when you get to
the harder stuff.

To begin, connect your Arduino to your computer with the USB cable. Then
open the IDE and select your board (Arduino Uno) and USB port type from
the drop-down menu, as shown in Figure 2-12. This ensures that the
Arduino board is properly connected.

& Blink | Arduing IDE 2.0.0-beta.d

File Edit 5ketch Tools Help

m * I Arduino Uno at COME - -

Blink.ino Select Other Board & Port

Arduing Uno at COME*

Figure 2-12: Selecting the Arduino Uno board

Comments

First, enter a comment as a reminder of what your sketch will be used for. A
comment in a sketch is a note written for the user’s benefit. Comments can
be notes to yourself or others, and they can include instructions or any other
details. When creating sketches for your Arduino, it’s a good idea to add
comments about your intentions for the code; these comments can prove
useful later when you’re revisiting a sketch.

To add a comment on a single line, enter two forward slashes and then the
comment, like this:

// Blink LED sketch by Mary Smith, created 07/01/2021

The two forward slashes tell the IDE to ignore that line of text when
verifying a sketch, or checking that everything is written properly with no
errors.

To enter a comment that spans two or more lines, enter the characters /* on
a line before the comment and end the comment with the characters */ on
the following line, like this:

/*

Arduino Blink LED Sketch

by Mary Smith, created 07/01/2021
*/

The /* and */ tell the IDE to ignore the text that they bracket.

Enter a comment describing your Arduino sketch using one of these
methods. Then save your sketch by choosing Filep-Save As. Enter a short
name for your sketch (such as blinky) and click OK.

The default filename extension for Arduino sketches is .ino, and the IDE
should add this automatically. The name for your sketch should be, in this
case, blinky.ino, and you should be able to see it in your Sketchbook.

The setup() Function

The next stage in creating any sketch is to fill in the void setup() function.
This function contains a set of instructions for the Arduino to execute once
only, each time it is reset or turned on. To create the setup() function, add
the following lines to your sketch, after the comments:

void setup()

{
}

Controlling the Hardware

Our program will blink the user LED on the Arduino. The user LED is
connected to the Arduino’s digital pin 13. A digital pin can either detect an
electrical signal or generate one on command. In this project, we’ll generate
an electrical signal that will light the LED.

Enter the following into your sketch between the braces ({ and }):

pinMode (13, OUTPUT); // set digital pin 13 to output

The number 13 in the listing represents the digital pin you’re addressing.
You're setting this pin to OUTPUT, which means it will generate an electrical
signal. If you wanted it to detect an incoming electrical signal, then you
would set the pin’s mode to INPUT instead. Notice that the pinMode() line
ends with a semicolon (;). Every instruction line in your Arduino sketches
will end with a semicolon.

Save your sketch at this point to make sure that you don’t lose any of your
work.

The loop() Function

Remember that our goal is to make the LED blink repeatedly. To do this,
we’ll create a loop () function to tell the Arduino to execute an instruction

over and over until the power is shut off or someone presses the RESET
button.

Enter the code shown in boldface after the void setup() section in the
following listing to create an empty loop() function. Be sure to end this
new section with another brace (}), and then save your sketch again:

/*

Arduino Blink LED Sketch

by Mary Smith, created 07/01/21
*/

void setup()
pinMode (13, OUTPUT),; // set digital pin 13 to output

}
void loop()
{ // place your main loop code here:

}

The Arduino IDE does not automatically save sketches, so save your
work frequently!

Next, enter the actual functions into void loop() for the Arduino to
execute.

Enter the following between the loop() function’s braces. Then click
Verify to make sure that you’ve entered everything correctly:

digitalWrite(13, HIGH); // turn on digital pin 13

delay(1000); // pause for one second
digitalwrite(13, LOW); // turn off digital pin 13
delay(1000); // pause for one second

Let’s take this apart. The digitalwrite() function controls the voltage that
is output from a digital pin: in this case, pin 13, connected to the LED. By
setting the second parameter of this function to HIGH, we tell the pin to

output a “high” digital voltage; current will flow from the pin, and the LED
will turn on.

The delay() function causes the sketch to do nothing for a period of time—
in this case, with the LED turned on, delay(1000) causes it to remain lit for
1,000 milliseconds, or 1 second.

Next, we turn off the voltage to the LED with digitalwrite(13, LOW);.
The current flowing through the LED stops, and the light turns off. Finally,
we pause again for 1 second while the LED is off, with delay(1000);.

The completed sketch should look like this:
/ *
Arduino Blink LED Sketch

by Mary Smith, created 07/01/21
*/

void setup()

pinMode (13, OUTPUT),; // set digital pin 13 to output
b

void loop()

digitalWrite(13, HIGH); // turn on digital pin 13

delay(1000); // pause for one second
digitalwrite(13, LOW); // turn off digital pin 13
delay(1000); // pause for one second

}

Before you do anything further, save your sketch!

Verifying Your Sketch

When you verify your sketch, you ensure that it has been written correctly
in a way that the Arduino can understand. To verify your complete sketch,
click Verify in the IDE and wait a moment. Once the sketch has been
verified, a note should appear in the output window, as shown in Figure 2-
13.

b
Ll

Cutput =

Sketch uses 924 bytes (2%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (8%) of dynamic memory, leavimg 2839 bytes for lecal variables. Maximum is 2€

Compilation complete.

Figure 2-13: The sketch has been verified.

This “Done compiling” message tells you that the sketch is okay to upload
to your Arduino. It also shows how much memory it will use (924 bytes in
this case) of the total available on the Arduino (32,256 bytes).

But what if your sketch isn’t okay? Say, for example, you forgot to add a
semicolon at the end of the second delay(1000) function. If something is
broken in your sketch, then when you click Verify, the message window
should display a verification error message similar to the one shown in
Figure 2-14.

) john\ApplatatLocal\Tesp\ . arduinolDE-unsaved 202136-3420-16ba2ks . ui2C\B1ink\BLink. ino: In function 'wold leap()':
shjohn\Applata\local \Tesp\ . arduinol DE-unsaved 282136-3420-16ba3k0 . ul 25\Blink\BLlink. ino:37:1: error: expected ;" before

Compilation error: Error: 2 UNENOWN: exit status 1

Figure 2-14: The message window with a verification error

The IDE displays the error itself (the missing semicolon, described by
error: expected ';' before'}' token). It should also highlight the
location of the error, or a spot just after it. This helps you easily locate and
rectify the mistake.

Uploading and Running Your Sketch

Once you’re satisfied that your sketch has been entered correctly, save it.
Then make sure that your Arduino board is connected to your computer and
click Upload in the IDE. The IDE verifies your sketch again and then
uploads it to your Arduino board. During this process, the TX/RX LEDs on
your board (shown in Figure 2-6) should blink, indicating that information
is traveling between the Arduino and your computer.

Now for the moment of truth: your Arduino should start running the sketch.
If you’ve done everything correctly, the LED should blink on and off once
every second!

Congratulations. You now know the basics of how to enter, verify, and
upload an Arduino sketch.

Modifying Your Sketch

After running your sketch, you may want to change how it operates by, for
example, adjusting the on or off delay time for the LED. Because the IDE is
a lot like a word processor, you can open your saved sketch, adjust the
values, and then save your sketch again and upload it to the Arduino. For
example, to increase the rate of blinking, change both delay functions to
make the LEDs blink for one-quarter of a second by adjusting the delay to
250, like this:

delay(250); // pause for one-quarter of one second

Then upload the sketch again. The LED should now blink faster, for one-
quarter of a second each time.

Looking Ahead

Armed with your newfound knowledge of how to enter, edit, save, and
upload Arduino sketches, you’re ready for the next chapter, where you’ll
learn how to use more functions, implement good project design, construct
basic electronic circuits, and do much more.

3
FIRST STEPS

In this chapter you will

Learn the concepts of good project design
Learn the basic properties of electricity

Be introduced to the resistor, light-emitting diode (LED), transistor, rectifier
diode, and relay

Use a solderless breadboard to construct circuits

Learn how integer variables, for loops, and digital outputs can be used to
create various LED effects

Now you’ll begin to bring your Arduino to life. As you will see, there is
more to working with Arduino than just the board itself. You’ll learn how to
plan projects in order to make your ideas a reality, then move on to a quick
primer on electricity. Electricity is the driving force behind everything we
do in this book, and it’s important to have a solid understanding of the
basics in order to create your own projects. You’ll also take a look at the
components that bring real projects to life. Finally, you’ll examine some
new functions that are the building blocks for your Arduino sketches.

Planning Your Projects

When starting your first few projects, you might be tempted to write your
sketch immediately after you’ve come up with a new idea. But before you
start writing, a few basic preparatory steps are in order. After all, your
Arduino board isn’t a mind reader; it needs precise instructions, and even if

these instructions can be executed by the Arduino, if you overlook so much
as a minor detail, the results may not be what you expected.

Whether you are creating a project that simply blinks a light or one that
controls an automated model railway signal, you’ll be more successful if
you have a detailed plan. When designing your Arduino projects, follow
these basic steps:

. Define your objective. Determine what you want to achieve.

. Write your algorithm. An algorithm is a set of instructions that describes
how to accomplish your goal. Your algorithm will list the steps necessary
for you to achieve your project’s objective.

. Select your hardware. Determine how your hardware will connect to the
Arduino.

. Write your sketch. Create your initial program that tells the Arduino what
to do.

. Wire it up. Connect your hardware to the Arduino board.

. Test and debug. Does it work? During this stage, you identify errors and
find their causes, whether in the sketch, hardware, or algorithm.

The more time you spend planning your project, the easier a time you’ll
have during the testing and debugging stage.

Even well-planned projects sometimes fall prey to feature creep.
Feature creep occurs when people think up new functionality that
they want to add to a project and then try to force new elements into
an existing design. When you need to change a design, don't try to
“slot in” changes or modify it with 11th-hour additions. Instead,
start fresh by redefining your objective.

About Electricity

Let’s spend a bit of time discussing electricity, since you’ll soon be building
electronic circuits with your Arduino projects. In simple terms, electricity is
a form of energy that we can harness and convert into heat, light,
movement, and power. Electricity has three main properties that will be
important to us as we build projects: current, voltage, and power.

Current

The flow of electrical energy is called the current. Electrical current flows
through a circuit (a path for the current) from the positive side of a power
source, such as a battery, to the negative side of the power source. This is
known as direct current (DC). (For the purposes of this book, we will not
deal with alternating current, or AC.) In some circuits, the negative side is
called ground (GND). Current is measured in amperes or “amps” (A); 1
amp is 6.2415 x 10" electrons flowing past a single point in 1 second.
Smaller amounts of current are measured in milliamps (mA), where 1,000
milliamps equal 1 amp.

Voltage

Voltage is a measure of the difference in potential energy between a circuit’s
positive and negative ends. This is measured in volts (V). If you think of
electrons flowing the way water flows, then voltage would be equivalent to
pressure: the greater the voltage, the faster the current moves through a
circuit.

Power

Power is a measurement of the rate at which an electrical device converts
energy from one form to another. Power is measured in watts (W). For
example, a 100 W light bulb is much brighter than a 60 W bulb because the
higher-wattage bulb converts more electrical energy into light.

A simple mathematical relationship exists among voltage, current, and
power:

Power (W) = Voltage (V) % Current (A)

Electronic Components

Now that you know a little bit about the basics of electricity, let’s look at
how it interacts with various electronic components and devices. Electronic
components are the various parts that control electric current in a circuit.
Just as the various parts of a car’s engine work together to store fuel, filter
fuel, pump fuel, and inject fuel to allow us to drive, electronic components
work together to control and harness the flow of electricity to help us create
useful devices.

Throughout this book, I’ll explain specialized components as we use them.
The following sections describe some of the fundamental components.

The Resistor

Various components, such as the Arduino’s LED, require only a small
amount of current to function—usually around 10 mA. When the LED
receives more current than it needs, it converts the excess to heat—and too
much heat can kill an LED. To reduce the flow of current to components
such as LEDs, we can add a resistor between the voltage source and the
component. Current flows freely along normal copper wire, but when it
encounters a resistor, its movement is slowed. Some current is converted
into a small amount of heat, which is proportional to the value of the
resistor. Figure 3-1 shows some commonly used resistors.

llll|l 1\“Illllll! | l|||1'||l\||l I‘ | |l | ’
20 30 o0

10 40 60 70

Figure 3-1: Typical resistors

Resistance

The level of resistance can be either fixed or variable. Resistance is
measured in ohms (£2) and can range from zero to thousands of ohms
(kilohms, or kQ) to millions of ohms (megohms, or MQ).

Reading Resistance Values

Although you can test resistance with a multimeter, you can also read
resistance directly from a physical resistor. The resistors we will use will be
physically very small, so their resistance value usually cannot be printed on
them. One common way to show a component’s resistance is with a series
of color-coded bands, read from left to right, as follows:

First band Represents the first digit of the resistance
Second band Represents the second digit of the resistance

Third band Represents the multiplier (for four-band resistors) or the third
digit (for five-band resistors)

Fourth band Represents the multiplier (for five-band resistors) or the
tolerance, or accuracy of the component’s resistance (for four-band
resistors)

Fifth band Shows the tolerance for five-band resistors
Table 3-1 lists the colors of resistors and their corresponding values.

Because it is difficult to manufacture resistors with exact values, you select
a margin of error as a percentage when buying a resistor. For five-band
resistors, a brown band in the fifth position indicates tolerance of 1 percent,
gold indicates 5 percent, and silver indicates 10 percent.

Figure 3-2 shows a resistor diagram. The yellow, violet, and orange
resistance bands are read as 4, 7, and 3, respectively, as listed in Table 3-1.
The third band represents the multiplier; in this example, the 47 is
multiplied by 10 to the power of 3 to arrive at the value of 47,000 Q, more
commonly read as 47 kQ. The brown band indicates a very precise resistor,
which should be accurate to within 1 percent.

ellow orange
¥ g
| |

violet brown

Figure 3-2: Example resistor diagram

Table 3-1: Values of Bands Printed on a Resistor, in Ohms

Color Ohms
Black

Brown
Red
Orange

Green
Blue
Violet
Gray

0
1
2
3
Yellow 4
5
6
7
8
White 9

Chip Resistors

Surface-mount chip resistors display a printed number and letter code, as
shown in Figure 3-3, instead of colored stripes. The first two digits
represent a single number, and the third digit represents the number of zeros
to follow that number. For example, the resistor in Figure 3-3 has a value of
10,000 €2, or 10 kQ.

Figure 3-3: A surface-mount resistor

If you see a number and letter code on a small chip resistor (such as
01C), google EIA-96 code calculator for lookup tables for that more
involved code system.

MULTIMETERS

A multimeter is an incredibly useful and relatively inexpensive piece of test equipment
that can measure voltage, resistance, current, and more. Figure 3-4 shows a
multimeter measuring a resistor.

'MIN MAX g RANGEA w0
s M -.'“""""'."'EJ‘_"H'r -

Figure 3-4: A multimeter measuring a 560 Q, 1 percent tolerance resistor

If you have difficulty distinguishing the different codes on a color-coded resistor, a
multimeter is essential. As with other good tools, purchase your multimeter from a
reputable retailer instead of fishing about on the internet for the cheapest one you can
find.

Power Rating

The resistor’s power rating is a measurement of the power, in watts, that it
will tolerate before overheating or failing. The resistors shown in Figure 3-
1 are 1/4W resistors, which are the most commonly used resistors with the
Arduino system. For the purposes of the projects in this book, you only
need 1/4W resistors.

When you're selecting a resistor, consider the relationship between power,
current, and voltage. The greater the current and/or voltage in your design,
the greater the resistor’s power rating should be.

Usually, the greater a resistor’s power rating, the greater its physical size.
For example, the resistor shown in Figure 3-5 is a 5W resistor, whose body
measures 22 mm long by 10 mm wide.

o
$q%
=Y

e

&

v

Figure 3-5: A 5W resistor

The Light-Emitting Diode

The LED is a very common, infinitely useful component that converts
electrical current into light. LEDs come in various shapes, sizes, and colors.
Figure 3-6 shows a common LED.

2 e ——

Il Ml”l’ MF III‘IMI’I

Figure 3-6: A red LED, 5 mm in diameter

Connecting LEDs in a circuit takes some care, because they are polarized,;
this means that current can enter and leave the LED in one direction only.

The current enters via the anode (positive) side and leaves via the cathode
(negative) side, as shown in Figure 3-7. Any attempt to make too much
current flow through an LED in the opposite direction will break the
component.

Thankfully, LEDs are designed so that you can tell which end is which. The
leg on the anode side is longer (you can think of the “plus” side as having
length “added” to it), and the rim at the base of the LED is flat on the
cathode side, as shown in Figure 3-8.

LED1
Red (633nm)

A
~”
e

Figure 3-7: Current flow through an LED

anode

cathode

Figure 3-8: LED design indicates the anode (longer leg) and cathode (flat rim) sides.

When adding LEDs to a project, you need to consider the operating voltage
and current. For example, common red LEDs require around 1.7 V and 5 to
20 mA of current. This presents a slight problem for us, because the
Arduino outputs a set 5 V and a much higher current. Luckily, we can use a
current-limiting resistor to reduce the current flow into an LED. But which
value resistor do we use? That’s where Ohm’s law comes in.

To calculate the required current-limiting resistor for an LED, use this
formula:

R=(V,-Vp) =1

where V_ is the supply voltage (Arduino outputs 5 V), V; is the LED

forward voltage drop (say, 1.7 V), and I is the current required for the LED
(10 mA). (The value of I must be in amps, so 10 mA converts to 0.01 A.)

Now let’s apply this formula to our LEDs, using values of 5V for V,, 1.7 V
for Vi, and 0.01 A for I. Substituting these values into the formula gives a

value for R of 330 Q. However, the LEDs will happily light up when fed
current less than 10 mA. It’s good practice to use lower currents when
possible to protect sensitive electronics, so we’ll use 560 Q, 1/4W resistors
with our LEDs, which allow around 6 mA of current to flow.

When in doubt, always choose a slightly higher value resistor,
because it’s better to have a dim LED than a dead one!

THE OHM’S LAW TRIANGLE

Ohm’s law states that the relationship between current, resistance, and voltage is as
follows:

Voltage (V) = Current (/) x Resistance (R)

If you know two of the quantities, you can calculate the third. A popular way to
remember Ohm’s law is with a triangle, as shown in Figure 3-9.

Figure 3-9: The Ohm’s law triangle

The Ohm’s law triangle diagram is a convenient tool for calculating voltage, current, or
resistance when two of the three values are known. For example, if you need to
calculate resistance, put your finger over R, leaving voltage divided by current. To
calculate voltage, cover V, leaving current times resistance.

The Solderless Breadboard

Our ever-changing circuits will need a base—something to hold them
together and build upon. A great tool for this purpose is a solderless
breadboard. The breadboard is a plastic base with rows of electrically
connected sockets (just don’t cut bread on them). They come in many sizes,
shapes, and colors, as shown in Figure 3-10.

FFAEIFEEEE BT AN
T aarrlEEEERISREE R E

.....................
|||||||||||||||||||||||

]

AEmma
L

]
2l
=l =lilalal
[=laa]=]-]
=]l

l.r--ﬂ-—-——-

EEEEREE N
FEErnED (RS

EE!EEI:: EiffifE s e nEnrnE

EREFEE R F R Ry R R ERE RN T NN

A FFFE ARV RN RER

AN A AR EE R

Figure 3-10: Breadboards in various shapes and sizes

The key to using a breadboard is knowing how the sockets are connected—
whether in short columns or in long rows along the edge or in the center.
The connections vary by board. For example, in the breadboard shown at
the top of Figure 3-11, columns of five holes are connected vertically but
isolated horizontally. If you place two wires in one vertical row, then they
will be electrically connected. By the same token, the long rows in the
center between the horizontal lines are connected horizontally. You’ll often
need to connect a circuit to the supply voltage and ground, and these long
horizontal lines of holes are ideal for that purpose.

When you’re building more complex circuits, a breadboard will get
crowded, and you won’t always be able to place components exactly where
you want. It’s easy to solve this problem using short connecting wires,

however. Retailers that sell breadboards usually also sell small boxes of
wires of various lengths, such as the assortment shown in Figure 3-12.

g F ¥ B ¥F B B B F K F N ® NN E A E B B [
2 ¥ W N W R E E ¥ F ¥F I ¥ F B F W N EFE KB
2 T " FmmR M R " AP ENE FFEWDEETDRRTE
A 1 "m m NN M i n®" " nNAHNERDYYEREDND ERTETD®
H O M BB N Mm n T N"T AANEERDEDRNDSRE ETDRE F
C LD o
Tl £ =

&~ & i 3 :
IIIIIII-II ¥ ¥ " " " F F BE F P EPVF
T TN YN YN ENYN ¥ ¥ 9 ¥YEETrFEPrER?
L O B B B ¥y Y E ¥ ¥ EREFEF R BN
LI B B I T YT FNFYTEEREER RO
LOE B B O m W W 3 W R EE®EENENEI

,’
‘

Figure 3-11: Breadboard internal connections

Figure 3-12: Assorted breadboard wires

Project #1: Creating a Blinking LED Wave

Let’s put some LEDs and resistors to work. In this project, we’ll use five
LEDs to emulate the front of the famous vehicle KITT from the television
show Knight Rider, creating a kind of wavelike light pattern.

The Algorithm

Here’s our algorithm for this project:

. Turn on LED 1.

. Wait half a second.
. Turn off LED 1.

. Turn on LED 2.

. Wait half a second.
. Turn off LED 2.

. Continue until LED 5 is turned on, at which point the process reverses from
LEDs 5 to 1.

. Repeat indefinitely.

The Hardware

Here’s what you’ll need to create this project:
Five LEDs

Five 560 Q2 resistors

One breadboard

Various connecting wires

Arduino and USB cable

We will connect the LEDs to digital pins 2 through 6 via the 560 Q current-
limiting resistors.

The Schematic

Now let’s build the circuit. Circuit layout can be described in several ways.
For the first few projects in this book, we’ll use physical layout diagrams
similar to the one shown in Figure 3-13.

By comparing the wiring diagram to the functions in the sketch, you can
begin to make sense of the circuit. For example, when we use

digitalWrite(2, HIGH), a high voltage of 5V flows from digital pin 2,
through the current-limiting resistor, through the LED via the anode and

then the cathode, and finally back to the Arduino’s GND socket to complete
the circuit. Then, when we use digitalwrite(2, LOW), the current stops
and the LED turns off.

l'..l'..ll.ll..ll"lﬂll‘i.ll'I'FII
LI S B O O L L] L] L2 A W W L]
+ +
LB B R B 5#]3!2'!!3!225'3'&3'3
e R R R W RO OR & w & & @ & 8 @ L LR I ¥ .=
— @ W W W W EW L L LI] L L i—
F=ah AR L L L L L =
Chey " % % % ¥ " "W L L L L L (=]
I-l\-l'l"l.'l'lI'l"‘i.'l'iri.'r'il‘v—
- - - - —
- - - - -
A e w e R R o s ey g gy g gy g g g g .
'l::li-tliili\itlilli.ll‘iilii.li-&lu
[EI B L R N L R L D B B]
F=0 I L L B L R N L A B L B B L L L R =)
(- S B NS O O B L B] L B LI B L I L] (]
LI T T Y N . Y E N M » B &R aan 5
! # & & @ !

L=0- 0]
-]
I

DIGITAL {F"WM

= O@ UNO)

Figure 3-13: Circuit layout for Project 1

The Sketch

Now for our sketch. Enter this code into the IDE:

// Project 1 - Creating a Blinking LED Wave
1 void setup()

pinMode(2, OUTPUT); // LED 1 control pin is set up as an
output

pinMode(3, OUTPUT); // same for LED 2 to LED 5

pinMode(4, OUTPUT);

pinMode(5, OUTPUT);

pinMode(6, OUTPUT);

}

2 void loop()
{

digitalWrite(2, HIGH); // Turn LED 1 on

delay(500); // wait half a second

digitalwrite(2, LOW); // Turn LED 1 off

digitalWrite(3, HIGH); // and repeat for LED 2 to 5

delay(500);

digitalwWrite(3, LOW);

digitalwrite(4, HIGH);

delay(500);

digitalWrite(4, LOW);

digitalWrite(5, HIGH);

delay(500);

digitalWrite(5, LOW);

digitalWrite(6, HIGH);

delay(500);

digitalwWrite(6, LOW);

digitalWrite(5, HIGH);

delay(500);

digitalWrite(5, LOW);

digitalwrite(4, HIGH);

delay(500);

digitalWrite(4, LOW);

digitalWrite(3, HIGH);

delay(500);

digitalWrite(3, LOW);
// The loop() will now loop around and start from the top
again

}

In void setup() at 1, the digital I/O pins are set to outputs, because we
want them to send current to the LEDs on demand. We specify when to turn
on each LED using the digitalwrite() function in the void loop()
section of the sketch at 2.

Running the Sketch

Now connect your Arduino and upload the sketch. After a second or two,
the LEDs should blink from left to right and then back again. Success is a
wonderful thing—embrace it!

If nothing happens, however, then immediately remove the USB cable from
the Arduino and check that you typed the sketch correctly. If you find an
error, fix it and upload your sketch again. If your sketch matches exactly
and the LEDs still don’t blink, check your wiring on the breadboard.

You now know how to make an LED blink with your Arduino, but this
sketch is somewhat inefficient. For example, if you wanted to modify it to
make the LEDs cycle more quickly, you would need to alter each
delay(500). There is a better way.

Using Variables

In computer programs, we can use variables to store data. The problem
with the sketch for Project 1 as written is that because it doesn’t use
variables, it’s not very flexible. For example, we use the function
delay(500) to keep the LEDs turned on. If we want to make a change to
the delay time, then we have to change each entry manually. To address this
problem, we’ll create a variable to represent the value for the delay ()
function.

Enter the following line in the Project 1 sketch, above the void setup()
function and just after the initial comment:

int d = 250;

This assigns the number 250 to a variable called d. The int indicates that
the variable contains an integer—a whole number between —32,768 and
32,767. Simply put, any integer value has no fraction or decimal places.

Next, change every 500 in the sketch to a d. Now when the sketch runs, the
Arduino will use the value in d for the delay() functions. When you upload
your sketch after making these changes, the LEDs will turn on and off at a
much faster rate, as the delay value is much smaller.

Now, if you want to change the delay, simply change the variable
declaration at the start of the sketch. For example, entering 100 for the delay
would speed things up even more:

int d = 100;

Experiment with the sketch, perhaps altering the delays and the sequence of
HIGH and Low. Have some fun with it. Don’t disassemble the circuit yet,
though; we’ll continue to use it with more projects in this chapter.

Project #2: Repeating with for Loops

When designing a sketch, you’ll often repeat the same function. You could
simply copy and paste the function to duplicate it in a sketch, but that’s
inefficient and a waste of your Arduino’s program memory. Instead, you
can use for loops. The benefit of using a for loop is that you can determine
how many times the code inside the loop will repeat.

To see how a for loop works, enter the following code as a new sketch:

// Project 2 - Repeating with for Loops
int d = 100;

void setup()

pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);

}
void loop()

for (int a = 2; a < 7 ; a++)

{
digitalWrite(a, HIGH);
delay(d);
digitalwWrite(a, LOW);
delay(d);

}

The for loop will repeat the code within the curly brackets as long as some
condition is true. Here we have used a new integer variable, a, which starts
with the value 2. Every time the code is executed, the a++ will add 1 to the
value of a. The loop will continue in this fashion while the value of a is less
than 7 (the condition). Once it is equal to or greater than 7, the Arduino
moves on and continues with whatever code comes after the for loop.

The number of loops that a for loop executes can also be set by counting
down from a higher number to a lower number. To demonstrate this, add the
following loop to the Project 2 sketch after the first for loop:

1 for (inta=5; a>1; a--)

{
digitalWrite(a, HIGH);
delay(d);
digitalWrite(a, LOW);
delay(d);

}

Here, the for loop at 1 sets the value of a equal to 5 and then subtracts 1
after every loop due to the a--. The loop continues in this manner while the
value of a is greater than 1 (a > 1) and finishes once the value of a falls to
1 or less than 1.

We have now re-created Project 1 using less code. Upload the sketch and
see for yourself!

Varying LED Brightness with Pulse-Width
Modulation

Rather than just turning LEDs on and off rapidly using digitalwrite(), we
can define the level of brightness of an LED by adjusting the amount of
time between each LED’s on and off states using pulse-width modulation
(PWM). PWM can be used to create the illusion that an LED is shining at
different levels of brightness by turning the LED on and off rapidly, at
around 500 cycles per second. The brightness we perceive is determined by
the amount of time the digital output pin is on versus the amount of time it
is off—that is, how long the LED is lit or unlit. Because our eyes can’t see

flickers faster than 50 cycles per second, the LED appears to have a
constant brightness.

The greater the duty cycle (the longer the pin is on compared to off in each
cycle), the greater the perceived brightness of the LED connected to the
digital output pin.

Figure 3-14 shows various PWM duty cycles. The filled-in gray areas
represent the amount of time that the light is on. As you can see, the amount
of time per cycle that the light is on increases with the duty cycle.

Sv

100% duty cycle
Ov
Sv

60% duty cycle
Ov
Sv

40% duty cycle
Ov
Sv

20% duty cycle
Ov

Figure 3-14: Various PWM duty cycles

Only digital pins 3, 5, 6, 9, 10, and 11 on a regular Arduino board can be
used for PWM. They are marked on the Arduino board with a tilde (~), as
shown in Figure 3-15.

- 3
IS TR ETEPT ETTE DY EEATN ey * . T | — T [et s o

M ANHO N NV MmN
L I T I Laal ?

-l ©
x e AV
BN DIGITAL - PWM~ &

|| B Q)

Figure 3-15: The PWM pins are marked with a tilde (~).

To create a PWM signal, we use the function analogwrite(x, y), where x
is the digital pin and y is a value for the duty cycle. y can be any value
between 0 and 255, where 0 indicates a 0 percent duty cycle and 255
indicates a 100 percent duty cycle.

Project #3: Demonstrating PWM

Now let’s try this with our circuit from Project 2. Enter the following sketch
into the IDE and upload it to the Arduino:

// Project 3 - Demonstrating PWM
int d = 5;
void setup()

pinMode(3, OUTPUT); // LED control pin is 3, a PWM-capable
pin

}
void loop()
{

for (int a = 0 ; a < 256 ; at+)

{
analogWrite(3, a);
delay(d);
}
for (int a = 255 ; a >= 0 ; a--)
{

analogWrite(3, a);
delay(d);
}

delay(200);
b

The LED on digital pin 3 will exhibit a “breathing effect” as the duty cycle
increases and decreases. In other words, the LED will turn on, increasing in
brightness until fully lit, and then reverse until it is dark. Experiment with
the sketch and circuit. For example, make all five LEDs breathe at once, or
have them do so sequentially.

More Electric Components

You’ll usually find it easy to plan on having a digital output do something
without taking into account how much current the control really needs to
get the job done. As you create your project, remember that each digital
output pin on the Arduino Uno can offer a maximum of 40 mA of current
per pin and 200 mA total for all pins. However, the three electronic
hardware components discussed next can help you increase the current-
handling ability of the Arduino.

If you attempt to exceed 40 mA on a single pin, or 200 mA total,
then you risk permanently damaging the microcontroller integrated
circuit (IC).

The Transistor

Almost everyone has heard of a transistor, but most people don’t really
understand how it works. In the spirit of brevity, I will keep the explanation
as simple as possible. A transistor can turn on or off the flow of a much
larger current than the Arduino Uno can handle. We can, however, safely
control a transistor using an Arduino digital output pin. A popular transistor
is the BC548, shown in Figure 3-16.

- Ql
’ C
|WWW-‘TWI]W.”‘! [‘w|’Il[N”['Irl]il“'l‘]w B_@ ‘c?l;r:nf
0 20 30 20 :

Figure 3-16: A typical transistor: the BC548

Similar to the LED, the transistor’s pins have a unique function and need to
be connected in the proper orientation. With the flat front of the transistor
facing you (as shown on the left of Figure 3-16), the pins on the BC548 are
called, from left to right, the collector (C), base (B), and emitter (E). (Note
that this pin order, or pinout, is for the BC548 transistor; other transistors
may be oriented differently.) When a small current is applied to the base,
such as from an Arduino digital I/O pin, the larger current we want to
switch enters through the collector. It’s combined with the small current
from the base before flowing out via the emitter. When the small control
current at the base is turned off, no current can flow through the transistor.

The BC548 can switch up to 100 mA of current at a maximum of 30 V—
much more than the Arduino’s digital output. In projects later in the book,
you’ll read about transistors in more detail.

Always pay attention to the pin order for your particular transistor,
because each transistor can have its own orientation.

The Rectifier Diode

The diode is a very simple yet useful component that allows current to flow
in one direction only. It looks a lot like a resistor, as you can see in Figure
3-17.

DI
1N4004
T — J’ e - :
anode cathode
——

current flow
Figure 3-17: A 1N4004-type rectifier diode

The projects in this book will use the 1N4004-type rectifier diode. Current
flows into the diode via the anode and out through the cathode, which is
marked with the ring around the diode’s body. These diodes can protect
parts of the circuit against reverse current flow, but there is a price to pay:
diodes also cause a drop in the voltage of around 0.7 V. The 1N4004 diode
is rated to handle 1 A and 400 V, much higher than we will be using. It’s a
tough, common, and low-cost diode.

The Relay

Relays are used for the same reason as transistors—to control a large
current and voltage. A relay has the advantage of being electrically isolated
from the control circuit, allowing the Arduino to switch very large currents
and voltages without actually coming into contact with those voltages,
which could damage it. Inside the relay is an interesting pair of items:
mechanical switch contacts and a low-voltage coil of wire, as shown in
Figure 3-18.

com

Figure 3-18: Inside a typical relay

When a current is applied to the relay, the coil becomes an electromagnet
and attracts a bar of metal that acts just like the toggle of a switch. The
magnet pulls the bar in one direction when on and lets it fall back when off,
thereby turning it on or off as current is applied to and removed from the
coil. This movement has a distinctive “click” that you might recognize from
the turn signal in older cars.

Higher-Voltage Circuits

Now that you understand a bit about the transistor, rectifier diode, and relay,
let’s use them together to control higher currents and voltages. For example,

you may wish to turn a large motor on or off. Connecting the components is
simple, as shown in Figure 3-19.

(12-0\’ O 9 1_\
0.00 A O

@ & & @&
" &4 & @

=,

Mo
1

T
DIGITAL (PWM-) B B

ANALOG IN

--rqmunn.
=

&

Figure 3-19: A relay control circuit

This simple example circuit controls a relay that has a 12 V coil. One use
for this circuit might be to control a lamp or cooling fan connected to the
relay switching contacts. The Arduino’s digital pin 10 is connected to the
transistor’s base via a 1 kQ resistor. The transistor controls the current

through the relay’s coil by switching it on and off. Remember that the pins
are C, B, and then E when looking at the flat surface of the transistor. The
object on the left of the breadboard at 1 represents a 12 V power supply for
the relay coil. The negative or ground at 2 from the 12 V supply, the
transistor’s emitter pin, and Arduino GND are all connected together.
Finally, a 1N4004 rectifier diode is connected across the relay’s coil at 3,
with the cathode on the positive supply side. You can check the relay’s data
sheet to determine the pins for the contacts and to connect the controlled
item appropriately.

The diode is in place to protect the circuit. When the relay coil changes
from on to off, stray current remains briefly in the coil and becomes a high-
voltage spike that has to go somewhere. The diode allows the stray current
to loop around through the coil until it is dissipated as a tiny amount of
heat. It prevents the turn-off spike from damaging the transistor or Arduino
pin.

If you want to control wall power electricity (110-250 V) at a high
current with a relay, contact a licensed electrician to complete this
work for you. Even the slightest mistake can be fatal.

Looking Ahead

And now Chapter 3 draws to a close. I hope you had fun trying out the
examples and experimenting with LED effects. In this chapter, you got to
create blinking LEDs on the Arduino in various ways, did a bit of hacking,
and learned how functions and loops can be used to efficiently control
components connected to the Arduino. Studying this chapter has set you up
for more success in the forthcoming chapters.

Chapter 4 will be a lot of fun. You will create some more advanced projects,
including traffic lights, a thermometer, a battery tester, and more—so when
you’re ready to take it to the next level, turn the page!

4
BUILDING BLOCKS

In this chapter you will

Learn how to read schematic diagrams, the language of electronic circuits
Be introduced to the capacitor

Work with input pins

Use arithmetic and test values

Make decisions with if statements

Learn the difference between analog and digital

Measure analog voltage sources at different levels of precision

Be introduced to variable resistors, piezoelectric buzzers, and temperature
Sensors

Consolidate your knowledge by creating traffic lights, a battery tester, and a
thermometer

The information in this chapter will help you understand an Arduino’s
potential. We’ll continue to learn about electronics, including how to read
schematic diagrams (the “road maps” of electronic circuits). We’ll also
explore some new components and the types of signals that we can measure.
Then we’ll discuss additional Arduino functions, such as storing values,
performing mathematical operations, and making decisions. Finally, we’ll
examine a few more components and put them to use in some useful
projects.

Using Schematic Diagrams

Chapter 3 described how to build a circuit using physical layout diagrams to
represent the breadboard and components mounted on it. Although such
physical layout diagrams may seem like the easiest way to diagram a circuit,
you’ll find that as more components are added, diagrams that are direct
representations can become a real mess. Because our circuits are about to get
more complicated, we’ll start using schematic diagrams (also known as
circuit diagrams) to illustrate them, such as the one shown in Figure 4-1.

4] . :

L4
-

E Bz .]

Figure 4-1: Example of a schematic diagram

Schematics are simply circuit road maps that show the path of the electrical
current flowing through various components. Instead of showing components
and wires, a schematic uses symbols and lines.

Identifying Components
Once you know what the symbols mean, reading a schematic is easy. To

begin, let’s examine the symbols for the components we’ve already used.

The Arduino

Figure 4-2 shows a symbol for the Arduino itself. As you can see, all of the
Arduino’s connections are displayed and neatly labeled.

(gAey)
OLI[‘]
':::'LI!I'IFJI.I‘H,;;!r

Figure 4-2: Arduino Uno symbol

The Resistor

The resistor symbol is shown in Figure 4-3.

R1
2200

NV

Figure 4-3: Resistor symbol

It’s good practice to display the resistor value and part designator along with
the resistor symbol (220 Q and R1 in this case). This makes life a lot easier
for everyone trying to make sense of the schematic (including you). Often
you may see ohms written as R instead—for example, 220 R.

The Rectifier Diode

The rectifier diode symbol is shown in Figure 4-4.

D1
1N4004

N
L~

Figure 4-4: Rectifier diode symbol

Recall from Chapter 3 that rectifier diodes are polarized and current flows
from the anode to the cathode. In the symbol shown in Figure 4-4, the anode
is on the left and the cathode is on the right. An easy way to remember this is
to think of current flowing toward the point of the triangle only. Current
cannot flow the other way because the vertical bar “stops” it.

The LED
The LED symbol is shown in Figure 4-5.

LED1
Red (633nm)

A
~”"
>

Figure 4-5: LED symbol

All members of the diode family share a common symbol: the triangle and
vertical line. However, LED symbols show two parallel arrows pointing
away from the triangle to indicate that light is being emitted.

The Transistor

The transistor symbol is shown in Figure 4-6. We’ll use this to represent our
BC548.

=

Figure 4-6: Transistor symbol

The vertical line at the top of the symbol (labeled C) represents the collector,
the horizontal line at the left represents the base (labeled B), and the bottom
line represents the emitter (labeled E). The arrow inside the symbol, pointing
down and to the right, tells us that this is an NPN-type transistor, because
NPN transistors allow current to flow from the collector to the emitter. (PNP-
type transistors allow current to flow from the emitter to the collector.)

When numbering transistors we use the letter Q, just as we use R to number
resistors.

The Relay

The relay symbol is shown in Figure 4-7.

NO NC

com

Figure 4-7: Relay symbol

Relay symbols can vary in many ways and may have more than one set of
contacts, but all relay symbols share certain elements in common. The first is

the coil, which is the curvy vertical line at the left. The second element is the
relay contacts. The COM (for common) contact is often used as an input, and
the contacts marked NO (normally open) and NC (normally closed) are often
used as outputs.

The relay symbol is always shown with the relay in the off state and the coil
not energized—that is, with the COM and NC pins connected. When the
relay coil is energized, the COM and NO pins will be connected in the
symbol.

Wires in Schematics

When wires cross or connect in schematics, they are drawn in particular
ways, as shown in the following examples.

Crossing but Not Connected Wires

When two wires cross but are not connected, the crossing can be represented
in one of two ways, as shown in Figure 4-8. There is no one right way; it’s a
matter of preference.

Figure 4-8: Non-connecting crossed wires

Connected Wires

When wires are meant to be physically connected, a junction dot is drawn at
the point of connection, as shown in Figure 4-9.

Figure 4-9: Two wires that are connected

Wire Connected to Ground

When a wire is connected back to ground (GND), the standard method is to
use the symbol shown in Figure 4-10.

1

Figure 4-10: The GND symbol

The GND symbol at the end of a line in a schematic in this book tells you
that the wire is physically connected to the Arduino GND pin.

Dissecting a Schematic

Now that you know the symbols for various components and their
connections, let’s dissect the schematic we would draw for Project 1, on page
33 in Chapter 3. Recall that you made five LEDs blink backward and
forward.

Compare the schematic shown in Figure 4-11 with Figure 3-13 on page 34,
and you’ll see that using a schematic is a much easier way to describe a
circuit.

5600
MW R4
WAL R 5600

Arduino VYVY %g()ﬂ 2600
] Uno — Rl
[Rev3) 5600

_— T ,;SZLE[Js {/SZLEDd ?fSZLEDS {,SL LED2 ,;S‘ZLEDI
*

- il

Figure 4-11: Schematic for Project 1

From now on, we’ll use schematics to describe circuits, and I’ll show you the
symbols for new components as they’re introduced.

If you’d like to create your own computer-drawn schematics, try the
Fritzing application, available at minimal cost from
http://www.fritzing.org/.

The Capacitor

http://www.fritzing.org/

A capacitor is a device that holds an electric charge. It consists of two
conductive plates sandwiching an insulating layer that allows an electric
charge to build up between the plates. When the current is stopped, the
charge remains and can flow out of the capacitor (called discharging the
capacitor) as soon as the charge voltage stored in the capacitor is presented
with a new path for the current to take.

Measuring the Capacity of a Capacitor

The amount of charge that a capacitor can store is measured in farads, and
one farad is actually a very large amount. Therefore, you will generally find
capacitors with values measured in picofarads or microfarads. One picofarad
(pF) is 0.000000000001 of a farad, and one microfarad (pF) is 0.000001 of a
farad. Capacitors are also manufactured to accept certain voltage maximumes.
In this book we’ll be working with low voltages only, so we won’t be using
capacitors rated at greater than 10 V or so; it’s generally fine, however, to use
higher-voltage capacitors in lower-voltage circuits. Common voltage ratings
are 10, 16, 25, and 50 V.

Reading Capacitor Values

Reading the value of a ceramic capacitor takes some practice, because the
value is printed in a sort of code. The first two digits represent the value in
picofarads, and the third digit is the multiplier in tens. For example, the
capacitor shown in Figure 4-12 is labeled 104. This equates to 10 followed
by four zeros, or 100,000 pF (which is 100 nanofarads [nF] or 0.1 pF).

The conversions between units of measure can be a little confusing,
but you can print an excellent conversion chart from
http://www.justradios.com/uFnFpFE html.

Types of Capacitors

Our projects will use two types of capacitors: ceramic and electrolytic.

Ceramic Capacitors

http://www.justradios.com/uFnFpF.html

Ceramic capacitors, such as the one shown in Figure 4-12, are very small
and therefore hold a small amount of charge. They are not polarized and can
be used for current flowing in either direction. The schematic symbol for a
non-polarized capacitor is shown in Figure 4-13.

I‘E[hilr“ilwlllm

{510

r
A

L1

w

J’IMIM

Figure 4-12: A 0.1 uF ceramic capacitor

alsl

Figure 4-13: Non-polarized capacitor schematic symbol, with the capacitor’s value shown at
the upper right

Ceramic capacitors work beautifully in high-frequency circuits because they
can charge and discharge very quickly due to their small capacitance.

Electrolytic Capacitors

Electrolytic capacitors, like the one shown in Figure 4-14, are physically
larger than ceramic types, offer increased capacitance, and are polarized. A
marking on the cover shows either the positive (+) side or the negative (-)
side. In Figure 4-14, you can see the stripe and the small negative (—) symbol
that identifies the negative side. Like resistors, capacitors also have a level of
tolerance with their values. The capacitor in Figure 4-14 has a tolerance of
20 percent and a capacitance of 100 pF.

mnr o

Figure 4-14: An electrolytic capacitor

The schematic symbol for electrolytic capacitors, shown in Figure 4-15,
includes the + symbol to indicate the capacitor’s polarity.

-

Figure 4-15: Polarized capacitor schematic symbol

Electrolytic capacitors are often used to store larger electric charges and to
smooth power supply voltages. Like a small temporary battery, they can
smooth out the power supply and provide stability near circuits or parts that
draw high currents quickly from the supply. This prevents unwanted
dropouts and noise in your circuits. Luckily, the values of the electrolytic
capacitor are printed clearly on the outside and don’t require decoding or
interpretation.

You already have some experience generating basic forms of output using
LEDs with your Arduino. Now it’s time to learn how to send input from the
outside world into your Arduino using digital inputs, and to make decisions
based on that input.

Digital Inputs

In Chapter 3, we used digital I/O pins as outputs to turn LEDs on and off. We
can use these same pins to accept input from users—as long as we limit our
information to two states, high and low.

The simplest form of digital input is a push button; several push buttons are
shown in Figure 4-16. You can insert one of these directly into your
solderless breadboard and wire it to an Arduino pin. When the button is
pressed, current flows through the switch and into the digital input pin,
which detects the presence of the voltage.

Figure 4-16: Basic push buttons on a breadboard

Notice that the button at the bottom of the figure is inserted into the
breadboard, bridging rows 23 and 25. When the button is pressed, it connects
the two rows. The schematic symbol for this push button is shown in Figure
4-17. The symbol represents the two sides of the button, which are numbered
with the prefix S. When the button is pressed, the line bridges the two halves
and allows voltage or current through.

S1

Ll

Figure 4-17: Push button schematic symbol

MEASURING SWITCH BOUNCE WITH A DIGITAL STORAGE
OSCILLOSCOPE

Push buttons exhibit a phenomenon called switch bounce, or bouncing, which refers to a
button’s tendency to turn on and off several times after being pressed only once by the
user. This phenomenon occurs because the metal contacts inside a push button are so
small that they can vibrate after the button has been released, thereby switching on and
off again very quickily.

Switch bounce can be demonstrated with a digital storage oscilloscope (DSO), a device
that displays the change in a voltage over a period of time. For example, consider Figure

Figure 4-18: Measuring switch bounce

The top half of the display in Figure 4-18 shows the results of pressing a button several
times. When the voltage line indicated by the arrow is at the higher horizontal position (5
V), the button is in the on state, and the voltage is connected through it. Underneath the
word Stop is a slice of time just after the button was switched off, as shown by two gray
vertical lines.

The button voltage during this interval is magnified in the bottom half of the screen. At
point A, the button is released by the user, and the line drops to 0 V. However, due to
physical vibration, the button returns almost immediately to the higher 5 V position until
point B, where it vibrates off and then on again until point C, where it settles in the low

(off) state. In effect, instead of relaying one button press to our Arduino, we have
unwittingly sent three.

Project #4: Demonstrating a Digital Input

Our goal in this project is to create a button that turns on an LED for half a
second when pressed.

The Algorithm

Here is our algorithm:

. Test whether the button has been pressed.

. If the button has been pressed, turn on the LED for half a second and then
turn it off.

. If the button has not been pressed, do nothing.
. Repeat indefinitely.

The Hardware

Here’s what you’ll need to create this project:
One push button

One LED

One 560 €2 resistor

One 10 kQ resistor

One 100 nF capacitor

Various connecting wires

One breadboard

Arduino and USB cable

The Schematic

First, we create the circuit on the breadboard with the schematic shown in
Figure 4-19. Notice that the 10 kQ resistor is connected between GND and
digital pin 7. We call this a pull-down resistor, because it pulls the voltage at
the digital pin almost to zero. Furthermore, by adding a 100 nF capacitor
across the 10 kQ resistor, we create a simple debounce circuit to help filter
out the switch bounce. When the button is pressed, the digital pin goes
immediately to high. But when the button is released, digital pin 7 is pulled
down to GND via the 10 kQ resistor, and the 100 nF capacitor creates a small
delay. This effectively covers up the bouncing pulses by slowing the drop of
the voltage to GND, thereby eliminating most of the false readings due to
floating voltage and erratic button behavior.

] — 10k
Arduine M
—] Uno
] [Rev3) - "
C1
— Em— R1 100nF
— 5600
AW
LED1

AN

Figure 4-19: Schematic for Project 4

Because this is the first time you’re building a circuit with a schematic,
follow these step-by-step instructions as you walk through the schematic;

this should help you understand how the components connect:

. Insert the push button into the breadboard, as shown in Figure 4-20.

Figure 4-20: The push button inserted into the breadboard

. Now insert the 10 kQ resistor, a short link wire, and the capacitor, as shown
in Figure 4-21.

Figure 4-21: Adding the 10 kQ resistor and the capacitor

. Connect one wire from the Arduino 5 V pin to the upper-right row for the
button on the breadboard. Connect another wire from the Arduino GND pin

to the same vertical row that connects to the left-hand sides of the wire link
and the resistor. This is shown in Figure 4-22.

A
()
=
=
=
=
=
B
=L

-
n m
=
w

Figure 4-22: Connecting the 5 V (red) and GND (black) wires

. Run a wire from Arduino digital pin 7 to the lower-right row for the button
on the breadboard, as shown in Figure 4-23.

mo«

- = a

=1 3
L

N T .
=

45

0

Figure 4-23: Connecting the button to the digital input

Insert the LED into the breadboard with the short leg (the cathode) connected
to the GND column and the long leg (the anode) in a row to the right. Next,
connect the 560 Q resistor to the right of the LED, as shown in Figure 4-24.

|

Figure 4-24: Inserting the LED and 560 Q resistor

. Connect a wire from the right side of the 560 Q2 resistor to Arduino digital
pin 3, as shown in Figure 4-25.

ARDUIMNOG, CC

-
- -
= =
- =
= =
-
[
- &
[
- a
s &
B B
aa
& B
[I]
a8

Figure 4-25: Connecting the LED branch to the Arduino

Before continuing, review the schematic for this circuit and check that your
components are wired correctly. Compare the schematic against the actual
wiring of the circuit.

The Sketch

For the sketch, enter and upload Listing 4-1.

// Listing 4-1, Project 4 - Demonstrating a Digital Input

1 #define LED 3
#define BUTTON 7

void setup()

2 pinMode(LED, OUTPUT); // output for the LED
pinMode(BUTTON, INPUT); // input for the button
}

void loop()

if (digitalRead(BUTTON) == HIGH)

{
digitalWrite(LED, HIGH); // turn on the LED
delay(500); // wait for 0.5 seconds
digitalwWrite(LED, LOW); // turn off the LED

}

}
Listing 4-1: Digital input

After you’ve uploaded your sketch, tap the push button briefly. Your LED
should stay on for half a second.

Understanding the Sketch

Let’s examine the new items in the sketch for Project 4—specifically,
#define, digital input pins, and the if statement.

Creating Constants with #define

Before void setup(), we use #define statements at 1 to create fixed values:
when the sketch is compiled, the IDE replaces any instance of the defined
word with the number that follows it. For example, when the IDE sees LED in
the line at 2, it replaces it with the number 3. Notice that we do not use a
semicolon after a #define value.

We’re basically using the #define statements to label the digital pins for the
LED and button in the sketch. It’s a good idea to label pin numbers and other
fixed values (such as a time delay) in this way, because if the value is used
repeatedly in the sketch, then you won’t have to edit the same item more than
once. In this example, LED is used three times in the sketch, but to change
this value we’d have to edit its definition only once in its #define statement.

Reading Digital Input Pins

To read the status of a button, we first define a digital I/O pin as an input in
void setup() using the following:

pinMode (BUTTON, INPUT); // input for button

Next, to discover whether the button is connecting a voltage through to the
digital input (that is, it’s being pressed), we use digitalRead(pin), where
pin is the digital pin number to read. The function returns either HIGH
(voltage is close to 5 V at the pin) or Low (voltage is close to 0 V at the pin).

Making Decisions with if

Using if, we can make decisions in our sketch and tell the Arduino to run
different code depending on the decision. For example, in the sketch for
Project 4, we used Listing 4-2.

// Listing 4-2
if (digitalRead(BUTTON) == HIGH)

{
digitalWrite(LED, HIGH); // turn on the LED
delay(500); // wait for 0.5 seconds
digitalWrite(LED, LOW); // turn off the LED

}

Listing 4-2: A simple if-then example

The first line in this code snippet begins with if because it tests for a
condition. If the condition is true (that is, if the voltage is HIGH), then it
means that the button is pressed. The Arduino will then run the code that is
inside the curly brackets.

To determine whether the button is pressed (digitalRead(BUTTON) is set to
HIGH), we use a comparison operator, a double equal sign (==). If we were to
replace == with != (not equal to) in the sketch, then the LED would turn off
when the button is pressed instead. Try it and see.

A common mistake is to use a single equal sign (=), which means
“make equal to,” in a test statement instead of a double equal sign
(==), which says “test whether it is equal to.” You may not get an
error message, but your if statement may not work!

Once you’ve had some success, try changing the length of time that the light
stays on, or go back to Project 3 on page 38 in Chapter 3 and add a push
button control. (Don’t disassemble this circuit, though; we’ll use it again in
the next example.)

Modifying Your Sketch: Making More Decisions with if-
else

You can add another action to an if statement by using else. For example, if
we rewrite Listing 4-1 by adding an else clause, as shown in Listing 4-3,
then the LED will turn on if the button is pressed, or else it will be off. Using
else forces the Arduino to run another section of code if the test in the if
statement is not true.

// Listing 4-3
#define LED 3
#define BUTTON 7

void setup()

pinMode(LED, OUTPUT); // output for the LED
pinMode(BUTTON, INPUT); // input for the button

}
void loop()

if (digitalRead(BUTTON) == HIGH)

{

digitalWrite(LED, HIGH);
3
else
{

digitalWrite(LED, LOW);
}

}

Listing 4-3: Adding else

Boolean Variables

Sometimes you need to record whether something is in either of only two
states, such as on or off, or hot or cold. A Boolean variable is the legendary

computer “bit” whose value can be only a zero (0, false) or one (1, true). As
with any other variable, we need to declare it in order to use it:

boolean raining = true; // create the variable "raining" and
first make it true

Within the sketch, you can change the state of a Boolean with a simple
reassignment, such as this:

raining = false;

Because Boolean variables can only take on the values of true or false, they
are well suited to making decisions using if. True/false Boolean
comparisons work well with the comparison operators != and ==. Here’s an
example:

if (raining == true)

{
if (summer != true)
{

// it 1is raining and not summer

}
}

Comparison Operators

We can use various operators to make decisions about two or more Boolean
variables or other states. These include the operators not (!), and (&&), and or

(1.

The not Operator

The not operator is denoted by an exclamation mark (!). This operator is
used as an abbreviation for checking whether something is not true. Here’s
an example:

if (!raining)

{
3

// it is not raining (raining == false)

The and Operator

The logical and operator is denoted by &&. Using and helps reduce the
number of separate if tests. Here’s an example:

if ((raining == true) && (!summer))
{
// it 1is raining and not summer (raining == true and summer
== false)
}

The or Operator

The logical or operator is denoted by | |. Using or is pretty intuitive. Here’s
an example:

if ((raining == true) || (summer == true))

{
}

// it is either raining or summer

Making Two or More Comparisons

You can also make two or more comparisons using the same if statement.
Here’s an example:

if (snow == true && rain == true && 'hot)

{
}

// it 1is snowing and raining and not hot

And you can use parentheses to set the order of operation. In the next
example, the comparison in the parentheses is checked first and given a true
or false state, and then that condition is subjected to the remaining test in the
if statement:

if ((snow == true || rain == true) && hot == false))

{

// it 1is either snowing or raining, and not hot

}

Lastly, just like the examples of the not (!) operator before a value, simple
true/false tests can be performed without requiring == true or == false in
each test. The following code has the same effect as the preceding example:

if ((snow || rain) && 'hot)

// it 1is either snowing or raining, and not hot
// (snow is true OR rain is true) AND it is not hot

}

As you can see, it’s possible to have the Arduino make a multitude of
decisions using Boolean variables and comparison operators. Once you move
on to more complex projects, this will become very useful.

Project #5: Controlling Traffic

Now let’s put our newfound knowledge to use by solving a hypothetical
problem. As the town planners for a rural county, we have a problem with a
single-lane bridge that crosses the river. Every week, one or two accidents
occur at night, when tired drivers rush across the bridge without first
stopping to see if the road is clear. We have suggested that traffic lights be
installed, but the mayor wants to see them demonstrated before signing off
on the purchase. We could rent temporary lights, but they’re expensive.
Instead, we’ve decided to build a model of the bridge with working traffic
lights using LEDs and an Arduino.

The Goal

Our goal is to install three-color traffic lights at each end of the single-lane
bridge. The lights allow traffic to flow in only one direction at a time. When
sensors located at either end of the bridge detect a car waiting at a red light,
the lights will change and allow the traffic to flow in the opposite direction.

The Algorithm

We’ll use two buttons to simulate the vehicle sensors at each end of the
bridge. Each set of lights will have red, yellow, and green LEDs. Initially, the
system will allow traffic to flow from west to east, so the west-facing lights
will be set to green and the east-facing lights will be set to red.

When a vehicle approaches the bridge (modeled by pressing the button) and
the light is red, the system will turn the light on the opposite side from green
to yellow to red, and then wait a set period of time to allow any vehicles
already on the bridge to finish crossing. Next, the yellow light on the waiting
vehicle’s side will blink as a “get ready” notice for the driver, and finally the
light will change to green. The light will remain green until a vehicle
approaches the other side, at which point the process repeats.

The Hardware

Here’s what you’ll need to create this project:
Two red LEDs (LED1 and LED2)
Two yellow LEDs (LED3 and LED4)
Two green LEDs (LED5 and LED6)
Six 560 Q resistors (R1 to R6)

Two 10 kQ resistors (R7 and R8)
Two 100 nF capacitors (C1 and C2)
Two push buttons (S1 and S2)

One medium-sized breadboard
Arduino and USB cable

Various connecting wires

The Schematic

Because we’re controlling only six LEDs and receiving input from two
buttons, the design will not be too difficult. Figure 4-26 shows the schematic
for our project.

Arduino
Uno
Revd)

R7

\\I.EDé

R8

(DS

Figure 4-26: Schematic for Project 5

This circuit is basically a more elaborate version of the button and LED
circuit in Project 4, with resistors, more LEDs, and another button.

Be sure that the LEDs are inserted in the correct direction: the resistors
connect to LED anodes, and the LED cathodes connect to the Arduino GND

pin, as shown in Figure 4-27.

. - w
flf s =+ samse sEEEE EEEED BEEas

[

Figure 4-27: The completed circuit

The Sketch

And now for the sketch. Can you see how it matches our algorithm?

// Project 5 - Controlling Traffic

// define the pins that the buttons and lights are connected
to:

1 #define westButton 3
#define eastButton 13
#define westRed 2
#define westYellow 1
#define westGreen 0
#define eastRed 12
#define eastYellow 11
#define eastGreen 10

#define yellowBlinkTime 500 // 0.5 seconds for yellow light
blink

2 boolean trafficwWest = true; // west = true, east = false

3 int flowTime = 10000; // amount of time to let traffic
flow

4 int changeDelay = 2000; // amount of time between color
changes

void setup()

{
// set up the digital I/0 pins
pinMode(westButton, INPUT);
pinMode(eastButton, INPUT);
pinMode(westRed, OUTPUT);
pinMode(westYellow, OUTPUT);
pinMode(westGreen, OUTPUT);
pinMode(eastRed, OUTPUT);
pinMode(eastYellow, OUTPUT);
pinMode(eastGreen, OUTPUT);
// set initial state for lights - west side is green first
digitalWrite(westRed, LOW);
digitalWrite(westYellow, LOW);
digitalWrite(westGreen, HIGH);
digitalWrite(eastRed, HIGH);
digitalWrite(eastYellow, LOW);
digitalWrite(eastGreen, LOW);

}
void loop()

if (digitalRead(westButton) == HIGH) // request west>east
traffic flow
{
if (trafficWest != true)
// only continue if traffic flowing in the opposite
(east) direction

{

trafficWest = true; // change traffic flow flag to
west>east

delay(flowTime); // give time for traffic to flow

digitalWrite(eastGreen, LOW); // change east-facing
lights from green

// to yellow to red
digitalWrite(eastYellow, HIGH);
delay(changeDelay);

digitalWrite(eastYellow, LOW);
digitalWrite(eastRed, HIGH);

delay(changeDelay);
for (int a = 0; a < 5; a++) // blink yellow light
{

digitalWrite(westYellow, LOW);
delay(yellowBlinkTime);
digitalWrite(westYellow, HIGH);
delay(yellowBlinkTime);
by
digitalWrite(westYellow, LOW);
digitalWwrite(westRed, LOW); // change west-facing
lights from red

// to green
digitalWrite(westGreen, HIGH);
b
if (digitalRead(eastButton) == HIGH) // request east>west

traffic flow

if (trafficWest == true)
// only continue if traffic flow is in the opposite (west)
direction

{

trafficWwest = false; // change traffic flow flag to
east>west

delay(flowTime); // give time for traffic to flow

digitalWrite(westGreen, LOW);

// change west-facing lights from green to yellow to red

digitalWrite(westYellow, HIGH);

delay(changeDelay);

digitalWrite(westYellow, LOW);

digitalWrite(westRed, HIGH);

delay(changeDelay);
for (int a =0 ; a<5 ,; at+) // blink yellow light
{

digitalWrite(eastYellow, LOW);
delay(yellowBlinkTime);
digitalWrite(eastYellow, HIGH);
delay(yellowBlinkTime);
by
digitalWrite(eastYellow, LOW);
digitalWrite(eastRed, LOW); // change east-facing lights
from red
// to green
digitalWrite(eastGreen, HIGH);

}

Our sketch starts by using #define at 1 to associate digital pin numbers with
labels for all the LEDs used, as well as the two buttons. We have red, yellow,
and green LEDs and a button each for the west and east sides of the bridge.
The Boolean variable trafficwWest at 2 is used to keep track of which way
the traffic is flowing—true is west to east, and false is east to west.

Notice that trafficwest is a single Boolean variable with the traffic
direction set as either true or false. Having a single variable like
this instead of two (one for east and one for west) ensures that both
directions cannot accidentally be true at the same time, which helps
avoid a crash!

The integer variable flowTime at 3 is the minimum period of time that
vehicles have to cross the bridge. When a vehicle pulls up at a red light, the
system extends this period to give the opposing traffic time to cross the
bridge. The integer variable changeDelay at 4 is the elapsed time between
changes of color from green to yellow to red.

Before the sketch enters the void loop() section, it is set for traffic to flow
from west to east in void setup().

Running the Sketch

Once it’s running, the sketch does nothing until one of the buttons is pressed.
When the east button is pressed, the line:

if (trafficWest == true)

ensures that the lights change only if the traffic is heading in the opposite
direction. The rest of the void loop() section is composed of a simple
sequence of waiting and then of turning on and off various LEDs to simulate
the traffic lights’ operation.

Analog vs. Digital Signals

In this section you’ll learn the difference between digital and analog signals,
and you’ll learn how to measure analog signals with the analog input pins.

Until now, our sketches have been using digital electrical signals, with just
two discrete levels. Specifically, we used digitalwrite(pin, HIGH) and
digitalwrite(pin, LOW) to blink an LED and digitalRead() to measure
whether a digital pin had a voltage applied to it (HIGH) or not (Low). Figure 4-
28 is a visual representation of a digital signal that alternates between high
and low.

Figure 4-28: A digital signal, with highs appearing as horizontal lines at the top and lows
appearing at the bottom

Unlike digital signals, analog signals can vary with an indefinite number of
steps between high and low. For example, Figure 4-29 shows the analog
signal of a sine wave. Notice that as time progresses, the voltage floats
fluidly between high and low levels.

Figure 4-29: An analog signal of a sine wave

Figure 4-30: Analog inputs on the Arduino Uno

With our Arduino, high is closer to 5 V and low is closer to 0 V, or GND. We
can measure the voltage values of an analog signal with our Arduino using
the six analog inputs shown in Figure 4-30. These analog inputs can safely
measure voltages from 0 (GND) to no more than 5 V.

If you use the function analogRead(), then the Arduino will return a number
between 0 and 1,023 in proportion to the voltage applied to the analog pin.
For example, you might use analogRead() to store the value of analog pin 0
in the integer variable a, as shown here:

a = analogRead(0); // read analog input pin 0 (AQ)
// returns 0@ to 1023, which is usually 0.000 to 4.995 volts

Although the popularity and use of cell batteries has declined, most people
still have a few devices around the house, such as remote controls, clocks, or
children’s toys, that use AA, AAA, C, or D cell batteries. These batteries
carry much less than 5 V, so we can measure a cell’s voltage with our
Arduino to determine the state of the cell. In this project, we’ll create a
battery tester.

The Goal

Single-cell batteries such as AAs usually have a voltage of about 1.6 V when
new, which decreases with use and age. We will measure the voltage and
express the battery condition visually with LEDs. We’ll use the reading from
analogRead (), which we will convert to volts. The maximum voltage that
can be read is 5V, so we divide 5 by 1,024 (the number of possible values),
which equals 0.0048. We multiply the value returned by analogRead() by
this number to get the reading in volts. For example, if analogRead () returns
512, then we multiply that reading by 0.0048, which equals 2.4576 V.

The Algorithm

Here’s the algorithm for our battery tester:

. Read from analog pin O.
. Multiply the reading by 0.0048 to create a voltage value.
. If the voltage is greater than or equal to 1.6 V, briefly turn on a green LED.

. If the voltage is greater than 1.4 V and less than 1.6 V, briefly turn on a
yellow LED.

 If the voltage is less than 1.4 V, briefly turn on a red LED.
. Repeat indefinitely.

The Hardware

Here’s what you’ll need to create this project:
Three 560 Q resistors (R1 to R3)

One green LED (LED1)

One yellow LED (LED2)
One red LED (LED3)
One breadboard

Various connecting wires

Arduino and USB cable

The Schematic

The schematic for the single-cell battery tester circuit is shown in Figure 4-
31. On the left side, notice the two terminals, labeled + and —. Connect the
matching sides of the single-cell battery to be tested at those points. Positive
should connect to positive, and negative should connect to negative.

Under no circumstances should you measure anything larger than 5
V, nor should you connect positive to negative, or vice versa. Doing
these things would damage your Arduino board.

Arduino
Uno
[Rev3)

R1

5600
AN \IRE D'_

l

N

2600 Sie
5200 X

— MNP
N\

Figure 4-31: Schematic for Project 6

The Sketch

LED]
Grean

LED2

Yellow

LED3
Green

Now for the sketch. Since analog values can drift between integers, we’re
going to use a new type of variable called a float, which can contain

fractional or decimal values:

// Project 6 - Creating a Single-Cell Battery Tester

#define newLED 2 // green LED
#define okLED 4 // yellow LED
#define oldLED 6 // red LED

int analogVvalue = 0;

1 float voltage = 0;
int ledDelay = 2000;

void setup()

{
pinMode(newLED, OUTPUT);
pinMode (okLED, OUTPUT);
pinMode(oldLED, OUTPUT),
}

void loop()

2 analogValue = analogRead(0);
3 voltage = 0.0048*analogValue;
4 if (voltage >= 1.6)
{
digitalWrite(newLED, HIGH);
delay(ledDelay);
digitalWrite(newLED, LOW);
}
5 else if ((voltage < 1.6) && (voltage) > 1.4)
{
digitalWrite(okLED, HIGH);
delay(ledDelay);
digitalWrite(okLED, LOW);
}
6 else if (voltage <= 1.4)
{
digitalWrite(oldLED, HIGH);
delay(ledDelay);

digitalWrite(oldLED, LOW);
}

In this sketch, the Arduino takes the value measured by analog pin 0 at 2 and
converts this to a voltage at 3. You’ll learn more about the new type of
variable, the float at 1, in the next section, which discusses doing arithmetic
with an Arduino and using comparison operators to compare numbers.

Doing Arithmetic with an Arduino

Like a pocket calculator, the Arduino can perform calculations such as
multiplication, division, addition, and subtraction. Here are some examples:

100,

a + 20;

b - 200;

c + 80; // d will equal 0

O 0O ToD

Float Variables

When you need to deal with numbers with a decimal point, you can use the
variable type float. The values that can be stored in a float fall between
3.4028235 x 1038 and —3.4028235 x 1038 and are generally limited to six or
seven decimal places of precision. You can mix integers and float numbers
in your calculations. For example, you could add the float number f to the
integer a and store the sum as the float variable g:

int a = 100;

float f;
float g;
f=a/ 3, // f = 33.333333
g=a+f; // g = 133.333333

Comparison Operators for Calculations

We used comparison operators such as == and != with if statements and
digital input signals in Project 5. In addition to these operators, we can use
the following to compare numbers or numerical variables:

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to

We used these operators to compare numbers in lines 4, 5, and 6 in the sketch
for Project 6.

Improving Analog Measurement Precision
with a Reference Voltage

As demonstrated in Project 6, the analogRead() function returns a value
proportional to a voltage between 0 and 5 V. The upper value (5 V) is the
reference voltage, the maximum voltage that the Arduino analog inputs will
accept and return the highest value for (1,023).

To increase precision while reading even lower voltages, we can use a lower
reference voltage. For example, when the reference voltage is 5V,
analogRead () represents this with a value from 0 to 1,023. However, if we
needed to measure only a voltage with a maximum of 2 V, then we could
alter the Arduino output to represent 2 V using the 0 to 1,023 range to allow
for more precise measurement. You can do this with either an external or
internal reference voltage, as discussed next.

Using an External Reference Voltage

The first method of using a reference voltage is with the AREF (analog
reference) pin, as shown in Figure 4-32.

Figure 4-32: The Arduino Uno AREF pin

We can introduce a new reference voltage by connecting the voltage to the
AREF pin and the matching GND to the Arduino’s GND. Note that this can
lower the reference voltage but will not raise it, because the reference voltage
connected to an Arduino Uno must not exceed 5 V. A simple way to set a
lower reference voltage is by creating a voltage divider with two resistors, as
shown in Figure 4-33.

Cl
100nF

1} R2 R1
lw\q,w

[grey)
cun
GUII"IICIJ\;’

Figure 4-33: A voltage divider circuit

The values of R1 and R2 will determine the reference voltage according to
the formula in Figure 4-34.

V .=V

cut — in

R2]
R1+ RZ

Figure 4-34: Reference voltage formula

In the formula, V,, is the reference voltage, and V;,, is the input voltage—in
this case, 5 V. R1 and R2 are the resistor values in ohms.

The simplest way to divide the voltage is to split Vi, in half by setting RI and

R2 to the same value—for example, 10 kQ each. When you’re doing this, it’s
best to use the lowest-tolerance resistors you can find, such as 1 percent;
confirm their true resistance values with a multimeter and use those

confirmed values in the calculation. Furthermore, it’s a very good idea to
place a 100 nF capacitor between AREF and GND to avoid a noisy AREF
and prevent unstable analog readings.

When using an external reference voltage, insert the following line in the
void setup() section of your sketch:

analogReference(EXTERNAL); // select AREF pin for reference
voltage

Using the Internal Reference Voltage

The Arduino Uno also has an internal 1.1 V reference voltage. If this meets
your needs, no hardware changes are required. Just add this line to void
setup():

analogReference(INTERNAL); // select internal 1.1 V reference
voltage

The Variable Resistor

Variable resistors, also known as potentiometers, can generally be adjusted
from 0 Q up to their rated value. Their schematic symbol is shown in Figure
4-35.

%

Figure 4-35: Variable resistor (potentiometer) symbol

Variable resistors have three pin connections: one in the center pin and one
on each side. As the shaft of a variable resistor turns, it increases the
resistance between one side and the center and decreases the resistance
between the opposite side and the center.

Variable resistors can be either linear or logarithmic. The resistance of linear
models changes at a constant rate as they turn, while the resistance of
logarithmic models changes slowly at first and then increases rapidly.
Logarithmic potentiometers are used more often in audio amplifier circuits,

because they model the human hearing response. You can generally identify
whether a potentiometer is logarithmic or linear via the marking on the rear.
Most will have either an A or a B next to the resistance value: A for
logarithmic, B for linear. Most Arduino projects use linear variable resistors,
such as the one shown in Figure 4-36.

Figure 4-36: A typical linear variable resistor

You can also get miniature versions of variable resistors, known as trimpots
or trimmers (see Figure 4-37). Because of their size, trimpots are useful for
making adjustments in circuits, but they’re also very useful for breadboard
work because they can be slotted in.

Figure 4-37: Various trimpots

When shopping for trimpots, take note of the type. Often you will
want one that is easy to adjust with a screwdriver that you have on
hand. The enclosed types, pictured in Figure 4-37, last longer than
the cheaper, open contact types.

Piezoelectric Buzzers

A piezoelectric element (piezo for short), or buzzer, is a small, round device
that can be used to generate loud and annoying noises that are perfect for
alarms—or for having fun. Figure 4-38 shows a common example, the TDK
PS1240, next to an American quarter, to give you an idea of its size.

Figure 4-38: The TDK PS51240 piezo

Piezos contain a very thin plate inside the housing that moves when an
electrical current is applied. When a pulsed current is applied (suchason. . .
off ... on... off), the plate vibrates and generates sound waves.

It’s simple to use piezos with the Arduino because they can be turned on and
off just like an LED. The piezo elements are not polarized and can be
connected in either direction.

Piezo Schematic

The schematic symbol for the piezo looks like a loudspeaker (Figure 4-39),
which makes it easy to recognize.

Figure 4-39: Piezo schematic symbol

When shopping for a piezo for this project, be sure to get the piezo
element only type. Some buzzer types look like Eigure 4-38 but
include a tone-generating circuit built into the case; we don’t want
those because we’re going to drive our tone directly from the
Arduino.

Project #7: Trying Out a Piezo Buzzer

If you have a piezo handy and want to try it out, first connect it between
Arduino GND and digital pins D3 to DO inclusive. Then upload the
following demonstration sketch to your Arduino:

// Project 7 - Trying Out a Piezo Buzzer

#define PIEZO 3 // pin 3 is capable of PWM output to drive
tones

int del = 500;

void setup()

pinMode(PIEZO, OUTPUT);
3

void loop()
{

1 analogWrite(PIEZO, 128); // 50 percent duty cycle tone to
the piezo
delay(del);
digitalwWrite(PIEZO, LOW); // turn the piezo off
delay(del);

}

This sketch uses pulse-width modulation on digital pin 3. If you change the
duty cycle in the analogwrite() function (currently it’s 128, which is 50
percent on) at 1, you can alter the sound of the buzzer.

To increase the volume of your piezo, increase the voltage applied to it. The
voltage is currently limited to 5V, but the buzzer would be much louder at 9
or 12 V. Because higher voltages can’t be sourced from the Arduino, you
would need to use an external power source for the buzzer, such asa 9 V

battery, and then switch the power into the buzzer using a BC548 transistor
as an electronic switch. You can use the same sketch with the schematic
shown in Figure 4-40.

The part of the schematic labeled 12 V will be the positive side of the higher-
power supply, whose negative side will connect to the Arduino GND pin.

=[]+

Arduine
Uno
Rev3|

Figure 4-40: Schematic for Project 7

Project #8: Creating a Quick-Read
hermometer

Temperature can be represented by an analog signal. We can measure
temperature using the TMP36 voltage output temperature sensor made by
Analog Devices (http:/www.analog.com/tmp36/), shown in Figure 4-41.

Figure 4-41: TMP36 temperature sensor

Notice that the TMP36 looks just like the BC548 transistor we worked with
in the relay control circuit in Chapter 3. The TMP36 outputs a voltage that is
proportional to the temperature, so you can determine the current
temperature using a simple conversion. For example, at 25 degrees Celsius,
the output voltage is 750 mV, and each change in temperature of 1 degree
results in a change of 10 mV. The TMP36 can measure temperatures between
—40 and 125 degrees Celsius.

The function analogRead() will return a value between 0 and 1,023, which
corresponds to a voltage between 0 and just under 5,000 mV (5 V). If we
multiply the output of analogRead() by (5,000/1,024), we will get the actual
voltage returned by the sensor. Next, we subtract 500 (an offset used by the
TMP36 to allow for temperatures below 0) and then divide by 10, which
leaves us with the temperature in degrees Celsius. If you work in Fahrenheit,
then multiply the Celsius value by 1.8 and add 32 to the result.

The Goal

http://www.analog.com/tmp36/

In this project, we’ll use the TMP36 to create a quick-read thermometer.
When the temperature falls below 20 degrees Celsius, a blue LED turns on;
when the temperature is between 20 and 26 degrees, a green LED turns on;
and when the temperature is above 26 degrees, a red LED turns on.

The Hardware

Here’s what you’ll need to create this project:
Three 560 Q2 resistors (R1 to R3)

One red LED (LED1)

One green LED (LED2)

One blue LED (LED3)

One TMP36 temperature sensor

One breadboard

Various connecting wires

Arduino and USB cable

The Schematic

The circuit is simple. When you’re looking at the labeled side of the TMP36,
the pin on the left connects to the 5 V input, the center pin is the voltage
output, and the pin on the right connects to GND, as shown in Figure 4-42.

P36

VOUT

Arduine
[Rev3)

R3

5600

k2 LED3§

S0 P2 N
lEDl'%—.

Figure 4-42: Schematic for Project 8

The Sketch

And now for the sketch:

// Project 8 - Creating a Quick-Read Thermometer

// define the pins that the LEDs are connected to:

#define HOT 6
#define NORMAL 4
#define COLD 2

float voltage = 0O;

float celsius = 0;
float hotTemp = 26;
float coldTemp =
float sensor = 0O;

O .

20,

void setup()

}

pinMode(HOT, OUTPUT);
pinMode (NORMAL, OUTPUT);
pinMode(COLD, OUTPUT);

void loop()
{

// read the temperature sensor and convert the result to

degrees Celsius

sensor = analogRead(0);
voltage = (sensor * 5000) / 1024; // convert raw sensor

value to

}

// millivolts
voltage = voltage - 500; // remove voltage offset
celsius = voltage / 10; // convert millivolts to Celsius
// act on temperature range

if (celsius < coldTemp)

{
digitalWrite(COLD, HIGH);
delay(1000);
digitalWrite(COLD, LOW);
}

else if (celsius > coldTemp && celsius <= hotTemp)
{
digitalWrite (NORMAL, HIGH);
delay(1000);
digitalWrite(NORMAL, LOW);

b

else

{
// celsius is > hotTemp
digitalWrite(HOT, HIGH);
delay(1000);
digitalwWrite(HOT, LOW);

}

The sketch first reads the voltage from the TMP36 and converts it to a
temperature in degrees Celsius at 1. Next, using the if-else statements at 2

and 3, the code compares the current temperature against the values for hot
and cold and turns on the appropriate LED. The delay(1000) statements are
used to prevent the lights from flashing on and off too quickly if the
temperature fluctuates rapidly between two ranges.

You can experiment with the thermometer by blowing cool air over it to
lower the temperature or by rubbing two fingers over the TMP36’s body to
generate heat.

Looking Ahead

And Chapter 4 comes to a close. You now have a lot more tools to work
with, including digital inputs and outputs, new types of variables, and
various mathematical functions. In the next chapter, you will have a lot more
fun with LEDs, learn to create your own functions, build a computer game
and electronic dice, and much more.

S
WORKING WITH FUNCTIONS

In this chapter you will

Create your own functions
Learn to make decisions with while and do-while

Send and receive data between your Arduino and the Serial Monitor
window

Learn about long variables

You can make your Arduino sketches easier to read and simpler to design
by creating your own functions. You can also create modular code that you
can reuse in subsequent projects. In addition to these topics, this chapter
will introduce a way to have the Arduino make decisions that control blocks
of code, and you’ll learn about a type of integer variable called the 1long.
You’ll also use your own functions to create a new type of thermometer.

A function consists of a set of instructions, packaged as a unit and given a
name, that we can use anywhere in our sketches. Although many functions
are already available in the Arduino language, sometimes you won’t find
one to suit your specific needs—or you may need to run part of a sketch
repeatedly to make a function work, which is a waste of memory. In both of
these situations, you might wish you had a better function to do what you
need to do. The good news is that there is such a function—the one you
create yourself.

Project #9: Creating a Function to Repeat an

You can write simple functions to repeat actions on demand. For example,
the following function will turn the built-in LED on (at 1 and 3) and off (at
2 and 4) twice:

void blinkLED()

{
1 digitalWrite(13, HIGH);
delay(1000);
2 digitalwrite(13, LOW);
delay(1000);
3 digitalwWrite(13, HIGH);
delay(1000);
4 digitalwrite(13, LOW);
delay(1000);
}

Here is the function being used within a complete sketch, which you can
upload to the Arduino:

// Project 9 - Creating a Function to Repeat an Action

#define LED 13
#define del 200

void setup()

pinMode(LED, OUTPUT);
}

void blinkLED()

{
digitalWrite(LED, HIGH);
delay(del);
digitalwWrite(LED, LOW);
delay(del);
digitalWrite(LED, HIGH);
delay(del);
digitalwWrite(LED, LOW);
delay(del);

}
void loop()

1 blinkLED();
delay(1000);

}

When the blinkLED() function is called in void loop() at 1, the Arduino
will run the commands within the void blinkLED() section. In other
words, you have created your own function and used it when necessary.

Project #10: Creating a Function to Set the
Number of Blinks

The function we just created is pretty limited. What if we want to set the
number of blinks and the delay? No problem—we can create a function that
lets us change values, like this:

void blinkLED(int cycles, int del)
{

for ((int z =0 ; z < cycles ; z++)
{
digitalWrite(LED, HIGH);
delay(del);
digitalwWrite(LED, LOW);
delay(del);

}
}

Our new void blinkLED() function accepts two integer values: cycles (the
number of times we want to blink the LED) and de1 (the delay time
between turning the LED on and off). So if we wanted to blink the LED 12
times with a 100-millisecond delay, then we would use b1inkLED(12,

100). Enter the following sketch into the IDE to experiment with this
function:

// Project 10 - Creating a Function to Set the Number of
Blinks

#define LED 13
void setup()

pinMode(LED, OUTPUT);
}

void blinkLED(int cycles, int del)
{

for (int z = @ ; z < cycles ; z++)
{
digitalWrite(LED, HIGH);
delay(del);
digitalWrite(LED, LOW);
delay(del);

}
}

void loop()

1 blinkLED(12, 100);
delay(1000);

}

You can see at 1 that the values 12 and 100—for the number of blinks and
the delay, respectively—are passed into our custom function b1inkLED().
Therefore, the LED will blink 12 times with a delay of 100 milliseconds
between blinks. The display then pauses for 1,000 milliseconds, or 1
second, before the 1oop() function starts all over again.

Creating a Function to Return a Value

In addition to creating functions that accept values entered as parameters (as
void blinkLED() did in Project 10), you can create functions that return a
value, in the same way that analogRead () returns a value between 0 and
1,023 when measuring an analog input, as demonstrated in Project 8 (see
page 91 in Chapter 4).

Up until now, all the functions we’ve seen have started with the word void.
This tells the Arduino that the function returns nothing, just an empty void.
But we can create functions that return any type of value we want. For
example, if we wanted a function to return an integer value, we would

create it using int. If we wanted it to return a floating point value, it would
begin with float. Let’s create some useful functions that return actual
values.

Consider this function that converts degrees Celsius to Fahrenheit:

float convertTemp(float celsius)

float fahrenheit = 0;
fahrenheit = (1.8 * celsius) + 32;
return fahrenheit;

}

In the first line, we define the function name (convertTemp), its return value
type (float), and any variables that we might want to pass into the function
(float celsius). To use this function, we send it an existing value. For
example, if we wanted to convert 40 degrees Celsius to Fahrenheit and store
the result in a float variable called tempf, we would call convertTemp()
like so:

float tempf = convertTemp(40);

This would place 40 into the convertTemp() variable celsius and use it in
the calculation fahrenheit() = (1.8 * celsius) + 32 in the
convertTemp() function. The result is then returned into the variable tempf
with the convertTemp() line return fahrenheit;.

Project #11: Creating a Quick-Read

hermometer That Blinks the Temperature

Now that you know how to create custom functions, we’ll make a quick-
read thermometer using the TMP36 temperature sensor from Chapter 4 and
the Arduino’s built-in LED. If the temperature is below 20 degrees Celsius,
the LED will blink twice and then pause; if the temperature falls between
20 and 26 degrees, the LED will blink four times and then pause; and if the
temperature is above 26 degrees, the LED will blink six times.

We’ll make our sketch more modular by breaking it up into distinct
functions that will be reusable, as well as making the sketch easier to
follow. Our thermometer will perform two main tasks: measure and
categorize the temperature, and blink the LED a certain number of times (as
determined by the temperature).

The Hardware

The required hardware is minimal:
One TMP36 temperature sensor
One breadboard

Various connecting wires

Arduino and USB cable

The Schematic

The circuit is very simple, as shown in Figure 5-1.

TMP36

VOUT I

GHD S I

Arduino
— Uno —

(Rev3)

Figure 5-1: Schematic for Project 11

The Sketch

We’ll need to create two functions for the sketch. The first one will read the
value from the TMP36, convert it to Celsius, and then return a value of 2, 4,
or 6, corresponding to the number of times the LED should blink. We’ll
start with the sketch from Project 8 for this purpose and make minor
adjustments.

For our second function, we’ll use blinkLED() from Project 9. Our void
loop will call the functions in order and then pause for 2 seconds before

restarting.

Remember to save your modified project sketches with new
filenames so that you don’t accidentally delete your existing work!

Enter this code into the IDE:

// Project 11 - Creating a Quick-Read Thermometer That Blinks
the Temperature

#define LED 13
int blinks = 0;

void setup()

{
pinMode(LED, OUTPUT);

}

int checkTemp()

{
float voltage = 0O;
float celsius = 0;
float hotTemp = 26;
float coldTemp = 20;
float sensor = 0;

int result;
// read the temperature sensor and convert the result to
degrees Celsius

sensor = analogRead(0);
voltage = (sensor * 5000) / 1024; // convert raw sensor
value to millivolts

voltage = voltage - 500; // remove voltage offset
celsius = voltage / 10; // convert millivolts to
Celsius

// act on temperature range
if (celsius < coldTemp)

{

result = 2;

}

else if (celsius >= coldTemp && celsius <= hotTemp)

{
result = 4;
}
else
{
result = 6; // (celsius > hotTemp)
}
return result;
b
void blinkLED(int cycles, int del)
{
for (int z = 0 ; z < cycles ; z++)
{
digitalWrite(LED, HIGH);
delay(del);
digitalWrite(LED, LOW);
delay(del);
}
b

1 void loop()
{

blinks = checkTemp();
blinkLED(blinks, 500);
delay(2000);

}

Because we use custom functions, all we have to do in void_loop() at 1 is
call them and set the delay. The function checkTemp() returns a value to the
integer variable blinks, and then b1inkLED() will blink the LED blinks
times with a delay of 500 milliseconds. The sketch then pauses for 2
seconds before repeating.

Upload the sketch and watch the LED to see this thermometer in action. As
before, see if you can change the temperature of the sensor by blowing on it
or holding it between your fingers. Be sure to keep this circuit assembled,
since we’ll use it in the projects that follow.

Displaying Data from the Arduino in the
Serial Monitor

So far, we have sent sketches to the Arduino and used the LEDs to show us
output (such as temperatures and traffic signals). Blinking LEDs make it
easy to get feedback from the Arduino, but blinking lights can tell us only
so much. In this section, you’ll learn how to use the Arduino’s cable
connection and the IDE’s Serial Monitor window to display data from the
Arduino and send data to the Arduino from your computer’s keyboard.

The Serial Monitor

To open the Serial Monitor, start the IDE and click the Serial Monitor icon
on the toolbar, shown in Figure 5-2. It appears as a new tab in the IDE with
the output window, and should look similar