

CONTENTS IN DETAIL

REVIEWS FOR THE FIRST EDITION OF ARDUINO WORKSHOP

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR

ACKNOWLEDGMENTS

CHAPTER 1: GETTING STARTED
The Possibilities Are Endless
Strength in Numbers
Parts and Accessories
Required Software

macOS
Windows 10
Ubuntu Linux

Using Arduino Safely
Looking Ahead

CHAPTER 2: EXPLORING THE ARDUINO BOARD AND THE IDE
The Arduino Board
Taking a Look Around the IDE

The Command Area

The Text Area
The Output Window

Creating Your First Sketch in the IDE

Comments
The setup() Function
Controlling the Hardware
The loop() Function
Verifying Your Sketch
Uploading and Running Your Sketch
Modifying Your Sketch

Looking Ahead

CHAPTER 3: FIRST STEPS
Planning Your Projects
About Electricity

Current
Voltage
Power

Electronic Components

The Resistor
The Light-Emitting Diode
The Solderless Breadboard

Project #1: Creating a Blinking LED Wave

The Algorithm
The Hardware
The Schematic
The Sketch
Running the Sketch

Using Variables
Project #2: Repeating with for Loops
Varying LED Brightness with Pulse-Width Modulation
Project #3: Demonstrating PWM
More Electric Components

The Transistor
The Rectifier Diode
The Relay

Higher-Voltage Circuits
Looking Ahead

CHAPTER 4: BUILDING BLOCKS
Using Schematic Diagrams

Identifying Components
Wires in Schematics
Dissecting a Schematic

The Capacitor

Measuring the Capacity of a Capacitor
Reading Capacitor Values
Types of Capacitors

Digital Inputs
Project #4: Demonstrating a Digital Input

The Algorithm
The Hardware
The Schematic
The Sketch
Understanding the Sketch
Modifying Your Sketch: Making More Decisions with if-else

Boolean Variables

Comparison Operators
Making Two or More Comparisons

Project #5: Controlling Traffic

The Goal
The Algorithm
The Hardware
The Schematic
The Sketch
Running the Sketch

Analog vs. Digital Signals
Project #6: Creating a Single-Cell Battery Tester

The Goal
The Algorithm
The Hardware
The Schematic
The Sketch

Doing Arithmetic with an Arduino

Float Variables
Comparison Operators for Calculations

Improving Analog Measurement Precision with a Reference Voltage

Using an External Reference Voltage
Using the Internal Reference Voltage

The Variable Resistor
Piezoelectric Buzzers

Piezo Schematic

Project #7: Trying Out a Piezo Buzzer
Project #8: Creating a Quick-Read Thermometer

The Goal

The Hardware
The Schematic
The Sketch

Looking Ahead

CHAPTER 5: WORKING WITH FUNCTIONS
Project #9: Creating a Function to Repeat an Action
Project #10: Creating a Function to Set the Number of Blinks
Creating a Function to Return a Value
Project #11: Creating a Quick-Read Thermometer That Blinks the
Temperature

The Hardware
The Schematic
The Sketch

Displaying Data from the Arduino in the Serial Monitor

The Serial Monitor

Project #12: Displaying the Temperature in the Serial Monitor

Debugging with the Serial Monitor

Making Decisions with while Statements

while
do-while

Sending Data from the Serial Monitor to the Arduino
Project #13: Multiplying a Number by Two
long Variables
Project #14: Using long Variables
Looking Ahead

CHAPTER 6: NUMBERS, VARIABLES, AND ARITHMETIC
Generating Random Numbers

Using Ambient Current to Generate a Random Number

Project #15: Creating an Electronic Die

The Hardware
The Schematic
The Sketch
Modifying the Sketch

A Quick Course in Binary

Binary Numbers
Byte Variables

Increasing Digital Outputs with Shift Registers
Project #16: Creating an LED Binary Number Display

The Hardware
The Schematic
The Sketch

Project #17: Making a Binary Quiz Game

The Algorithm
The Sketch

Arrays

Defining an Array
Referring to Values in an Array
Writing to and Reading from Arrays

Seven-Segment LED Displays

Controlling the LED

Project #18: Creating a Single-Digit Display

The Hardware
The Schematic
The Sketch

Modifying the Sketch: Displaying Double Digits

Project #19: Controlling Two Seven-Segment LED Display Modules

The Hardware
The Schematic
Modulo

Project #20: Creating a Digital Thermometer

The Hardware
The Sketch

Looking Ahead

CHAPTER 7: EXPANDING YOUR ARDUINO
Shields
ProtoShields
Project #21: Creating a Custom Shield

The Hardware
The Schematic
The Layout of the ProtoShield Board
The Design
Soldering the Components
Testing Your ProtoShield

Expanding Sketches with Libraries

Downloading an Arduino Library as a ZIP File
Importing an Arduino Library with Library Manager

SD Memory Cards

Connecting the Card Module
Testing Your SD Card

Project #22: Writing Data to the Memory Card

The Sketch

Project #23: Creating a Temperature-Logging Device

The Hardware
The Sketch

Timing Applications with millis() and micros()
Project #24: Creating a Stopwatch

The Hardware
The Schematic
The Sketch

Interrupts

Interrupt Modes
Configuring Interrupts
Activating or Deactivating Interrupts

Project #25: Using Interrupts

The Sketch

Looking Ahead

CHAPTER 8: LED NUMERIC DISPLAYS AND MATRICES
LED Numeric Displays

Installing the Library

Project #26: Digital Stopwatch
Project #27: Using LED Matrix Modules

Installing the Library
Editing the Display Font

Looking Ahead

CHAPTER 9: LIQUID CRYSTAL DISPLAYS
Character LCD Modules

Using a Character LCD in a Sketch

Displaying Text
Displaying Variables or Numbers

Project #28: Defining Custom Characters
Graphic LCD Modules

Connecting the Graphic LCD
Using the LCD
Controlling the Display

Project #29: Seeing the Text Functions in Action

The Sketch
Running the Sketch

Creating More Complex Display Effects with Graphic Functions
Project #30: Seeing the Graphic Functions in Action

The Sketch

Project #31: Creating a Temperature History Monitor

The Algorithm
The Hardware
The Sketch
Running the Sketch
Modifying the Sketch

Looking Ahead

CHAPTER 10: CREATING YOUR OWN ARDUINO LIBRARIES
Creating Your First Arduino Library

Anatomy of an Arduino Library
The Header File
The Source File
The KEYWORDS.TXT File

Installing Your New Arduino Library

Creating a ZIP File Using Windows 7 and Later
Creating a ZIP File Using Mac OS X or Later
Installing Your New Library

Creating a Library That Accepts Values to Perform a Function
Creating a Library That Processes and Displays Sensor Values
Looking Ahead

CHAPTER 11: NUMERIC KEYPADS
Using a Numeric Keypad

Wiring a Keypad
Programming for the Keypad
Testing the Sketch

Making Decisions with switch case
Project #32: Creating a Keypad-Controlled Lock

The Sketch
Understanding the Sketch
Testing the Sketch

Looking Ahead

CHAPTER 12: ACCEPTING USER INPUT WITH
TOUCHSCREENS
Touchscreens

Connecting the Touchscreen

Project #33: Addressing Areas on the Touchscreen

The Hardware
The Sketch
Testing the Sketch
Mapping the Touchscreen

Project #34: Creating a Two-Zone On/Off Touch Switch

The Sketch
Understanding the Sketch
Testing the Sketch

Using the map() Function
Project #35: Creating a Three-Zone Touch Switch

The Touchscreen Map
The Sketch
Understanding the Sketch

Looking Ahead

CHAPTER 13: MEET THE ARDUINO FAMILY
Project #36: Creating Your Own Breadboard Arduino

The Hardware
The Schematic
Running the Sketch

The Many Arduino and Alternative Boards

Arduino Uno
Freetronics Eleven
The Adafruit Pro Trinket
The Arduino Nano
The LilyPad
The Arduino Mega 2560
The Freetronics EtherMega
The Arduino Due

Looking Ahead

CHAPTER 14: MOTORS AND MOVEMENT
Making Small Motions with Servos

Selecting a Servo

Connecting a Servo
Putting a Servo to Work

Project #37: Building an Analog Thermometer

The Hardware
The Schematic
The Sketch

Using Electric Motors

Selecting a Motor
The TIP120 Darlington Transistor

Project #38: Controlling the Motor

The Hardware
The Schematic
The Sketch

Using Small Stepper Motors
Project #39: Building and Controlling a Robot Vehicle

The Hardware
The Schematic
Connecting the Motor Shield
The Sketch

Connecting Extra Hardware to the Robot
Sensing Collisions
Project #40: Detecting Robot Vehicle Collisions with a Microswitch

The Schematic
The Sketch

Infrared Distance Sensors

Wiring It Up
Testing the IR Distance Sensor

Project #41: Detecting Robot Vehicle Collisions with an IR Distance
Sensor

The Sketch
Modifying the Sketch: Adding More Sensors

Ultrasonic Distance Sensors

Connecting the Ultrasonic Sensor
Testing the Ultrasonic Sensor

Project #42: Detecting Collisions with an Ultrasonic Distance Sensor

The Sketch

Looking Ahead

CHAPTER 15: USING GPS WITH YOUR ARDUINO
What Is GPS?
Testing the GPS Shield
Project #43: Creating a Simple GPS Receiver

The Hardware
The Sketch
Running the Sketch

Project #44: Creating an Accurate GPS-Based Clock

The Hardware
The Sketch

Project #45: Recording the Position of a Moving Object over Time

The Hardware
The Sketch
Running the Sketch

Looking Ahead

CHAPTER 16: WIRELESS DATA
Using Low-Cost Wireless Modules

Project #46: Creating a Wireless Remote Control

The Transmitter Circuit Hardware
The Transmitter Schematic
The Receiver Circuit Hardware
The Receiver Schematic
The Transmitter Sketch
The Receiver Sketch

Using LoRa Wireless Data Modules for Greater Range and Faster
Speed
Project #47: Remote Control over LoRa Wireless

The Transmitter Circuit Hardware
The Transmitter Schematic
The Receiver Circuit Hardware
The Receiver Schematic
The Transmitter Sketch
The Receiver Sketch

Project #48: Remote Control over LoRa Wireless with Confirmation

The Transmitter Circuit Hardware
The Transmitter Schematic
The Transmitter Sketch
The Receiver Sketch

Project #49: Sending Remote Sensor Data Using LoRa Wireless

The Transmitter Circuit Hardware
The Receiver Circuit Hardware
The Receiver Schematic
The Transmitter Sketch
The Receiver Sketch

Looking Ahead

CHAPTER 17: INFRARED REMOTE CONTROL
What Is Infrared?
Setting Up for Infrared

The IR Receiver
The Remote Control
A Test Sketch
Testing the Setup

Project #50: Creating an IR Remote Control Arduino

The Hardware
The Schematic
The Sketch
Modifying the Sketch

Project #51: Creating an IR Remote Control Robot Vehicle

The Hardware
The Sketch

Looking Ahead

CHAPTER 18: READING RFID TAGS
Inside RFID Devices
Testing the Hardware

The Schematic
Testing the Schematic
The Test Sketch
Displaying the RFID Tag ID Number

Project #52: Creating a Simple RFID Control System

The Sketch
Understanding the Sketch

Storing Data in the Arduino’s Built-in EEPROM

Reading and Writing to the EEPROM

Project #53: Creating an RFID Control with “Last Action” Memory

The Sketch
Understanding the Sketch

Looking Ahead

CHAPTER 19: DATA BUSES
The I2C Bus
Project #54: Using an External EEPROM

The Hardware
The Schematic
The Sketch
Running the Sketch

Project #55: Using a Port Expander IC

The Hardware
The Schematic
The Sketch

The SPI Bus

Pin Connections
Implementing the SPI
Sending Data to an SPI Device

Project #56: Using a Digital Rheostat

The Hardware
The Schematic
The Sketch

Looking Ahead

CHAPTER 20: REAL-TIME CLOCKS
Connecting the RTC Module

Project #57: Adding and Displaying Time and Date with an RTC

The Hardware
The Sketch
Understanding and Running the Sketch

Project #58: Creating a Simple Digital Clock

The Hardware
The Sketch
Understanding and Running the Sketch

Project #59: Creating an RFID Time-Clock System

The Hardware
The Sketch
Understanding the Sketch

Looking Ahead

CHAPTER 21: THE INTERNET
What You’ll Need
Project #60: Building a Remote Monitoring Station

The Hardware
The Sketch
Troubleshooting
Understanding the Sketch

Project #61: Creating an Arduino Tweeter

The Hardware
The Sketch

Controlling Your Arduino from the Web
Project #62: Setting Up a Remote Control for Your Arduino

The Hardware
The Sketch

Controlling Your Arduino Remotely

Looking Ahead

CHAPTER 22: CELLULAR COMMUNICATIONS
The Hardware

Hardware Configuration and Testing

Project #63: Building an Arduino Dialer

The Hardware
The Schematic
The Sketch
Understanding the Sketch

Project #64: Building an Arduino Texter

The Sketch
Understanding the Sketch

Project #65: Setting Up an SMS Remote Control

The Hardware
The Schematic
The Sketch
Understanding the Sketch

Looking Ahead

INDEX

REVIEWS FOR THE FIRST EDITION OF
ARDUINO WORKSHOP

“When it comes to technology, there’s really something to be
said for learning by example, and with each key point
focused around a specific project, the information in this
book is easy to learn and retain.”

—Dave Rankin, About.com Open Source

“Arduino Workshop was the first book I’ve read that helped
me really make sense of the practical applications the
Arduino is capable of.”

—AmateurRadio.com

“A very thorough primer for those wishing to jump on the
[Arduino] bandwagon.”

—Kevin Wierzbicki, Campus Circle

“I’ve checked out several Arduino ‘primers,’ and found the
best one for my purposes to be Arduino Workshop: A Hands-
on Introduction with 65 Projects by John Boxall.”

—Jeff Rowe, MCADCafe.com Blog

“A good book for getting started . . . I highly recommend it
if you’re thinking about getting into Arduino projects and
you’re brand new to this stuff.”

—Nathan Yau, FlowingData

ARDUINO WORKSHOP
2nd Edition

A Hands-on Introduction with 65 Projects

John Boxall

San Francisco

ARDUINO WORKSHOP, 2ND EDITION. Copyright © 2021 by John Boxall.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0058-7 (print)

ISBN-13: 978-1-7185-0059-4 (ebook)
Publisher: William Pollock

Executive Editor: Barbara Yien

Production Editor: Rachel Monaghan

Developmental Editors: Patrick DiJusto and Nathan Heidelberger

Cover Illustration: Charlie Wylie

Interior Design: Octopod Studios

Technical Reviewer: Xander Soldaat

Copyeditor: Paula L. Fleming

Compositor: Happenstance Type-O-Rama

Proofreader: Rachel Head

Indexer: JoAnne Burek

Circuit diagrams made using Fritzing (http://fritzing.org/).
For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1-415-863-9900; info@nostarch.com

www.nostarch.com
The Library of Congress issued the following Cataloging-in-Publication Data for the first edition:

Boxall, John, 1975-

Arduino workshop : a hands-on introduction with 65 projects / by John Boxall.

pages cm

Includes index.

ISBN-13: 978-1-59327-448-1

ISBN-10: 1-59327-448-3

1. Arduino (Microcontroller) I. Title.

TJ223.P76B68 2013

629.8’95--dc23

2013008261

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

http://fritzing.org/
mailto:info@nostarch.com
http://www.nostarch.com/

For the two
people who
have always
believed in me:
my mother and
my dearest
Kathleen

About the Author
John Boxall has been in the electronics design, distribution, and e-
commerce field for over 26 years. He has lately been writing Arduino
tutorials, projects, and kit reviews during his spare time.

About the Technical Reviewer
Xander Soldaat is a former Mindstorms Community Partner for LEGO
MINDSTORMS. He was an IT infrastructure architect and engineer for 18
years before becoming a full-time software developer, first for Robomatter
and VEX Robotics and now as an R&D engineer for an embedded Wi-Fi
solutions provider. In his spare time, he likes to tinker with robots, 3D
printing, and home-built retro-computers.

ACKNOWLEDGMENTS

First of all, a huge thank you to the Arduino team: Massimo Banzi, David
Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis. Without your
vision, thought, and hard work, none of this would have been possible.

Thank you to all the readers of the first edition for your feedback and
constructive criticism.

Many thanks to my technical reviewer, Xander Soldaat, for his
contributions and for having the tenacity to follow through with such a large
project.

I also want to thank the following organizations for their images and
encouragement: Adafruit, Keysight Technologies, Freetronics, PMD Way,
Seeed Studio, Sharp Corporation, SparkFun, and Tronixlabs.

Furthermore, a big thanks to Freetronics and PMD Way for the use of their
excellent hardware products. And thank you to all those who have
contributed their time making Arduino libraries, which makes life much
easier for everyone. Kudos and thanks to the Fritzing team for their open
source circuit schematic design tool, which I’ve used throughout this book.

Thanks also to the following people (in no particular order) from whom
I’ve received encouragement, inspiration, and support: Elizabeth Pryce,
Jonathan Oxer, Philip Lindsay, Ken Shirriff, Nathan Kennedy, and David L.
Jones.

Finally, thank you to everyone at No Starch Press for their efforts in this
updated edition, including Patrick DiJusto for his editorial input, Dapinder
Dosanjh and Nathan Heidelberger for their endless patience, Rachel
Monaghan for guiding the book through the production process, Paula
Fleming for copyediting, Rachel Head for proofreading, JoAnne Burek for
indexing, and of course Bill Pollock for his support and guidance and for
convincing me that sometimes there is a better way to explain something.

1

GETTING STARTED

Have you ever looked at some gadget and wondered
how it really worked? Maybe it was a remote control
boat, an elevator, a vending machine, or an electronic
toy. Or have you wanted to create your own robot or
make electronic signals for a model railroad? Or
perhaps you’d like to capture and analyze weather
data over time? Where and how do you start?
The Arduino microcontroller board (shown in Figure 1-1) can help you find
the answers to some of the mysteries of electronics in a hands-on way. The
original creation of Massimo Banzi and David Cuartielles, the Arduino
system offers an inexpensive way to build interactive projects, such as
remote-controlled robots, GPS tracking systems, and electronic games.

The Arduino project has grown exponentially since its introduction in 2005.
It’s now a thriving industry, supported by a community of people united
with the common bond of creating something new. You’ll find individuals
and groups ranging from small clubs to local hackerspaces to educational
institutions, all interested in trying to make things with the Arduino.

Figure 1-1: The Arduino board

To get a sense of the variety of Arduino projects in the wild, simply search
the internet. There, you’ll find an incredible number of projects, blogs,
experiences, and ideas that show what is possible with the Arduino.

The Possibilities Are Endless
A quick scan through this book will show you that you can use the Arduino
to do something as simple as blinking a small light or something as
complicated as interacting with a cellular phone—and many different things
in between.

For example, look at Becky Stern’s Wi-Fi Weather Display, different
examples of which are shown in Figure 1-2. It uses an Arduino-compatible
board with a Wi-Fi interface to receive the local weather forecast. It then

displays the daily maximum temperature and illuminates a colored triangle
to represent the weather forecast for the day.

Figure 1-2: Various examples of a weather forecast display device

Thanks to the ease of interrogating various internet-based information
services, you can use this to display data other than the weather. For more
information, visit https://www.instructables.com/id/WiFi-Weather-Display-
With-ESP8266/.

How about reproducing a classic computer from the past? Thanks to the
power of the Arduino’s internal processor, you can emulate computers from
days gone by. One example is Oscar Vermeulen’s KIM Uno, shown in
Figure 1-3, which emulates the 1976 KIM-1 computer. Visit
https://en.wikipedia.org/wiki/KIM-1 to learn more.

https://www.instructables.com/id/WiFi-Weather-Display-With-ESP8266/
https://en.wikipedia.org/wiki/KIM-1

Figure 1-3: An Arduino-powered KIM-1 emulator

By building this project, the user can gain an understanding of how the first
microprocessors worked, and this will give them the foundational
knowledge to understand the computers of today. You can reproduce the
Kim Uno for less than $50, and this low price tag makes this project an
ideal tool to share with others with a technological interest. For more
information, visit https://obsolescence.wixsite.com/obsolescence/kim-uno-
summary-c1uuh/.

Then there’s Michalis Vasilakis, who also enjoys making his own tools on a
budget. A great example is his Arduino Mini CNC Plotter. This project uses

https://obsolescence.wixsite.com/obsolescence/kim-uno-summary-c1uuh/

an Arduino, mechanisms from old CD drives, and other inexpensive items
to create a computer numerical control (CNC) device that can draw with
precision on a flat surface (see Figure 1-4). For more information, visit
http://www.ardumotive.com/new-cnc-plotter.html.

Figure 1-4: The Arduino Mini CNC Plotter

These are only a few random examples of what is possible using an
Arduino. You can create your own simple projects without much difficulty
—and after you’ve worked through this book, even more complex projects
will certainly be within your reach.

Strength in Numbers

http://www.ardumotive.com/new-cnc-plotter.html

If you’re more of a social learner and enjoy class-oriented situations, search
the web for a local hackerspace or enthusiasts’ group to see what people are
making and to find Arduino-related groups. Members of Arduino groups
can do such things as introduce the world of Arduino from an artist’s
perspective or work together to create a small Arduino-compatible board.
These groups can be a lot of fun, introduce you to interesting people, and let
you share your Arduino knowledge with others.

NOTE

You can also download the sketch files and find any updates at the
book’s website: https://nostarch.com/arduino-workshop-2nd-
edition/.

Parts and Accessories
As with any other electronic device, the Arduino is available from many
retailers offering a range of products and accessories. When you’re
shopping, be sure to purchase the original Arduino, or a quality derivative.
Otherwise, you run the risk of receiving faulty or poorly performing goods.
Why risk your project with an inferior board that could end up costing you
more in the long run? For a list of authorized Arduino distributors, visit
http://arduino.cc/en/Main/Buy/.

Here’s a list of current suppliers (in alphabetical order) that I recommend
for your purchases of Arduino-related parts and accessories:

Adafruit Industries (http://www.adafruit.com/)

Arduino Store USA (https://store.arduino.cc/usa/)

PMD Way (https://pmdway.com/)

SparkFun Electronics (https://sparkfun.com/)

You can download a list of the parts used in this book and find any updates
at the book’s website: https://nostarch.com/arduino-workshop-2nd-edition/.
All the required parts are easily available from the various resellers listed
above, as well as other retailers you may already be familiar with.

https://nostarch.com/arduino-workshop-2nd-edition/
http://arduino.cc/en/Main/Buy/
http://www.adafruit.com/
https://store.arduino.cc/usa/
https://pmdway.com/
https://sparkfun.com/
https://nostarch.com/arduino-workshop-2nd-edition/

But don’t go shopping yet. Take the time to read the first few chapters to get
an idea of what you’ll need so that you won’t waste money buying
unnecessary things.

Required Software
You should be able to program your Arduino with just about any computer.
You’ll begin by installing a piece of software called an integrated
development environment (IDE). To run this software, your computer
should have an internet connection and one of the following operating
systems installed:

macOS 10.14 64-bit, or higher

Windows 10 Home 32- or 64-bit, or higher

Linux 32- or 64-bit (Ubuntu or similar)

The IDE has been a work in progress since 2005 and is currently up to
version 2.x (the exact number may change, but the instructions in this book
should still work). Compared to version 1.x, version 2.x has some features
that make writing and editing sketches easier, including interactive
autocomplete, improved navigation through sketches, and more user-
friendly board and library managers. Furthermore, a live debugger allows
you to start and stop your Arduino sketch interactively when used with
certain Arduino boards. However, if you’re new to the world of Arduino,
you don’t need to worry about these features. Just remember that the
Arduino team and community are always working on improvements.

Now is a good time to download and install the IDE, so jump to the heading
that matches your operating system and follow the instructions. Make sure
you have or buy the matching USB cable for your Arduino from the
supplier as well. Even if you don’t have your Arduino board yet, you can
still download and explore the IDE.

macOS
In this section, you’ll find instructions for downloading and configuring the
Arduino IDE in macOS.

. Visit the software download page (https://www.arduino.cc/en/software/) and
download the latest available version of the IDE for your operating system.

. Double-click the Arduino .dmg file in your Downloads folder. When the
installation window pops up, drag the Arduino icon to the Applications
folder.

. Open the IDE, as shown in Figure 1-5.

Figure 1-5: The IDE in macOS

. Now to configure the IDE for the Arduino Uno board. Click the top icon in
the left sidebar of the IDE to open the Boards Manager. Find the option that
includes the Arduino Uno and click Install.

. Expand the drop-down menu at the top of the IDE that reads No Board
Selected and choose Select Other Board & Port. Then select the Arduino
Uno from the list of boards.

You may be prompted to install Apple’s Command Line Developer tools.

Now your hardware and software are ready to work for you. Next, move on
to “Using Arduino Safely” on page 8.

https://www.arduino.cc/en/software/

Windows 10
In this section, you’ll find instructions for downloading and configuring the
IDE in Windows.

. Visit the software download page (http://arduino.cc/en/software/) and
download the latest available version of the IDE for your operating system.

. Your browser software may ask you to save or run the downloaded file.
Click Run so the installation starts automatically once downloading has
finished. Otherwise, launch the Arduino .exe file in your Downloads folder
to install the IDE. When you’re finished, run the IDE.

. Now to configure the IDE for the Arduino Uno board. Click the top icon in
the left sidebar of the IDE to open the Boards Manager. Find the option that
includes the Arduino Uno and click Install.

. Expand the drop-down menu at the top of the IDE that reads No Board
Selected and choose Select Other Board & Port. Then select the Arduino
Uno from the list of boards.

Now that your Arduino IDE is set up, you can move on to “Using Arduino
Safely” on page 8.

Ubuntu Linux
If you are running Ubuntu Linux, here are instructions for downloading and
setting up the Arduino IDE.

. Visit the software download page (http://arduino.cc/en/software/) and
download the latest available version of the IDE for your operating system.

. If prompted, choose Save File and click OK.

. Find the Arduino .zip file in the Archive Manager and extract it, saving it to
the desktop.

. Navigate to the extracted folder in a terminal and enter ./arduino-ide to
launch the IDE.

. Now to configure the IDE. Connect your Arduino to your PC with the USB
cable.

http://arduino.cc/en/software/
http://arduino.cc/en/software/

. Select Tools▶ Port in the IDE and select the /dev/ttyACMx port, where x is
a single digit (there should be only one port with a name like this).

Now your hardware and software are ready to work for you.

Using Arduino Safely
As with any hobby or craft, it’s up to you to take care of yourself and those
around you. As you’ll see in this book, I discuss working with basic hand
tools, battery-powered electrical devices, sharp knives, and cutters—and
sometimes soldering irons. At no point in your projects should you work
with the main household current. Leave that to a licensed electrician who is
trained for such work. Remember that coming into contact with the wall
power will kill you.

Looking Ahead
You’re about to embark on a fun and interesting journey, and you’ll be
creating things you may never have thought possible. You’ll find 65
Arduino projects in this book, ranging from the very simple to the relatively
complex. All are designed to help you learn and make something useful. So
let’s go!

2

EXPLORING THE ARDUINO BOARD

AND THE IDE

In this chapter, you’ll explore the Arduino board as
well as the IDE software that you’ll use to create and
upload Arduino sketches (Arduino’s name for its
programs) to the board itself. You’ll learn the basic
framework of a sketch and some basic functions that
you can implement in a sketch, and you’ll create and
upload your first sketch.

The Arduino Board
What exactly is Arduino? According to the Arduino website
(http://www.arduino.cc/), it is:

An open-source electronics platform based on easy-to-use hardware and software. It’s intended
for anyone making interactive projects.

In simple terms, the Arduino is a tiny computer system that can be
programmed with your instructions to interact with various forms of input
and output. The current Arduino board model, the Uno, is quite small
compared to the adult human hand, as you can see in Figure 2-1.

http://www.arduino.cc/

Figure 2-1: An Arduino Uno is quite small.

Although it might not look like much to the uninitiated, the Arduino system
allows you to create devices that can interact with the world around you.
With an almost unlimited range of input and output devices, such as
sensors, indicators, displays, motors, and more, you can program the exact
interactions you need to create a functional device. For example, artists
have created installations with patterns of blinking lights that respond to the
movements of passers-by, high school students have built autonomous
robots that can detect an open flame and extinguish it, and geographers
have designed systems that monitor temperature and humidity and transmit
this data back to their offices via text message. In fact, a quick internet
search will turn up an almost infinite number of examples of Arduino-based
devices.

Let’s explore our Arduino Uno hardware (in other words, the “physical
part”) in more detail and see what we have. Don’t worry too much about

understanding what you see here, because all these things will be discussed
in greater detail in later chapters.

Starting at the left side of the board, you’ll see two connectors, as shown in
Figure 2-2.

Figure 2-2: The USB and power connectors

On the left is the Universal Serial Bus (USB) connector. This connects the
board to your computer, for three reasons: to supply power to the board, to
upload your instructions to the Arduino, and to send data to and receive it
from a computer. On the right is the power connector. Through this
connector, you can power the Arduino with a standard wall power adapter
(stepped down to 5 volts, of course).

At the lower middle is the heart of the board: the microcontroller, as shown
in Figure 2-3.

Figure 2-3: The microcontroller

The microcontroller is the “brains” of the Arduino. It is a tiny computer that
contains a processor to execute instructions, includes various types of
memory to hold data and instructions from our sketches, and provides
various avenues for sending and receiving data. Just below the
microcontroller are two groups of small sockets, as shown in Figure 2-4.

Figure 2-4: The power and analog sockets

The group on the left offers power connections and the ability to use an
external RESET button. The group on the right offers six analog inputs that
are used to measure electrical signals that vary in voltage. Furthermore, pins
A4 and A5 can also be used for sending data to and receiving it from other
devices.

Along the top of the board are two more groups of sockets, as shown in
Figure 2-5.

Figure 2-5: The digital input/output pins

The sockets (or pins) numbered 0 to 13 are digital input/output (I/O) pins.
They can either detect whether or not an electrical signal is present or
generate a signal on command. Pins 0 and 1 are also known as the serial
port, which is used to exchange data with other devices, such as a computer
via the USB connector circuitry. The pins labeled with a tilde (~) can also
generate a varying electrical signal (which looks like an ocean wave on an
oscilloscope—thus the wavy tilde). This can be useful for such things as
creating lighting effects or controlling electric motors.

The Arduino has some very useful devices called light-emitting diodes
(LEDs); these very tiny devices light up when a current passes through
them. The Arduino board has four LEDs: one on the far right labeled ON,
which indicates when the board has power, and three in another group, as
shown in Figure 2-6.

The LEDs labeled TX and RX light up when data is being transmitted or
received, respectively, between the Arduino and attached devices via the
serial port and USB. The L LED is for your own use (it is connected to the
digital I/O pin number 13). The little black square to the left of the LEDs is
a tiny microcontroller that controls the USB interface that allows your
Arduino to send data to and receive it from a computer, but you don’t
generally have to concern yourself with it.

Figure 2-6: The onboard LEDs

Figure 2-7: The RESET button

Finally, the RESET button is shown in Figure 2-7.

As with a normal computer, sometimes things can go wrong with the
Arduino. When all else fails, you might need to reset the system and restart
your Arduino. The simple RESET button on the board is used to restart the
system to resolve these problems.

One of the great advantages of the Arduino system is its ease of
expandability—that is, it’s easy to add more hardware functions. The two
rows of sockets along each side of the Arduino allow the connection of a
shield, another circuit board with pins that allow it to plug into the Arduino.
For example, the shield shown in Figure 2-8 contains an Ethernet interface
that allows the Arduino to communicate over networks and the internet.

Figure 2-8: Arduino Ethernet interface shield

Notice that the Ethernet shield also has rows of sockets. These enable you
to insert one or more shields on top. For example, Figure 2-9 shows that
another shield with a large numeric display, a temperature sensor, extra data
storage space, and a large LED has been inserted.

If you use Arduino shields in your devices, you will need to remember
which shield uses which individual inputs and outputs to ensure that
“clashes” do not occur. You can also purchase completely blank shields that
allow you to add your own circuitry. This will be explained further in
Chapter 7.

Figure 2-9: Numeric display and temperature shield

The companion to the Arduino hardware is the software, a collection of
instructions that tell the hardware what to do and how to do it.

Back in Chapter 1, you installed the IDE software on your personal
computer and configured it for your Arduino. Now you’re going to look
more closely at the IDE and then write a simple program—known as a
sketch—for the Arduino.

Taking a Look Around the IDE
As shown in Figure 2-10, the Arduino IDE resembles a simple word
processor. The IDE is divided into three main areas: the command area, the
text area, and the message window area.

The Command Area
The command area, shown at the top of Figure 2-10, includes the title bar,
menu items, and icons. The title bar displays the sketch’s filename (such as
Blink), as well as the version of the IDE (such as Arduino 2.0.0-beta.4).
Below this is a series of menu items (File, Edit, Sketch, Tools, and Help)
and icons, as described next.

Figure 2-10: The Arduino IDE

Menu Items
As with any word processor or text editor, you can click one of the menu
items to display its various options:

File Contains options to save, load, and print sketches; a thorough set of
example sketches to open; and the Preferences submenu

Edit Contains the usual copy, paste, and search functions common to any
word processor

Sketch Contains a function to verify your sketch before uploading it to a
board, as well as some sketch folder and import options

Tools Contains a variety of functions as well as the commands to select the
Arduino board type and USB port

Help Contains links to various topics of interest and the version of the IDE

The Icons
Below the menu toolbar are six icons. Mouse over each icon to display its
name. The icons, from left to right, are as follows:

Verify Click this to check that the Arduino sketch is valid and doesn’t
contain any programming mistakes.

Upload Click this to verify and then upload your sketch to the Arduino
board.

New Click this to open a new blank sketch in a new window.

Debug Used with more complex Arduino boards for real-time debugging.

Open Click this to open a saved sketch.

Save Click this to save the open sketch. If the sketch doesn’t have a name,
you will be prompted to create one.

Serial Monitor Click this to open a new window for use in sending and
receiving data between your Arduino and the IDE.

The Text Area
The text area is shown in the middle of Figure 2-10. This is where you’ll
create your sketches. The name of the current sketch is displayed in the tab
at the upper left of the text area. (The default name is the current date.)
You’ll enter the contents of your sketch here as you would in any text
editor.

The Output Window
The output window is shown at the bottom of Figure 2-10. Messages from
the IDE appear in the black area. The messages you see will vary and will
include messages about verifying sketches, status updates, and so on.

At the bottom right of the output window, you should see the name of your
Arduino board type as well as its connected USB port—Arduino/Genuino
Uno on COM4 in this case.

Creating Your First Sketch in the IDE
An Arduino sketch is a set of instructions that you create to accomplish a
particular task; in other words, a sketch is a program. In this section, you’ll
create and upload a simple sketch that will cause the Arduino’s LED
(shown in Figure 2-11) to blink repeatedly, by turning it on and then off at
one second intervals.

Figure 2-11: The LED on the Arduino board, next to the capital L

NOTE

Don’t worry too much about the specific commands in the sketch
we’re creating here. The goal is to show you how easy it is to get the
Arduino to do something so that you’ll keep reading when you get to
the harder stuff.

To begin, connect your Arduino to your computer with the USB cable. Then
open the IDE and select your board (Arduino Uno) and USB port type from
the drop-down menu, as shown in Figure 2-12. This ensures that the
Arduino board is properly connected.

Figure 2-12: Selecting the Arduino Uno board

Comments
First, enter a comment as a reminder of what your sketch will be used for. A
comment in a sketch is a note written for the user’s benefit. Comments can
be notes to yourself or others, and they can include instructions or any other
details. When creating sketches for your Arduino, it’s a good idea to add
comments about your intentions for the code; these comments can prove
useful later when you’re revisiting a sketch.

To add a comment on a single line, enter two forward slashes and then the
comment, like this:

// Blink LED sketch by Mary Smith, created 07/01/2021

The two forward slashes tell the IDE to ignore that line of text when
verifying a sketch, or checking that everything is written properly with no
errors.

To enter a comment that spans two or more lines, enter the characters /* on
a line before the comment and end the comment with the characters */ on
the following line, like this:

/*

Arduino Blink LED Sketch

by Mary Smith, created 07/01/2021

*/

The /* and */ tell the IDE to ignore the text that they bracket.

Enter a comment describing your Arduino sketch using one of these
methods. Then save your sketch by choosing File▶Save As. Enter a short
name for your sketch (such as blinky) and click OK.

The default filename extension for Arduino sketches is .ino, and the IDE
should add this automatically. The name for your sketch should be, in this
case, blinky.ino, and you should be able to see it in your Sketchbook.

The setup() Function
The next stage in creating any sketch is to fill in the void setup() function.
This function contains a set of instructions for the Arduino to execute once
only, each time it is reset or turned on. To create the setup() function, add
the following lines to your sketch, after the comments:

void setup()

{

}

Controlling the Hardware
Our program will blink the user LED on the Arduino. The user LED is
connected to the Arduino’s digital pin 13. A digital pin can either detect an
electrical signal or generate one on command. In this project, we’ll generate
an electrical signal that will light the LED.

Enter the following into your sketch between the braces ({ and }):

pinMode(13, OUTPUT); // set digital pin 13 to output

The number 13 in the listing represents the digital pin you’re addressing.
You’re setting this pin to OUTPUT, which means it will generate an electrical
signal. If you wanted it to detect an incoming electrical signal, then you
would set the pin’s mode to INPUT instead. Notice that the pinMode() line
ends with a semicolon (;). Every instruction line in your Arduino sketches
will end with a semicolon.

Save your sketch at this point to make sure that you don’t lose any of your
work.

The loop() Function
Remember that our goal is to make the LED blink repeatedly. To do this,
we’ll create a loop() function to tell the Arduino to execute an instruction

over and over until the power is shut off or someone presses the RESET
button.

Enter the code shown in boldface after the void setup() section in the
following listing to create an empty loop() function. Be sure to end this
new section with another brace (}), and then save your sketch again:

/*

Arduino Blink LED Sketch

by Mary Smith, created 07/01/21

*/

void setup()

{

 pinMode(13, OUTPUT); // set digital pin 13 to output

}

void loop()

{ // place your main loop code here:

}

WARNING

The Arduino IDE does not automatically save sketches, so save your
work frequently!

Next, enter the actual functions into void loop() for the Arduino to
execute.

Enter the following between the loop() function’s braces. Then click
Verify to make sure that you’ve entered everything correctly:

digitalWrite(13, HIGH); // turn on digital pin 13

delay(1000); // pause for one second

digitalWrite(13, LOW); // turn off digital pin 13

delay(1000); // pause for one second

Let’s take this apart. The digitalWrite() function controls the voltage that
is output from a digital pin: in this case, pin 13, connected to the LED. By
setting the second parameter of this function to HIGH, we tell the pin to

output a “high” digital voltage; current will flow from the pin, and the LED
will turn on.

The delay() function causes the sketch to do nothing for a period of time—
in this case, with the LED turned on, delay(1000) causes it to remain lit for
1,000 milliseconds, or 1 second.

Next, we turn off the voltage to the LED with digitalWrite(13, LOW);.
The current flowing through the LED stops, and the light turns off. Finally,
we pause again for 1 second while the LED is off, with delay(1000);.

The completed sketch should look like this:

/*

Arduino Blink LED Sketch

by Mary Smith, created 07/01/21

*/

void setup()

{

 pinMode(13, OUTPUT); // set digital pin 13 to output

}

void loop()

{

 digitalWrite(13, HIGH); // turn on digital pin 13

 delay(1000); // pause for one second

 digitalWrite(13, LOW); // turn off digital pin 13

 delay(1000); // pause for one second

}

Before you do anything further, save your sketch!

Verifying Your Sketch
When you verify your sketch, you ensure that it has been written correctly
in a way that the Arduino can understand. To verify your complete sketch,
click Verify in the IDE and wait a moment. Once the sketch has been
verified, a note should appear in the output window, as shown in Figure 2-
13.

Figure 2-13: The sketch has been verified.

This “Done compiling” message tells you that the sketch is okay to upload
to your Arduino. It also shows how much memory it will use (924 bytes in
this case) of the total available on the Arduino (32,256 bytes).

But what if your sketch isn’t okay? Say, for example, you forgot to add a
semicolon at the end of the second delay(1000) function. If something is
broken in your sketch, then when you click Verify, the message window
should display a verification error message similar to the one shown in
Figure 2-14.

Figure 2-14: The message window with a verification error

The IDE displays the error itself (the missing semicolon, described by
error: expected ';' before'}' token). It should also highlight the
location of the error, or a spot just after it. This helps you easily locate and
rectify the mistake.

Uploading and Running Your Sketch
Once you’re satisfied that your sketch has been entered correctly, save it.
Then make sure that your Arduino board is connected to your computer and
click Upload in the IDE. The IDE verifies your sketch again and then
uploads it to your Arduino board. During this process, the TX/RX LEDs on
your board (shown in Figure 2-6) should blink, indicating that information
is traveling between the Arduino and your computer.

Now for the moment of truth: your Arduino should start running the sketch.
If you’ve done everything correctly, the LED should blink on and off once
every second!

Congratulations. You now know the basics of how to enter, verify, and
upload an Arduino sketch.

Modifying Your Sketch
After running your sketch, you may want to change how it operates by, for
example, adjusting the on or off delay time for the LED. Because the IDE is
a lot like a word processor, you can open your saved sketch, adjust the
values, and then save your sketch again and upload it to the Arduino. For
example, to increase the rate of blinking, change both delay functions to
make the LEDs blink for one-quarter of a second by adjusting the delay to
250, like this:

delay(250); // pause for one-quarter of one second

Then upload the sketch again. The LED should now blink faster, for one-
quarter of a second each time.

Looking Ahead
Armed with your newfound knowledge of how to enter, edit, save, and
upload Arduino sketches, you’re ready for the next chapter, where you’ll
learn how to use more functions, implement good project design, construct
basic electronic circuits, and do much more.

3

FIRST STEPS

In this chapter you will
Learn the concepts of good project design

Learn the basic properties of electricity

Be introduced to the resistor, light-emitting diode (LED), transistor, rectifier
diode, and relay

Use a solderless breadboard to construct circuits

Learn how integer variables, for loops, and digital outputs can be used to
create various LED effects

Now you’ll begin to bring your Arduino to life. As you will see, there is
more to working with Arduino than just the board itself. You’ll learn how to
plan projects in order to make your ideas a reality, then move on to a quick
primer on electricity. Electricity is the driving force behind everything we
do in this book, and it’s important to have a solid understanding of the
basics in order to create your own projects. You’ll also take a look at the
components that bring real projects to life. Finally, you’ll examine some
new functions that are the building blocks for your Arduino sketches.

Planning Your Projects
When starting your first few projects, you might be tempted to write your
sketch immediately after you’ve come up with a new idea. But before you
start writing, a few basic preparatory steps are in order. After all, your
Arduino board isn’t a mind reader; it needs precise instructions, and even if

these instructions can be executed by the Arduino, if you overlook so much
as a minor detail, the results may not be what you expected.

Whether you are creating a project that simply blinks a light or one that
controls an automated model railway signal, you’ll be more successful if
you have a detailed plan. When designing your Arduino projects, follow
these basic steps:

. Define your objective. Determine what you want to achieve.

. Write your algorithm. An algorithm is a set of instructions that describes
how to accomplish your goal. Your algorithm will list the steps necessary
for you to achieve your project’s objective.

. Select your hardware. Determine how your hardware will connect to the
Arduino.

. Write your sketch. Create your initial program that tells the Arduino what
to do.

. Wire it up. Connect your hardware to the Arduino board.

. Test and debug. Does it work? During this stage, you identify errors and
find their causes, whether in the sketch, hardware, or algorithm.

The more time you spend planning your project, the easier a time you’ll
have during the testing and debugging stage.

NOTE

Even well-planned projects sometimes fall prey to feature creep.
Feature creep occurs when people think up new functionality that
they want to add to a project and then try to force new elements into
an existing design. When you need to change a design, don’t try to
“slot in” changes or modify it with 11th-hour additions. Instead,
start fresh by redefining your objective.

About Electricity

Let’s spend a bit of time discussing electricity, since you’ll soon be building
electronic circuits with your Arduino projects. In simple terms, electricity is
a form of energy that we can harness and convert into heat, light,
movement, and power. Electricity has three main properties that will be
important to us as we build projects: current, voltage, and power.

Current
The flow of electrical energy is called the current. Electrical current flows
through a circuit (a path for the current) from the positive side of a power
source, such as a battery, to the negative side of the power source. This is
known as direct current (DC). (For the purposes of this book, we will not
deal with alternating current, or AC.) In some circuits, the negative side is
called ground (GND). Current is measured in amperes or “amps” (A); 1
amp is 6.2415 × 1018 electrons flowing past a single point in 1 second.
Smaller amounts of current are measured in milliamps (mA), where 1,000
milliamps equal 1 amp.

Voltage
Voltage is a measure of the difference in potential energy between a circuit’s
positive and negative ends. This is measured in volts (V). If you think of
electrons flowing the way water flows, then voltage would be equivalent to
pressure: the greater the voltage, the faster the current moves through a
circuit.

Power
Power is a measurement of the rate at which an electrical device converts
energy from one form to another. Power is measured in watts (W). For
example, a 100 W light bulb is much brighter than a 60 W bulb because the
higher-wattage bulb converts more electrical energy into light.

A simple mathematical relationship exists among voltage, current, and
power:

Power (W) = Voltage (V) × Current (A)

Electronic Components
Now that you know a little bit about the basics of electricity, let’s look at
how it interacts with various electronic components and devices. Electronic
components are the various parts that control electric current in a circuit.
Just as the various parts of a car’s engine work together to store fuel, filter
fuel, pump fuel, and inject fuel to allow us to drive, electronic components
work together to control and harness the flow of electricity to help us create
useful devices.

Throughout this book, I’ll explain specialized components as we use them.
The following sections describe some of the fundamental components.

The Resistor
Various components, such as the Arduino’s LED, require only a small
amount of current to function—usually around 10 mA. When the LED
receives more current than it needs, it converts the excess to heat—and too
much heat can kill an LED. To reduce the flow of current to components
such as LEDs, we can add a resistor between the voltage source and the
component. Current flows freely along normal copper wire, but when it
encounters a resistor, its movement is slowed. Some current is converted
into a small amount of heat, which is proportional to the value of the
resistor. Figure 3-1 shows some commonly used resistors.

Figure 3-1: Typical resistors

Resistance
The level of resistance can be either fixed or variable. Resistance is
measured in ohms (Ω) and can range from zero to thousands of ohms
(kilohms, or kΩ) to millions of ohms (megohms, or MΩ).

Reading Resistance Values
Although you can test resistance with a multimeter, you can also read
resistance directly from a physical resistor. The resistors we will use will be
physically very small, so their resistance value usually cannot be printed on
them. One common way to show a component’s resistance is with a series
of color-coded bands, read from left to right, as follows:

First band Represents the first digit of the resistance

Second band Represents the second digit of the resistance

Third band Represents the multiplier (for four-band resistors) or the third
digit (for five-band resistors)

Fourth band Represents the multiplier (for five-band resistors) or the
tolerance, or accuracy of the component’s resistance (for four-band
resistors)

Fifth band Shows the tolerance for five-band resistors

Table 3-1 lists the colors of resistors and their corresponding values.

Because it is difficult to manufacture resistors with exact values, you select
a margin of error as a percentage when buying a resistor. For five-band
resistors, a brown band in the fifth position indicates tolerance of 1 percent,
gold indicates 5 percent, and silver indicates 10 percent.

Figure 3-2 shows a resistor diagram. The yellow, violet, and orange
resistance bands are read as 4, 7, and 3, respectively, as listed in Table 3-1.
The third band represents the multiplier; in this example, the 47 is
multiplied by 10 to the power of 3 to arrive at the value of 47,000 Ω, more
commonly read as 47 kΩ. The brown band indicates a very precise resistor,
which should be accurate to within 1 percent.

Figure 3-2: Example resistor diagram

Table 3-1: Values of Bands Printed on a Resistor, in Ohms

Color Ohms
Black 0
Brown 1
Red 2
Orange 3
Yellow 4
Green 5
Blue 6
Violet 7
Gray 8
White 9

Chip Resistors
Surface-mount chip resistors display a printed number and letter code, as
shown in Figure 3-3, instead of colored stripes. The first two digits
represent a single number, and the third digit represents the number of zeros
to follow that number. For example, the resistor in Figure 3-3 has a value of
10,000 Ω, or 10 kΩ.

Figure 3-3: A surface-mount resistor

NOTE

If you see a number and letter code on a small chip resistor (such as
01C), google EIA-96 code calculator for lookup tables for that more
involved code system.

MULTIMETERS

A multimeter is an incredibly useful and relatively inexpensive piece of test equipment
that can measure voltage, resistance, current, and more. Figure 3-4 shows a
multimeter measuring a resistor.

Figure 3-4: A multimeter measuring a 560 Ω, 1 percent tolerance resistor

If you have difficulty distinguishing the different codes on a color-coded resistor, a
multimeter is essential. As with other good tools, purchase your multimeter from a
reputable retailer instead of fishing about on the internet for the cheapest one you can
find.

Power Rating
The resistor’s power rating is a measurement of the power, in watts, that it
will tolerate before overheating or failing. The resistors shown in Figure 3-
1 are 1/4W resistors, which are the most commonly used resistors with the
Arduino system. For the purposes of the projects in this book, you only
need 1/4W resistors.

When you’re selecting a resistor, consider the relationship between power,
current, and voltage. The greater the current and/or voltage in your design,
the greater the resistor’s power rating should be.

Usually, the greater a resistor’s power rating, the greater its physical size.
For example, the resistor shown in Figure 3-5 is a 5W resistor, whose body
measures 22 mm long by 10 mm wide.

Figure 3-5: A 5W resistor

The Light-Emitting Diode
The LED is a very common, infinitely useful component that converts
electrical current into light. LEDs come in various shapes, sizes, and colors.
Figure 3-6 shows a common LED.

Figure 3-6: A red LED, 5 mm in diameter

Connecting LEDs in a circuit takes some care, because they are polarized;
this means that current can enter and leave the LED in one direction only.

The current enters via the anode (positive) side and leaves via the cathode
(negative) side, as shown in Figure 3-7. Any attempt to make too much
current flow through an LED in the opposite direction will break the
component.

Thankfully, LEDs are designed so that you can tell which end is which. The
leg on the anode side is longer (you can think of the “plus” side as having
length “added” to it), and the rim at the base of the LED is flat on the
cathode side, as shown in Figure 3-8.

Figure 3-7: Current flow through an LED

Figure 3-8: LED design indicates the anode (longer leg) and cathode (flat rim) sides.

When adding LEDs to a project, you need to consider the operating voltage
and current. For example, common red LEDs require around 1.7 V and 5 to
20 mA of current. This presents a slight problem for us, because the
Arduino outputs a set 5 V and a much higher current. Luckily, we can use a
current-limiting resistor to reduce the current flow into an LED. But which
value resistor do we use? That’s where Ohm’s law comes in.

To calculate the required current-limiting resistor for an LED, use this
formula:

R = (Vs − Vf) ÷ I

where Vs is the supply voltage (Arduino outputs 5 V), Vf is the LED
forward voltage drop (say, 1.7 V), and I is the current required for the LED
(10 mA). (The value of I must be in amps, so 10 mA converts to 0.01 A.)

Now let’s apply this formula to our LEDs, using values of 5 V for Vs, 1.7 V
for Vf, and 0.01 A for I. Substituting these values into the formula gives a
value for R of 330 Ω. However, the LEDs will happily light up when fed
current less than 10 mA. It’s good practice to use lower currents when
possible to protect sensitive electronics, so we’ll use 560 Ω, 1/4W resistors
with our LEDs, which allow around 6 mA of current to flow.

NOTE

When in doubt, always choose a slightly higher value resistor,
because it’s better to have a dim LED than a dead one!

THE OHM’S LAW TRIANGLE

Ohm’s law states that the relationship between current, resistance, and voltage is as
follows:
Voltage (V) = Current (I) × Resistance (R)

If you know two of the quantities, you can calculate the third. A popular way to
remember Ohm’s law is with a triangle, as shown in Figure 3-9.

Figure 3-9: The Ohm’s law triangle

The Ohm’s law triangle diagram is a convenient tool for calculating voltage, current, or
resistance when two of the three values are known. For example, if you need to
calculate resistance, put your finger over R, leaving voltage divided by current. To
calculate voltage, cover V, leaving current times resistance.

The Solderless Breadboard
Our ever-changing circuits will need a base—something to hold them
together and build upon. A great tool for this purpose is a solderless
breadboard. The breadboard is a plastic base with rows of electrically
connected sockets (just don’t cut bread on them). They come in many sizes,
shapes, and colors, as shown in Figure 3-10.

Figure 3-10: Breadboards in various shapes and sizes

The key to using a breadboard is knowing how the sockets are connected—
whether in short columns or in long rows along the edge or in the center.
The connections vary by board. For example, in the breadboard shown at
the top of Figure 3-11, columns of five holes are connected vertically but
isolated horizontally. If you place two wires in one vertical row, then they
will be electrically connected. By the same token, the long rows in the
center between the horizontal lines are connected horizontally. You’ll often
need to connect a circuit to the supply voltage and ground, and these long
horizontal lines of holes are ideal for that purpose.

When you’re building more complex circuits, a breadboard will get
crowded, and you won’t always be able to place components exactly where
you want. It’s easy to solve this problem using short connecting wires,

however. Retailers that sell breadboards usually also sell small boxes of
wires of various lengths, such as the assortment shown in Figure 3-12.

Figure 3-11: Breadboard internal connections

Figure 3-12: Assorted breadboard wires

Project #1: Creating a Blinking LED Wave
Let’s put some LEDs and resistors to work. In this project, we’ll use five
LEDs to emulate the front of the famous vehicle KITT from the television
show Knight Rider, creating a kind of wavelike light pattern.

The Algorithm

Here’s our algorithm for this project:

. Turn on LED 1.

. Wait half a second.

. Turn off LED 1.

. Turn on LED 2.

. Wait half a second.

. Turn off LED 2.

. Continue until LED 5 is turned on, at which point the process reverses from
LEDs 5 to 1.

. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

Five LEDs

Five 560 Ω resistors

One breadboard

Various connecting wires

Arduino and USB cable

We will connect the LEDs to digital pins 2 through 6 via the 560 Ω current-
limiting resistors.

The Schematic
Now let’s build the circuit. Circuit layout can be described in several ways.
For the first few projects in this book, we’ll use physical layout diagrams
similar to the one shown in Figure 3-13.

By comparing the wiring diagram to the functions in the sketch, you can
begin to make sense of the circuit. For example, when we use
digitalWrite(2, HIGH), a high voltage of 5 V flows from digital pin 2,
through the current-limiting resistor, through the LED via the anode and

then the cathode, and finally back to the Arduino’s GND socket to complete
the circuit. Then, when we use digitalWrite(2, LOW), the current stops
and the LED turns off.

Figure 3-13: Circuit layout for Project 1

The Sketch
Now for our sketch. Enter this code into the IDE:

// Project 1 - Creating a Blinking LED Wave

1 void setup()

{

 pinMode(2, OUTPUT);	 // LED 1 control pin is set up as an
output

 pinMode(3, OUTPUT);	 // same for LED 2 to LED 5

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

}

2 void loop()

{

 digitalWrite(2, HIGH); // Turn LED 1 on

 delay(500); // wait half a second

 digitalWrite(2, LOW); // Turn LED 1 off

 digitalWrite(3, HIGH); // and repeat for LED 2 to 5

 delay(500);

 digitalWrite(3, LOW);

 digitalWrite(4, HIGH);

 delay(500);

 digitalWrite(4, LOW);

 digitalWrite(5, HIGH);

 delay(500);

 digitalWrite(5, LOW);

 digitalWrite(6, HIGH);

 delay(500);

 digitalWrite(6, LOW);

 digitalWrite(5, HIGH);

 delay(500);

 digitalWrite(5, LOW);

 digitalWrite(4, HIGH);

 delay(500);

 digitalWrite(4, LOW);

 digitalWrite(3, HIGH);

 delay(500);

 digitalWrite(3, LOW);

// The loop() will now loop around and start from the top
again

}

In void setup() at 1, the digital I/O pins are set to outputs, because we
want them to send current to the LEDs on demand. We specify when to turn
on each LED using the digitalWrite() function in the void loop()
section of the sketch at 2.

Running the Sketch
Now connect your Arduino and upload the sketch. After a second or two,
the LEDs should blink from left to right and then back again. Success is a
wonderful thing—embrace it!

If nothing happens, however, then immediately remove the USB cable from
the Arduino and check that you typed the sketch correctly. If you find an
error, fix it and upload your sketch again. If your sketch matches exactly
and the LEDs still don’t blink, check your wiring on the breadboard.

You now know how to make an LED blink with your Arduino, but this
sketch is somewhat inefficient. For example, if you wanted to modify it to
make the LEDs cycle more quickly, you would need to alter each
delay(500). There is a better way.

Using Variables
In computer programs, we can use variables to store data. The problem
with the sketch for Project 1 as written is that because it doesn’t use
variables, it’s not very flexible. For example, we use the function
delay(500) to keep the LEDs turned on. If we want to make a change to
the delay time, then we have to change each entry manually. To address this
problem, we’ll create a variable to represent the value for the delay()
function.

Enter the following line in the Project 1 sketch, above the void setup()
function and just after the initial comment:

int d = 250;

This assigns the number 250 to a variable called d. The int indicates that
the variable contains an integer—a whole number between −32,768 and
32,767. Simply put, any integer value has no fraction or decimal places.

Next, change every 500 in the sketch to a d. Now when the sketch runs, the
Arduino will use the value in d for the delay() functions. When you upload
your sketch after making these changes, the LEDs will turn on and off at a
much faster rate, as the delay value is much smaller.

Now, if you want to change the delay, simply change the variable
declaration at the start of the sketch. For example, entering 100 for the delay
would speed things up even more:

int d = 100;

Experiment with the sketch, perhaps altering the delays and the sequence of
HIGH and LOW. Have some fun with it. Don’t disassemble the circuit yet,
though; we’ll continue to use it with more projects in this chapter.

Project #2: Repeating with for Loops
When designing a sketch, you’ll often repeat the same function. You could
simply copy and paste the function to duplicate it in a sketch, but that’s
inefficient and a waste of your Arduino’s program memory. Instead, you
can use for loops. The benefit of using a for loop is that you can determine
how many times the code inside the loop will repeat.

To see how a for loop works, enter the following code as a new sketch:

// Project 2 - Repeating with for Loops

int d = 100;

void setup()

{

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

}

void loop()

{

 for (int a = 2; a < 7 ; a++)

 {

 digitalWrite(a, HIGH);

 delay(d);

 digitalWrite(a, LOW);

 delay(d);

 }

}

The for loop will repeat the code within the curly brackets as long as some
condition is true. Here we have used a new integer variable, a, which starts
with the value 2. Every time the code is executed, the a++ will add 1 to the
value of a. The loop will continue in this fashion while the value of a is less
than 7 (the condition). Once it is equal to or greater than 7, the Arduino
moves on and continues with whatever code comes after the for loop.

The number of loops that a for loop executes can also be set by counting
down from a higher number to a lower number. To demonstrate this, add the
following loop to the Project 2 sketch after the first for loop:

1 for (int a = 5 ; a > 1 ; a--)

{

 digitalWrite(a, HIGH);

 delay(d);

 digitalWrite(a, LOW);

 delay(d);

}

Here, the for loop at 1 sets the value of a equal to 5 and then subtracts 1
after every loop due to the a--. The loop continues in this manner while the
value of a is greater than 1 (a > 1) and finishes once the value of a falls to
1 or less than 1.

We have now re-created Project 1 using less code. Upload the sketch and
see for yourself!

Varying LED Brightness with Pulse-Width
Modulation
Rather than just turning LEDs on and off rapidly using digitalWrite(), we
can define the level of brightness of an LED by adjusting the amount of
time between each LED’s on and off states using pulse-width modulation
(PWM). PWM can be used to create the illusion that an LED is shining at
different levels of brightness by turning the LED on and off rapidly, at
around 500 cycles per second. The brightness we perceive is determined by
the amount of time the digital output pin is on versus the amount of time it
is off—that is, how long the LED is lit or unlit. Because our eyes can’t see

flickers faster than 50 cycles per second, the LED appears to have a
constant brightness.

The greater the duty cycle (the longer the pin is on compared to off in each
cycle), the greater the perceived brightness of the LED connected to the
digital output pin.

Figure 3-14 shows various PWM duty cycles. The filled-in gray areas
represent the amount of time that the light is on. As you can see, the amount
of time per cycle that the light is on increases with the duty cycle.

Figure 3-14: Various PWM duty cycles

Only digital pins 3, 5, 6, 9, 10, and 11 on a regular Arduino board can be
used for PWM. They are marked on the Arduino board with a tilde (~), as
shown in Figure 3-15.

Figure 3-15: The PWM pins are marked with a tilde (~).

To create a PWM signal, we use the function analogWrite(x, y), where x
is the digital pin and y is a value for the duty cycle. y can be any value
between 0 and 255, where 0 indicates a 0 percent duty cycle and 255
indicates a 100 percent duty cycle.

Project #3: Demonstrating PWM
Now let’s try this with our circuit from Project 2. Enter the following sketch
into the IDE and upload it to the Arduino:

// Project 3 - Demonstrating PWM

int d = 5;

void setup()

{

 pinMode(3, OUTPUT); // LED control pin is 3, a PWM-capable
pin

}

void loop()

{

 for (int a = 0 ; a < 256 ; a++)

 {

 analogWrite(3, a);

 delay(d);

 }

 for (int a = 255 ; a >= 0 ; a--)

 {

 analogWrite(3, a);

 delay(d);

 }

 delay(200);

}

The LED on digital pin 3 will exhibit a “breathing effect” as the duty cycle
increases and decreases. In other words, the LED will turn on, increasing in
brightness until fully lit, and then reverse until it is dark. Experiment with
the sketch and circuit. For example, make all five LEDs breathe at once, or
have them do so sequentially.

More Electric Components
You’ll usually find it easy to plan on having a digital output do something
without taking into account how much current the control really needs to
get the job done. As you create your project, remember that each digital
output pin on the Arduino Uno can offer a maximum of 40 mA of current
per pin and 200 mA total for all pins. However, the three electronic
hardware components discussed next can help you increase the current-
handling ability of the Arduino.

WARNING

If you attempt to exceed 40 mA on a single pin, or 200 mA total,
then you risk permanently damaging the microcontroller integrated
circuit (IC).

The Transistor
Almost everyone has heard of a transistor, but most people don’t really
understand how it works. In the spirit of brevity, I will keep the explanation
as simple as possible. A transistor can turn on or off the flow of a much
larger current than the Arduino Uno can handle. We can, however, safely
control a transistor using an Arduino digital output pin. A popular transistor
is the BC548, shown in Figure 3-16.

Figure 3-16: A typical transistor: the BC548

Similar to the LED, the transistor’s pins have a unique function and need to
be connected in the proper orientation. With the flat front of the transistor
facing you (as shown on the left of Figure 3-16), the pins on the BC548 are
called, from left to right, the collector (C), base (B), and emitter (E). (Note
that this pin order, or pinout, is for the BC548 transistor; other transistors
may be oriented differently.) When a small current is applied to the base,
such as from an Arduino digital I/O pin, the larger current we want to
switch enters through the collector. It’s combined with the small current
from the base before flowing out via the emitter. When the small control
current at the base is turned off, no current can flow through the transistor.

The BC548 can switch up to 100 mA of current at a maximum of 30 V—
much more than the Arduino’s digital output. In projects later in the book,
you’ll read about transistors in more detail.

NOTE

Always pay attention to the pin order for your particular transistor,
because each transistor can have its own orientation.

The Rectifier Diode

The diode is a very simple yet useful component that allows current to flow
in one direction only. It looks a lot like a resistor, as you can see in Figure
3-17.

Figure 3-17: A 1N4004-type rectifier diode

The projects in this book will use the 1N4004-type rectifier diode. Current
flows into the diode via the anode and out through the cathode, which is
marked with the ring around the diode’s body. These diodes can protect
parts of the circuit against reverse current flow, but there is a price to pay:
diodes also cause a drop in the voltage of around 0.7 V. The 1N4004 diode
is rated to handle 1 A and 400 V, much higher than we will be using. It’s a
tough, common, and low-cost diode.

The Relay
Relays are used for the same reason as transistors—to control a large
current and voltage. A relay has the advantage of being electrically isolated
from the control circuit, allowing the Arduino to switch very large currents
and voltages without actually coming into contact with those voltages,
which could damage it. Inside the relay is an interesting pair of items:
mechanical switch contacts and a low-voltage coil of wire, as shown in
Figure 3-18.

Figure 3-18: Inside a typical relay

When a current is applied to the relay, the coil becomes an electromagnet
and attracts a bar of metal that acts just like the toggle of a switch. The
magnet pulls the bar in one direction when on and lets it fall back when off,
thereby turning it on or off as current is applied to and removed from the
coil. This movement has a distinctive “click” that you might recognize from
the turn signal in older cars.

Higher-Voltage Circuits
Now that you understand a bit about the transistor, rectifier diode, and relay,
let’s use them together to control higher currents and voltages. For example,

you may wish to turn a large motor on or off. Connecting the components is
simple, as shown in Figure 3-19.

Figure 3-19: A relay control circuit

This simple example circuit controls a relay that has a 12 V coil. One use
for this circuit might be to control a lamp or cooling fan connected to the
relay switching contacts. The Arduino’s digital pin 10 is connected to the
transistor’s base via a 1 kΩ resistor. The transistor controls the current

through the relay’s coil by switching it on and off. Remember that the pins
are C, B, and then E when looking at the flat surface of the transistor. The
object on the left of the breadboard at 1 represents a 12 V power supply for
the relay coil. The negative or ground at 2 from the 12 V supply, the
transistor’s emitter pin, and Arduino GND are all connected together.
Finally, a 1N4004 rectifier diode is connected across the relay’s coil at 3,
with the cathode on the positive supply side. You can check the relay’s data
sheet to determine the pins for the contacts and to connect the controlled
item appropriately.

The diode is in place to protect the circuit. When the relay coil changes
from on to off, stray current remains briefly in the coil and becomes a high-
voltage spike that has to go somewhere. The diode allows the stray current
to loop around through the coil until it is dissipated as a tiny amount of
heat. It prevents the turn-off spike from damaging the transistor or Arduino
pin.

WARNING

If you want to control wall power electricity (110–250 V) at a high
current with a relay, contact a licensed electrician to complete this
work for you. Even the slightest mistake can be fatal.

Looking Ahead
And now Chapter 3 draws to a close. I hope you had fun trying out the
examples and experimenting with LED effects. In this chapter, you got to
create blinking LEDs on the Arduino in various ways, did a bit of hacking,
and learned how functions and loops can be used to efficiently control
components connected to the Arduino. Studying this chapter has set you up
for more success in the forthcoming chapters.

Chapter 4 will be a lot of fun. You will create some more advanced projects,
including traffic lights, a thermometer, a battery tester, and more—so when
you’re ready to take it to the next level, turn the page!

4

BUILDING BLOCKS

In this chapter you will
Learn how to read schematic diagrams, the language of electronic circuits

Be introduced to the capacitor

Work with input pins

Use arithmetic and test values

Make decisions with if statements

Learn the difference between analog and digital

Measure analog voltage sources at different levels of precision

Be introduced to variable resistors, piezoelectric buzzers, and temperature
sensors

Consolidate your knowledge by creating traffic lights, a battery tester, and a
thermometer

The information in this chapter will help you understand an Arduino’s
potential. We’ll continue to learn about electronics, including how to read
schematic diagrams (the “road maps” of electronic circuits). We’ll also
explore some new components and the types of signals that we can measure.
Then we’ll discuss additional Arduino functions, such as storing values,
performing mathematical operations, and making decisions. Finally, we’ll
examine a few more components and put them to use in some useful
projects.

Using Schematic Diagrams
Chapter 3 described how to build a circuit using physical layout diagrams to
represent the breadboard and components mounted on it. Although such
physical layout diagrams may seem like the easiest way to diagram a circuit,
you’ll find that as more components are added, diagrams that are direct
representations can become a real mess. Because our circuits are about to get
more complicated, we’ll start using schematic diagrams (also known as
circuit diagrams) to illustrate them, such as the one shown in Figure 4-1.

Figure 4-1: Example of a schematic diagram

Schematics are simply circuit road maps that show the path of the electrical
current flowing through various components. Instead of showing components
and wires, a schematic uses symbols and lines.

Identifying Components
Once you know what the symbols mean, reading a schematic is easy. To
begin, let’s examine the symbols for the components we’ve already used.

The Arduino
Figure 4-2 shows a symbol for the Arduino itself. As you can see, all of the
Arduino’s connections are displayed and neatly labeled.

Figure 4-2: Arduino Uno symbol

The Resistor
The resistor symbol is shown in Figure 4-3.

Figure 4-3: Resistor symbol

It’s good practice to display the resistor value and part designator along with
the resistor symbol (220 Ω and R1 in this case). This makes life a lot easier
for everyone trying to make sense of the schematic (including you). Often
you may see ohms written as R instead—for example, 220 R.

The Rectifier Diode
The rectifier diode symbol is shown in Figure 4-4.

Figure 4-4: Rectifier diode symbol

Recall from Chapter 3 that rectifier diodes are polarized and current flows
from the anode to the cathode. In the symbol shown in Figure 4-4, the anode
is on the left and the cathode is on the right. An easy way to remember this is
to think of current flowing toward the point of the triangle only. Current
cannot flow the other way because the vertical bar “stops” it.

The LED
The LED symbol is shown in Figure 4-5.

Figure 4-5: LED symbol

All members of the diode family share a common symbol: the triangle and
vertical line. However, LED symbols show two parallel arrows pointing
away from the triangle to indicate that light is being emitted.

The Transistor
The transistor symbol is shown in Figure 4-6. We’ll use this to represent our
BC548.

Figure 4-6: Transistor symbol

The vertical line at the top of the symbol (labeled C) represents the collector,
the horizontal line at the left represents the base (labeled B), and the bottom
line represents the emitter (labeled E). The arrow inside the symbol, pointing
down and to the right, tells us that this is an NPN-type transistor, because
NPN transistors allow current to flow from the collector to the emitter. (PNP-
type transistors allow current to flow from the emitter to the collector.)

When numbering transistors we use the letter Q, just as we use R to number
resistors.

The Relay
The relay symbol is shown in Figure 4-7.

Figure 4-7: Relay symbol

Relay symbols can vary in many ways and may have more than one set of
contacts, but all relay symbols share certain elements in common. The first is

the coil, which is the curvy vertical line at the left. The second element is the
relay contacts. The COM (for common) contact is often used as an input, and
the contacts marked NO (normally open) and NC (normally closed) are often
used as outputs.

The relay symbol is always shown with the relay in the off state and the coil
not energized—that is, with the COM and NC pins connected. When the
relay coil is energized, the COM and NO pins will be connected in the
symbol.

Wires in Schematics
When wires cross or connect in schematics, they are drawn in particular
ways, as shown in the following examples.

Crossing but Not Connected Wires
When two wires cross but are not connected, the crossing can be represented
in one of two ways, as shown in Figure 4-8. There is no one right way; it’s a
matter of preference.

Figure 4-8: Non-connecting crossed wires

Connected Wires
When wires are meant to be physically connected, a junction dot is drawn at
the point of connection, as shown in Figure 4-9.

Figure 4-9: Two wires that are connected

Wire Connected to Ground
When a wire is connected back to ground (GND), the standard method is to
use the symbol shown in Figure 4-10.

Figure 4-10: The GND symbol

The GND symbol at the end of a line in a schematic in this book tells you
that the wire is physically connected to the Arduino GND pin.

Dissecting a Schematic
Now that you know the symbols for various components and their
connections, let’s dissect the schematic we would draw for Project 1, on page
33 in Chapter 3. Recall that you made five LEDs blink backward and
forward.

Compare the schematic shown in Figure 4-11 with Figure 3-13 on page 34,
and you’ll see that using a schematic is a much easier way to describe a
circuit.

Figure 4-11: Schematic for Project 1

From now on, we’ll use schematics to describe circuits, and I’ll show you the
symbols for new components as they’re introduced.

NOTE

If you’d like to create your own computer-drawn schematics, try the
Fritzing application, available at minimal cost from
http://www.fritzing.org/.

The Capacitor

http://www.fritzing.org/

A capacitor is a device that holds an electric charge. It consists of two
conductive plates sandwiching an insulating layer that allows an electric
charge to build up between the plates. When the current is stopped, the
charge remains and can flow out of the capacitor (called discharging the
capacitor) as soon as the charge voltage stored in the capacitor is presented
with a new path for the current to take.

Measuring the Capacity of a Capacitor
The amount of charge that a capacitor can store is measured in farads, and
one farad is actually a very large amount. Therefore, you will generally find
capacitors with values measured in picofarads or microfarads. One picofarad
(pF) is 0.000000000001 of a farad, and one microfarad (μF) is 0.000001 of a
farad. Capacitors are also manufactured to accept certain voltage maximums.
In this book we’ll be working with low voltages only, so we won’t be using
capacitors rated at greater than 10 V or so; it’s generally fine, however, to use
higher-voltage capacitors in lower-voltage circuits. Common voltage ratings
are 10, 16, 25, and 50 V.

Reading Capacitor Values
Reading the value of a ceramic capacitor takes some practice, because the
value is printed in a sort of code. The first two digits represent the value in
picofarads, and the third digit is the multiplier in tens. For example, the
capacitor shown in Figure 4-12 is labeled 104. This equates to 10 followed
by four zeros, or 100,000 pF (which is 100 nanofarads [nF] or 0.1 μF).

NOTE

The conversions between units of measure can be a little confusing,
but you can print an excellent conversion chart from
http://www.justradios.com/uFnFpF.html.

Types of Capacitors
Our projects will use two types of capacitors: ceramic and electrolytic.

Ceramic Capacitors

http://www.justradios.com/uFnFpF.html

Ceramic capacitors, such as the one shown in Figure 4-12, are very small
and therefore hold a small amount of charge. They are not polarized and can
be used for current flowing in either direction. The schematic symbol for a
non-polarized capacitor is shown in Figure 4-13.

Figure 4-12: A 0.1 µF ceramic capacitor

Figure 4-13: Non-polarized capacitor schematic symbol, with the capacitor’s value shown at
the upper right

Ceramic capacitors work beautifully in high-frequency circuits because they
can charge and discharge very quickly due to their small capacitance.

Electrolytic Capacitors
Electrolytic capacitors, like the one shown in Figure 4-14, are physically
larger than ceramic types, offer increased capacitance, and are polarized. A
marking on the cover shows either the positive (+) side or the negative (–)
side. In Figure 4-14, you can see the stripe and the small negative (–) symbol
that identifies the negative side. Like resistors, capacitors also have a level of
tolerance with their values. The capacitor in Figure 4-14 has a tolerance of
20 percent and a capacitance of 100 μF.

Figure 4-14: An electrolytic capacitor

The schematic symbol for electrolytic capacitors, shown in Figure 4-15,
includes the + symbol to indicate the capacitor’s polarity.

Figure 4-15: Polarized capacitor schematic symbol

Electrolytic capacitors are often used to store larger electric charges and to
smooth power supply voltages. Like a small temporary battery, they can
smooth out the power supply and provide stability near circuits or parts that
draw high currents quickly from the supply. This prevents unwanted
dropouts and noise in your circuits. Luckily, the values of the electrolytic
capacitor are printed clearly on the outside and don’t require decoding or
interpretation.

You already have some experience generating basic forms of output using
LEDs with your Arduino. Now it’s time to learn how to send input from the
outside world into your Arduino using digital inputs, and to make decisions
based on that input.

Digital Inputs

In Chapter 3, we used digital I/O pins as outputs to turn LEDs on and off. We
can use these same pins to accept input from users—as long as we limit our
information to two states, high and low.

The simplest form of digital input is a push button; several push buttons are
shown in Figure 4-16. You can insert one of these directly into your
solderless breadboard and wire it to an Arduino pin. When the button is
pressed, current flows through the switch and into the digital input pin,
which detects the presence of the voltage.

Figure 4-16: Basic push buttons on a breadboard

Notice that the button at the bottom of the figure is inserted into the
breadboard, bridging rows 23 and 25. When the button is pressed, it connects
the two rows. The schematic symbol for this push button is shown in Figure
4-17. The symbol represents the two sides of the button, which are numbered
with the prefix S. When the button is pressed, the line bridges the two halves
and allows voltage or current through.

Figure 4-17: Push button schematic symbol

MEASURING SWITCH BOUNCE WITH A DIGITAL STORAGE
OSCILLOSCOPE

Push buttons exhibit a phenomenon called switch bounce, or bouncing, which refers to a
button’s tendency to turn on and off several times after being pressed only once by the
user. This phenomenon occurs because the metal contacts inside a push button are so
small that they can vibrate after the button has been released, thereby switching on and
off again very quickly.
Switch bounce can be demonstrated with a digital storage oscilloscope (DSO), a device
that displays the change in a voltage over a period of time. For example, consider Figure
4-18, a DSO displaying a switch bounce.

Figure 4-18: Measuring switch bounce

The top half of the display in Figure 4-18 shows the results of pressing a button several
times. When the voltage line indicated by the arrow is at the higher horizontal position (5
V), the button is in the on state, and the voltage is connected through it. Underneath the
word Stop is a slice of time just after the button was switched off, as shown by two gray
vertical lines.
The button voltage during this interval is magnified in the bottom half of the screen. At
point A, the button is released by the user, and the line drops to 0 V. However, due to
physical vibration, the button returns almost immediately to the higher 5 V position until
point B, where it vibrates off and then on again until point C, where it settles in the low

(off) state. In effect, instead of relaying one button press to our Arduino, we have
unwittingly sent three.

Project #4: Demonstrating a Digital Input
Our goal in this project is to create a button that turns on an LED for half a
second when pressed.

The Algorithm
Here is our algorithm:

. Test whether the button has been pressed.

. If the button has been pressed, turn on the LED for half a second and then
turn it off.

. If the button has not been pressed, do nothing.

. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

One push button

One LED

One 560 Ω resistor

One 10 kΩ resistor

One 100 nF capacitor

Various connecting wires

One breadboard

Arduino and USB cable

The Schematic

First, we create the circuit on the breadboard with the schematic shown in
Figure 4-19. Notice that the 10 kΩ resistor is connected between GND and
digital pin 7. We call this a pull-down resistor, because it pulls the voltage at
the digital pin almost to zero. Furthermore, by adding a 100 nF capacitor
across the 10 kΩ resistor, we create a simple debounce circuit to help filter
out the switch bounce. When the button is pressed, the digital pin goes
immediately to high. But when the button is released, digital pin 7 is pulled
down to GND via the 10 kΩ resistor, and the 100 nF capacitor creates a small
delay. This effectively covers up the bouncing pulses by slowing the drop of
the voltage to GND, thereby eliminating most of the false readings due to
floating voltage and erratic button behavior.

Figure 4-19: Schematic for Project 4

Because this is the first time you’re building a circuit with a schematic,
follow these step-by-step instructions as you walk through the schematic;
this should help you understand how the components connect:

. Insert the push button into the breadboard, as shown in Figure 4-20.

Figure 4-20: The push button inserted into the breadboard

. Now insert the 10 kΩ resistor, a short link wire, and the capacitor, as shown
in Figure 4-21.

Figure 4-21: Adding the 10 kΩ resistor and the capacitor

. Connect one wire from the Arduino 5 V pin to the upper-right row for the
button on the breadboard. Connect another wire from the Arduino GND pin

to the same vertical row that connects to the left-hand sides of the wire link
and the resistor. This is shown in Figure 4-22.

Figure 4-22: Connecting the 5 V (red) and GND (black) wires

. Run a wire from Arduino digital pin 7 to the lower-right row for the button
on the breadboard, as shown in Figure 4-23.

Figure 4-23: Connecting the button to the digital input

. Insert the LED into the breadboard with the short leg (the cathode) connected
to the GND column and the long leg (the anode) in a row to the right. Next,
connect the 560 Ω resistor to the right of the LED, as shown in Figure 4-24.

Figure 4-24: Inserting the LED and 560 Ω resistor

. Connect a wire from the right side of the 560 Ω resistor to Arduino digital
pin 3, as shown in Figure 4-25.

Figure 4-25: Connecting the LED branch to the Arduino

Before continuing, review the schematic for this circuit and check that your
components are wired correctly. Compare the schematic against the actual
wiring of the circuit.

The Sketch
For the sketch, enter and upload Listing 4-1.

// Listing 4-1, Project 4 - Demonstrating a Digital Input

1 #define LED 3

#define BUTTON 7

void setup()

{

2 pinMode(LED, OUTPUT); // output for the LED

 pinMode(BUTTON, INPUT); // input for the button

}

void loop()

{

 if (digitalRead(BUTTON) == HIGH)

 {

 digitalWrite(LED, HIGH); // turn on the LED

 delay(500); // wait for 0.5 seconds

 digitalWrite(LED, LOW); // turn off the LED

 }

}

Listing 4-1: Digital input

After you’ve uploaded your sketch, tap the push button briefly. Your LED
should stay on for half a second.

Understanding the Sketch
Let’s examine the new items in the sketch for Project 4—specifically,
#define, digital input pins, and the if statement.

Creating Constants with #define
Before void setup(), we use #define statements at 1 to create fixed values:
when the sketch is compiled, the IDE replaces any instance of the defined
word with the number that follows it. For example, when the IDE sees LED in
the line at 2, it replaces it with the number 3. Notice that we do not use a
semicolon after a #define value.

We’re basically using the #define statements to label the digital pins for the
LED and button in the sketch. It’s a good idea to label pin numbers and other
fixed values (such as a time delay) in this way, because if the value is used
repeatedly in the sketch, then you won’t have to edit the same item more than
once. In this example, LED is used three times in the sketch, but to change
this value we’d have to edit its definition only once in its #define statement.

Reading Digital Input Pins
To read the status of a button, we first define a digital I/O pin as an input in
void setup() using the following:

pinMode(BUTTON, INPUT); // input for button

Next, to discover whether the button is connecting a voltage through to the
digital input (that is, it’s being pressed), we use digitalRead(pin), where
pin is the digital pin number to read. The function returns either HIGH
(voltage is close to 5 V at the pin) or LOW (voltage is close to 0 V at the pin).

Making Decisions with if
Using if, we can make decisions in our sketch and tell the Arduino to run
different code depending on the decision. For example, in the sketch for
Project 4, we used Listing 4-2.

// Listing 4-2

if (digitalRead(BUTTON) == HIGH)

{

 digitalWrite(LED, HIGH); // turn on the LED

 delay(500); // wait for 0.5 seconds

 digitalWrite(LED, LOW); // turn off the LED

}

Listing 4-2: A simple if-then example

The first line in this code snippet begins with if because it tests for a
condition. If the condition is true (that is, if the voltage is HIGH), then it
means that the button is pressed. The Arduino will then run the code that is
inside the curly brackets.

To determine whether the button is pressed (digitalRead(BUTTON) is set to
HIGH), we use a comparison operator, a double equal sign (==). If we were to
replace == with != (not equal to) in the sketch, then the LED would turn off
when the button is pressed instead. Try it and see.

NOTE

A common mistake is to use a single equal sign (=), which means
“make equal to,” in a test statement instead of a double equal sign
(==), which says “test whether it is equal to.” You may not get an
error message, but your if statement may not work!

Once you’ve had some success, try changing the length of time that the light
stays on, or go back to Project 3 on page 38 in Chapter 3 and add a push
button control. (Don’t disassemble this circuit, though; we’ll use it again in
the next example.)

Modifying Your Sketch: Making More Decisions with if-
else
You can add another action to an if statement by using else. For example, if
we rewrite Listing 4-1 by adding an else clause, as shown in Listing 4-3,
then the LED will turn on if the button is pressed, or else it will be off. Using
else forces the Arduino to run another section of code if the test in the if
statement is not true.

// Listing 4-3

#define LED 3

#define BUTTON 7

void setup()

{

 pinMode(LED, OUTPUT); // output for the LED

 pinMode(BUTTON, INPUT); // input for the button

}

void loop()

{

 if (digitalRead(BUTTON) == HIGH)

 {

 digitalWrite(LED, HIGH);

 }

 else

 {

 digitalWrite(LED, LOW);

 }

}

Listing 4-3: Adding else

Boolean Variables
Sometimes you need to record whether something is in either of only two
states, such as on or off, or hot or cold. A Boolean variable is the legendary

computer “bit” whose value can be only a zero (0, false) or one (1, true). As
with any other variable, we need to declare it in order to use it:

boolean raining = true; // create the variable "raining" and
first make it true

Within the sketch, you can change the state of a Boolean with a simple
reassignment, such as this:

raining = false;

Because Boolean variables can only take on the values of true or false, they
are well suited to making decisions using if. True/false Boolean
comparisons work well with the comparison operators != and ==. Here’s an
example:

if (raining == true)

{

 if (summer != true)

 {

 // it is raining and not summer

 }

}

Comparison Operators
We can use various operators to make decisions about two or more Boolean
variables or other states. These include the operators not (!), and (&&), and or
(||).

The not Operator
The not operator is denoted by an exclamation mark (!). This operator is
used as an abbreviation for checking whether something is not true. Here’s
an example:

if (!raining)

{

 // it is not raining (raining == false)

}

The and Operator
The logical and operator is denoted by &&. Using and helps reduce the
number of separate if tests. Here’s an example:

if ((raining == true) && (!summer))

{

 // it is raining and not summer (raining == true and summer
== false)

}

The or Operator
The logical or operator is denoted by ||. Using or is pretty intuitive. Here’s
an example:

if ((raining == true) || (summer == true))

{

 // it is either raining or summer

}

Making Two or More Comparisons
You can also make two or more comparisons using the same if statement.
Here’s an example:

if (snow == true && rain == true && !hot)

{

 // it is snowing and raining and not hot

}

And you can use parentheses to set the order of operation. In the next
example, the comparison in the parentheses is checked first and given a true
or false state, and then that condition is subjected to the remaining test in the
if statement:

if ((snow == true || rain == true) && hot == false))

{

// it is either snowing or raining, and not hot

}

Lastly, just like the examples of the not (!) operator before a value, simple
true/false tests can be performed without requiring == true or == false in
each test. The following code has the same effect as the preceding example:

if ((snow || rain) && !hot)

{

 // it is either snowing or raining, and not hot

 // (snow is true OR rain is true) AND it is not hot

}

As you can see, it’s possible to have the Arduino make a multitude of
decisions using Boolean variables and comparison operators. Once you move
on to more complex projects, this will become very useful.

Project #5: Controlling Traffic
Now let’s put our newfound knowledge to use by solving a hypothetical
problem. As the town planners for a rural county, we have a problem with a
single-lane bridge that crosses the river. Every week, one or two accidents
occur at night, when tired drivers rush across the bridge without first
stopping to see if the road is clear. We have suggested that traffic lights be
installed, but the mayor wants to see them demonstrated before signing off
on the purchase. We could rent temporary lights, but they’re expensive.
Instead, we’ve decided to build a model of the bridge with working traffic
lights using LEDs and an Arduino.

The Goal
Our goal is to install three-color traffic lights at each end of the single-lane
bridge. The lights allow traffic to flow in only one direction at a time. When
sensors located at either end of the bridge detect a car waiting at a red light,
the lights will change and allow the traffic to flow in the opposite direction.

The Algorithm
We’ll use two buttons to simulate the vehicle sensors at each end of the
bridge. Each set of lights will have red, yellow, and green LEDs. Initially, the
system will allow traffic to flow from west to east, so the west-facing lights
will be set to green and the east-facing lights will be set to red.

When a vehicle approaches the bridge (modeled by pressing the button) and
the light is red, the system will turn the light on the opposite side from green
to yellow to red, and then wait a set period of time to allow any vehicles
already on the bridge to finish crossing. Next, the yellow light on the waiting
vehicle’s side will blink as a “get ready” notice for the driver, and finally the
light will change to green. The light will remain green until a vehicle
approaches the other side, at which point the process repeats.

The Hardware
Here’s what you’ll need to create this project:

Two red LEDs (LED1 and LED2)

Two yellow LEDs (LED3 and LED4)

Two green LEDs (LED5 and LED6)

Six 560 Ω resistors (R1 to R6)

Two 10 kΩ resistors (R7 and R8)

Two 100 nF capacitors (C1 and C2)

Two push buttons (S1 and S2)

One medium-sized breadboard

Arduino and USB cable

Various connecting wires

The Schematic
Because we’re controlling only six LEDs and receiving input from two
buttons, the design will not be too difficult. Figure 4-26 shows the schematic
for our project.

Figure 4-26: Schematic for Project 5

This circuit is basically a more elaborate version of the button and LED
circuit in Project 4, with resistors, more LEDs, and another button.

Be sure that the LEDs are inserted in the correct direction: the resistors
connect to LED anodes, and the LED cathodes connect to the Arduino GND
pin, as shown in Figure 4-27.

Figure 4-27: The completed circuit

The Sketch
And now for the sketch. Can you see how it matches our algorithm?

// Project 5 - Controlling Traffic

// define the pins that the buttons and lights are connected
to:

1 #define westButton 3

#define eastButton 13

#define westRed 2

#define westYellow 1

#define westGreen 0

#define eastRed 12

#define eastYellow 11

#define eastGreen 10

#define yellowBlinkTime 500 // 0.5 seconds for yellow light
blink

2 boolean trafficWest = true; // west = true, east = false

3 int flowTime = 10000; // amount of time to let traffic

flow

4 int changeDelay = 2000; // amount of time between color

changes

void setup()

{

 // set up the digital I/O pins

 pinMode(westButton, INPUT);

 pinMode(eastButton, INPUT);

 pinMode(westRed, OUTPUT);

 pinMode(westYellow, OUTPUT);

 pinMode(westGreen, OUTPUT);

 pinMode(eastRed, OUTPUT);

 pinMode(eastYellow, OUTPUT);

 pinMode(eastGreen, OUTPUT);

 // set initial state for lights - west side is green first

 digitalWrite(westRed, LOW);

 digitalWrite(westYellow, LOW);

 digitalWrite(westGreen, HIGH);

 digitalWrite(eastRed, HIGH);

 digitalWrite(eastYellow, LOW);

 digitalWrite(eastGreen, LOW);

}

void loop()

{

 if (digitalRead(westButton) == HIGH) // request west>east
traffic flow

 {

 if (trafficWest != true)

 // only continue if traffic flowing in the opposite
(east) direction

 {

 trafficWest = true; // change traffic flow flag to
west>east

 delay(flowTime); // give time for traffic to flow

 digitalWrite(eastGreen, LOW); // change east-facing
lights from green

 // to yellow to red

 digitalWrite(eastYellow, HIGH);

 delay(changeDelay);

 digitalWrite(eastYellow, LOW);

 digitalWrite(eastRed, HIGH);

 delay(changeDelay);

 for (int a = 0; a < 5; a++) // blink yellow light

 {

 digitalWrite(westYellow, LOW);

 delay(yellowBlinkTime);

 digitalWrite(westYellow, HIGH);

 delay(yellowBlinkTime);

 }

 digitalWrite(westYellow, LOW);

 digitalWrite(westRed, LOW); // change west-facing
lights from red

 // to green

 digitalWrite(westGreen, HIGH);

 }

 }

 if (digitalRead(eastButton) == HIGH) // request east>west
traffic flow

 {

 if (trafficWest == true)

 // only continue if traffic flow is in the opposite (west)
direction

 {

 trafficWest = false; // change traffic flow flag to
east>west

 delay(flowTime); // give time for traffic to flow

 digitalWrite(westGreen, LOW);

 // change west-facing lights from green to yellow to red

 digitalWrite(westYellow, HIGH);

 delay(changeDelay);

 digitalWrite(westYellow, LOW);

 digitalWrite(westRed, HIGH);

 delay(changeDelay);

 for (int a = 0 ; a < 5 ; a++) // blink yellow light

 {

 digitalWrite(eastYellow, LOW);

 delay(yellowBlinkTime);

 digitalWrite(eastYellow, HIGH);

 delay(yellowBlinkTime);

 }

 digitalWrite(eastYellow, LOW);

 digitalWrite(eastRed, LOW); // change east-facing lights
from red

 // to green

 digitalWrite(eastGreen, HIGH);

 }

 }

}

Our sketch starts by using #define at 1 to associate digital pin numbers with
labels for all the LEDs used, as well as the two buttons. We have red, yellow,
and green LEDs and a button each for the west and east sides of the bridge.
The Boolean variable trafficWest at 2 is used to keep track of which way
the traffic is flowing—true is west to east, and false is east to west.

NOTE

Notice that trafficWest is a single Boolean variable with the traffic
direction set as either true or false. Having a single variable like
this instead of two (one for east and one for west) ensures that both
directions cannot accidentally be true at the same time, which helps
avoid a crash!

The integer variable flowTime at 3 is the minimum period of time that
vehicles have to cross the bridge. When a vehicle pulls up at a red light, the
system extends this period to give the opposing traffic time to cross the
bridge. The integer variable changeDelay at 4 is the elapsed time between
changes of color from green to yellow to red.

Before the sketch enters the void loop() section, it is set for traffic to flow
from west to east in void setup().

Running the Sketch
Once it’s running, the sketch does nothing until one of the buttons is pressed.
When the east button is pressed, the line:

if (trafficWest == true)

ensures that the lights change only if the traffic is heading in the opposite
direction. The rest of the void loop() section is composed of a simple
sequence of waiting and then of turning on and off various LEDs to simulate
the traffic lights’ operation.

Analog vs. Digital Signals
In this section you’ll learn the difference between digital and analog signals,
and you’ll learn how to measure analog signals with the analog input pins.

Until now, our sketches have been using digital electrical signals, with just
two discrete levels. Specifically, we used digitalWrite(pin, HIGH) and
digitalWrite(pin, LOW) to blink an LED and digitalRead() to measure
whether a digital pin had a voltage applied to it (HIGH) or not (LOW). Figure 4-
28 is a visual representation of a digital signal that alternates between high
and low.

Figure 4-28: A digital signal, with highs appearing as horizontal lines at the top and lows
appearing at the bottom

Unlike digital signals, analog signals can vary with an indefinite number of
steps between high and low. For example, Figure 4-29 shows the analog
signal of a sine wave. Notice that as time progresses, the voltage floats
fluidly between high and low levels.

Figure 4-29: An analog signal of a sine wave

Figure 4-30: Analog inputs on the Arduino Uno

With our Arduino, high is closer to 5 V and low is closer to 0 V, or GND. We
can measure the voltage values of an analog signal with our Arduino using
the six analog inputs shown in Figure 4-30. These analog inputs can safely
measure voltages from 0 (GND) to no more than 5 V.

If you use the function analogRead(), then the Arduino will return a number
between 0 and 1,023 in proportion to the voltage applied to the analog pin.
For example, you might use analogRead() to store the value of analog pin 0
in the integer variable a, as shown here:

a = analogRead(0); // read analog input pin 0 (A0)

// returns 0 to 1023, which is usually 0.000 to 4.995 volts

Project #6: Creating a Single-Cell Battery
Tester

Although the popularity and use of cell batteries has declined, most people
still have a few devices around the house, such as remote controls, clocks, or
children’s toys, that use AA, AAA, C, or D cell batteries. These batteries
carry much less than 5 V, so we can measure a cell’s voltage with our
Arduino to determine the state of the cell. In this project, we’ll create a
battery tester.

The Goal
Single-cell batteries such as AAs usually have a voltage of about 1.6 V when
new, which decreases with use and age. We will measure the voltage and
express the battery condition visually with LEDs. We’ll use the reading from
analogRead(), which we will convert to volts. The maximum voltage that
can be read is 5 V, so we divide 5 by 1,024 (the number of possible values),
which equals 0.0048. We multiply the value returned by analogRead() by
this number to get the reading in volts. For example, if analogRead() returns
512, then we multiply that reading by 0.0048, which equals 2.4576 V.

The Algorithm
Here’s the algorithm for our battery tester:

. Read from analog pin 0.

. Multiply the reading by 0.0048 to create a voltage value.

. If the voltage is greater than or equal to 1.6 V, briefly turn on a green LED.

. If the voltage is greater than 1.4 V and less than 1.6 V, briefly turn on a
yellow LED.

. If the voltage is less than 1.4 V, briefly turn on a red LED.

. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

Three 560 Ω resistors (R1 to R3)

One green LED (LED1)

One yellow LED (LED2)

One red LED (LED3)

One breadboard

Various connecting wires

Arduino and USB cable

The Schematic
The schematic for the single-cell battery tester circuit is shown in Figure 4-
31. On the left side, notice the two terminals, labeled + and –. Connect the
matching sides of the single-cell battery to be tested at those points. Positive
should connect to positive, and negative should connect to negative.

WARNING

Under no circumstances should you measure anything larger than 5
V, nor should you connect positive to negative, or vice versa. Doing
these things would damage your Arduino board.

Figure 4-31: Schematic for Project 6

The Sketch
Now for the sketch. Since analog values can drift between integers, we’re
going to use a new type of variable called a float, which can contain
fractional or decimal values:

// Project 6 - Creating a Single-Cell Battery Tester

#define newLED 2 // green LED

#define okLED 4 // yellow LED

#define oldLED 6 // red LED

int analogValue = 0;

1 float voltage = 0;

int ledDelay = 2000;

void setup()

{

 pinMode(newLED, OUTPUT);

 pinMode(okLED, OUTPUT);

 pinMode(oldLED, OUTPUT);

}

void loop()

{

2 analogValue = analogRead(0);

3 voltage = 0.0048*analogValue;

4 if (voltage >= 1.6)

 {

 digitalWrite(newLED, HIGH);

 delay(ledDelay);

 digitalWrite(newLED, LOW);

 }

5 else if ((voltage < 1.6) && (voltage) > 1.4)

 {

 digitalWrite(okLED, HIGH);

 delay(ledDelay);

 digitalWrite(okLED, LOW);

 }

6 else if (voltage <= 1.4)

 {

 digitalWrite(oldLED, HIGH);

 delay(ledDelay);

 digitalWrite(oldLED, LOW);

 }

}

In this sketch, the Arduino takes the value measured by analog pin 0 at 2 and
converts this to a voltage at 3. You’ll learn more about the new type of
variable, the float at 1, in the next section, which discusses doing arithmetic
with an Arduino and using comparison operators to compare numbers.

Doing Arithmetic with an Arduino
Like a pocket calculator, the Arduino can perform calculations such as
multiplication, division, addition, and subtraction. Here are some examples:

a = 100;

b = a + 20;

c = b - 200;

d = c + 80; // d will equal 0

Float Variables
When you need to deal with numbers with a decimal point, you can use the
variable type float. The values that can be stored in a float fall between
3.4028235 × 1038 and −3.4028235 × 1038 and are generally limited to six or
seven decimal places of precision. You can mix integers and float numbers
in your calculations. For example, you could add the float number f to the
integer a and store the sum as the float variable g:

int a = 100;

float f;

float g;

f = a / 3; // f = 33.333333

g = a + f; // g = 133.333333

Comparison Operators for Calculations
We used comparison operators such as == and != with if statements and
digital input signals in Project 5. In addition to these operators, we can use
the following to compare numbers or numerical variables:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

We used these operators to compare numbers in lines 4, 5, and 6 in the sketch
for Project 6.

Improving Analog Measurement Precision
with a Reference Voltage

As demonstrated in Project 6, the analogRead() function returns a value
proportional to a voltage between 0 and 5 V. The upper value (5 V) is the
reference voltage, the maximum voltage that the Arduino analog inputs will
accept and return the highest value for (1,023).

To increase precision while reading even lower voltages, we can use a lower
reference voltage. For example, when the reference voltage is 5 V,
analogRead() represents this with a value from 0 to 1,023. However, if we
needed to measure only a voltage with a maximum of 2 V, then we could
alter the Arduino output to represent 2 V using the 0 to 1,023 range to allow
for more precise measurement. You can do this with either an external or
internal reference voltage, as discussed next.

Using an External Reference Voltage
The first method of using a reference voltage is with the AREF (analog
reference) pin, as shown in Figure 4-32.

Figure 4-32: The Arduino Uno AREF pin

We can introduce a new reference voltage by connecting the voltage to the
AREF pin and the matching GND to the Arduino’s GND. Note that this can
lower the reference voltage but will not raise it, because the reference voltage
connected to an Arduino Uno must not exceed 5 V. A simple way to set a
lower reference voltage is by creating a voltage divider with two resistors, as
shown in Figure 4-33.

Figure 4-33: A voltage divider circuit

The values of R1 and R2 will determine the reference voltage according to
the formula in Figure 4-34.

Figure 4-34: Reference voltage formula

In the formula, Vout is the reference voltage, and Vin is the input voltage—in
this case, 5 V. R1 and R2 are the resistor values in ohms.

The simplest way to divide the voltage is to split Vin in half by setting R1 and
R2 to the same value—for example, 10 kΩ each. When you’re doing this, it’s
best to use the lowest-tolerance resistors you can find, such as 1 percent;
confirm their true resistance values with a multimeter and use those

confirmed values in the calculation. Furthermore, it’s a very good idea to
place a 100 nF capacitor between AREF and GND to avoid a noisy AREF
and prevent unstable analog readings.

When using an external reference voltage, insert the following line in the
void setup() section of your sketch:

analogReference(EXTERNAL); // select AREF pin for reference
voltage

Using the Internal Reference Voltage
The Arduino Uno also has an internal 1.1 V reference voltage. If this meets
your needs, no hardware changes are required. Just add this line to void
setup():

analogReference(INTERNAL); // select internal 1.1 V reference
voltage

The Variable Resistor
Variable resistors, also known as potentiometers, can generally be adjusted
from 0 Ω up to their rated value. Their schematic symbol is shown in Figure
4-35.

Figure 4-35: Variable resistor (potentiometer) symbol

Variable resistors have three pin connections: one in the center pin and one
on each side. As the shaft of a variable resistor turns, it increases the
resistance between one side and the center and decreases the resistance
between the opposite side and the center.

Variable resistors can be either linear or logarithmic. The resistance of linear
models changes at a constant rate as they turn, while the resistance of
logarithmic models changes slowly at first and then increases rapidly.
Logarithmic potentiometers are used more often in audio amplifier circuits,

because they model the human hearing response. You can generally identify
whether a potentiometer is logarithmic or linear via the marking on the rear.
Most will have either an A or a B next to the resistance value: A for
logarithmic, B for linear. Most Arduino projects use linear variable resistors,
such as the one shown in Figure 4-36.

Figure 4-36: A typical linear variable resistor

You can also get miniature versions of variable resistors, known as trimpots
or trimmers (see Figure 4-37). Because of their size, trimpots are useful for
making adjustments in circuits, but they’re also very useful for breadboard
work because they can be slotted in.

Figure 4-37: Various trimpots

NOTE

When shopping for trimpots, take note of the type. Often you will
want one that is easy to adjust with a screwdriver that you have on
hand. The enclosed types, pictured in Figure 4-37, last longer than
the cheaper, open contact types.

Piezoelectric Buzzers
A piezoelectric element (piezo for short), or buzzer, is a small, round device
that can be used to generate loud and annoying noises that are perfect for
alarms—or for having fun. Figure 4-38 shows a common example, the TDK
PS1240, next to an American quarter, to give you an idea of its size.

Figure 4-38: The TDK PS1240 piezo

Piezos contain a very thin plate inside the housing that moves when an
electrical current is applied. When a pulsed current is applied (such as on . . .
off . . . on . . . off), the plate vibrates and generates sound waves.

It’s simple to use piezos with the Arduino because they can be turned on and
off just like an LED. The piezo elements are not polarized and can be
connected in either direction.

Piezo Schematic
The schematic symbol for the piezo looks like a loudspeaker (Figure 4-39),
which makes it easy to recognize.

Figure 4-39: Piezo schematic symbol

NOTE

When shopping for a piezo for this project, be sure to get the piezo
element only type. Some buzzer types look like Figure 4-38 but
include a tone-generating circuit built into the case; we don’t want
those because we’re going to drive our tone directly from the
Arduino.

Project #7: Trying Out a Piezo Buzzer
If you have a piezo handy and want to try it out, first connect it between
Arduino GND and digital pins D3 to D0 inclusive. Then upload the
following demonstration sketch to your Arduino:

// Project 7 - Trying Out a Piezo Buzzer

#define PIEZO 3 // pin 3 is capable of PWM output to drive
tones

int del = 500;

void setup()

{

 pinMode(PIEZO, OUTPUT);

}

void loop()

{

1 analogWrite(PIEZO, 128); // 50 percent duty cycle tone to
the piezo

 delay(del);

 digitalWrite(PIEZO, LOW); // turn the piezo off

 delay(del);

}

This sketch uses pulse-width modulation on digital pin 3. If you change the
duty cycle in the analogWrite() function (currently it’s 128, which is 50
percent on) at 1, you can alter the sound of the buzzer.

To increase the volume of your piezo, increase the voltage applied to it. The
voltage is currently limited to 5 V, but the buzzer would be much louder at 9
or 12 V. Because higher voltages can’t be sourced from the Arduino, you
would need to use an external power source for the buzzer, such as a 9 V

battery, and then switch the power into the buzzer using a BC548 transistor
as an electronic switch. You can use the same sketch with the schematic
shown in Figure 4-40.

The part of the schematic labeled 12 V will be the positive side of the higher-
power supply, whose negative side will connect to the Arduino GND pin.

Figure 4-40: Schematic for Project 7

Project #8: Creating a Quick-Read
Thermometer
Temperature can be represented by an analog signal. We can measure
temperature using the TMP36 voltage output temperature sensor made by
Analog Devices (http://www.analog.com/tmp36/), shown in Figure 4-41.

Figure 4-41: TMP36 temperature sensor

Notice that the TMP36 looks just like the BC548 transistor we worked with
in the relay control circuit in Chapter 3. The TMP36 outputs a voltage that is
proportional to the temperature, so you can determine the current
temperature using a simple conversion. For example, at 25 degrees Celsius,
the output voltage is 750 mV, and each change in temperature of 1 degree
results in a change of 10 mV. The TMP36 can measure temperatures between
−40 and 125 degrees Celsius.

The function analogRead() will return a value between 0 and 1,023, which
corresponds to a voltage between 0 and just under 5,000 mV (5 V). If we
multiply the output of analogRead() by (5,000/1,024), we will get the actual
voltage returned by the sensor. Next, we subtract 500 (an offset used by the
TMP36 to allow for temperatures below 0) and then divide by 10, which
leaves us with the temperature in degrees Celsius. If you work in Fahrenheit,
then multiply the Celsius value by 1.8 and add 32 to the result.

The Goal

http://www.analog.com/tmp36/

In this project, we’ll use the TMP36 to create a quick-read thermometer.
When the temperature falls below 20 degrees Celsius, a blue LED turns on;
when the temperature is between 20 and 26 degrees, a green LED turns on;
and when the temperature is above 26 degrees, a red LED turns on.

The Hardware
Here’s what you’ll need to create this project:

Three 560 Ω resistors (R1 to R3)

One red LED (LED1)

One green LED (LED2)

One blue LED (LED3)

One TMP36 temperature sensor

One breadboard

Various connecting wires

Arduino and USB cable

The Schematic
The circuit is simple. When you’re looking at the labeled side of the TMP36,
the pin on the left connects to the 5 V input, the center pin is the voltage
output, and the pin on the right connects to GND, as shown in Figure 4-42.

Figure 4-42: Schematic for Project 8

The Sketch
And now for the sketch:

// Project 8 - Creating a Quick-Read Thermometer

// define the pins that the LEDs are connected to:

#define HOT 6

#define NORMAL 4

#define COLD 2

float voltage = 0;

float celsius = 0;

float hotTemp = 26;

float coldTemp = 20;

float sensor = 0;

void setup()

{

 pinMode(HOT, OUTPUT);

 pinMode(NORMAL, OUTPUT);

 pinMode(COLD, OUTPUT);

}

void loop()

{

 // read the temperature sensor and convert the result to
degrees Celsius

1 sensor = analogRead(0);

 voltage = (sensor * 5000) / 1024; // convert raw sensor
value to

 // millivolts

 voltage = voltage - 500; // remove voltage offset

 celsius = voltage / 10; // convert millivolts to Celsius

 // act on temperature range

2 if (celsius < coldTemp)

 {

 digitalWrite(COLD, HIGH);

 delay(1000);

 digitalWrite(COLD, LOW);

 }

3 else if (celsius > coldTemp && celsius <= hotTemp)

 {

 digitalWrite(NORMAL, HIGH);

 delay(1000);

 digitalWrite(NORMAL, LOW);

 }

 else

 {

 // celsius is > hotTemp

 digitalWrite(HOT, HIGH);

 delay(1000);

 digitalWrite(HOT, LOW);

 }

}

The sketch first reads the voltage from the TMP36 and converts it to a
temperature in degrees Celsius at 1. Next, using the if-else statements at 2

and 3, the code compares the current temperature against the values for hot
and cold and turns on the appropriate LED. The delay(1000) statements are
used to prevent the lights from flashing on and off too quickly if the
temperature fluctuates rapidly between two ranges.

You can experiment with the thermometer by blowing cool air over it to
lower the temperature or by rubbing two fingers over the TMP36’s body to
generate heat.

Looking Ahead
And Chapter 4 comes to a close. You now have a lot more tools to work
with, including digital inputs and outputs, new types of variables, and
various mathematical functions. In the next chapter, you will have a lot more
fun with LEDs, learn to create your own functions, build a computer game
and electronic dice, and much more.

5

WORKING WITH FUNCTIONS

In this chapter you will
Create your own functions

Learn to make decisions with while and do-while

Send and receive data between your Arduino and the Serial Monitor
window

Learn about long variables

You can make your Arduino sketches easier to read and simpler to design
by creating your own functions. You can also create modular code that you
can reuse in subsequent projects. In addition to these topics, this chapter
will introduce a way to have the Arduino make decisions that control blocks
of code, and you’ll learn about a type of integer variable called the long.
You’ll also use your own functions to create a new type of thermometer.

A function consists of a set of instructions, packaged as a unit and given a
name, that we can use anywhere in our sketches. Although many functions
are already available in the Arduino language, sometimes you won’t find
one to suit your specific needs—or you may need to run part of a sketch
repeatedly to make a function work, which is a waste of memory. In both of
these situations, you might wish you had a better function to do what you
need to do. The good news is that there is such a function—the one you
create yourself.

Project #9: Creating a Function to Repeat an
Action
You can write simple functions to repeat actions on demand. For example,
the following function will turn the built-in LED on (at 1 and 3) and off (at
2 and 4) twice:

void blinkLED()

{

1 digitalWrite(13, HIGH);

 delay(1000);

2 digitalWrite(13, LOW);

 delay(1000);

3 digitalWrite(13, HIGH);

 delay(1000);

4 digitalWrite(13, LOW);

 delay(1000);

}

Here is the function being used within a complete sketch, which you can
upload to the Arduino:

// Project 9 - Creating a Function to Repeat an Action

#define LED 13

#define del 200

void setup()

{

 pinMode(LED, OUTPUT);

}

void blinkLED()

{

 digitalWrite(LED, HIGH);

 delay(del);

 digitalWrite(LED, LOW);

 delay(del);

 digitalWrite(LED, HIGH);

 delay(del);

 digitalWrite(LED, LOW);

 delay(del);

}

void loop()

{

1 blinkLED();

 delay(1000);

}

When the blinkLED() function is called in void loop() at 1, the Arduino
will run the commands within the void blinkLED() section. In other
words, you have created your own function and used it when necessary.

Project #10: Creating a Function to Set the
Number of Blinks
The function we just created is pretty limited. What if we want to set the
number of blinks and the delay? No problem—we can create a function that
lets us change values, like this:

void blinkLED(int cycles, int del)

{

 for (int z = 0 ; z < cycles ; z++)

 {

 digitalWrite(LED, HIGH);

 delay(del);

 digitalWrite(LED, LOW);

 delay(del);

 }

}

Our new void blinkLED() function accepts two integer values: cycles (the
number of times we want to blink the LED) and del (the delay time
between turning the LED on and off). So if we wanted to blink the LED 12
times with a 100-millisecond delay, then we would use blinkLED(12,
100). Enter the following sketch into the IDE to experiment with this
function:

// Project 10 - Creating a Function to Set the Number of
Blinks

#define LED 13

void setup()

{

 pinMode(LED, OUTPUT);

}

void blinkLED(int cycles, int del)

{

 for (int z = 0 ; z < cycles ; z++)

 {

 digitalWrite(LED, HIGH);

 delay(del);

 digitalWrite(LED, LOW);

 delay(del);

 }

}

void loop()

{

1 blinkLED(12, 100);

 delay(1000);

}

You can see at 1 that the values 12 and 100—for the number of blinks and
the delay, respectively—are passed into our custom function blinkLED().
Therefore, the LED will blink 12 times with a delay of 100 milliseconds
between blinks. The display then pauses for 1,000 milliseconds, or 1
second, before the loop() function starts all over again.

Creating a Function to Return a Value
In addition to creating functions that accept values entered as parameters (as
void blinkLED() did in Project 10), you can create functions that return a
value, in the same way that analogRead() returns a value between 0 and
1,023 when measuring an analog input, as demonstrated in Project 8 (see
page 91 in Chapter 4).

Up until now, all the functions we’ve seen have started with the word void.
This tells the Arduino that the function returns nothing, just an empty void.
But we can create functions that return any type of value we want. For
example, if we wanted a function to return an integer value, we would

create it using int. If we wanted it to return a floating point value, it would
begin with float. Let’s create some useful functions that return actual
values.

Consider this function that converts degrees Celsius to Fahrenheit:

float convertTemp(float celsius)

{

 float fahrenheit = 0;

 fahrenheit = (1.8 * celsius) + 32;

 return fahrenheit;

}

In the first line, we define the function name (convertTemp), its return value
type (float), and any variables that we might want to pass into the function
(float celsius). To use this function, we send it an existing value. For
example, if we wanted to convert 40 degrees Celsius to Fahrenheit and store
the result in a float variable called tempf, we would call convertTemp()
like so:

 float tempf = convertTemp(40);

This would place 40 into the convertTemp() variable celsius and use it in
the calculation fahrenheit() = (1.8 * celsius) + 32 in the
convertTemp() function. The result is then returned into the variable tempf
with the convertTemp() line return fahrenheit;.

Project #11: Creating a Quick-Read
Thermometer That Blinks the Temperature
Now that you know how to create custom functions, we’ll make a quick-
read thermometer using the TMP36 temperature sensor from Chapter 4 and
the Arduino’s built-in LED. If the temperature is below 20 degrees Celsius,
the LED will blink twice and then pause; if the temperature falls between
20 and 26 degrees, the LED will blink four times and then pause; and if the
temperature is above 26 degrees, the LED will blink six times.

We’ll make our sketch more modular by breaking it up into distinct
functions that will be reusable, as well as making the sketch easier to
follow. Our thermometer will perform two main tasks: measure and
categorize the temperature, and blink the LED a certain number of times (as
determined by the temperature).

The Hardware
The required hardware is minimal:

One TMP36 temperature sensor

One breadboard

Various connecting wires

Arduino and USB cable

The Schematic
The circuit is very simple, as shown in Figure 5-1.

Figure 5-1: Schematic for Project 11

The Sketch
We’ll need to create two functions for the sketch. The first one will read the
value from the TMP36, convert it to Celsius, and then return a value of 2, 4,
or 6, corresponding to the number of times the LED should blink. We’ll
start with the sketch from Project 8 for this purpose and make minor
adjustments.

For our second function, we’ll use blinkLED() from Project 9. Our void
loop will call the functions in order and then pause for 2 seconds before

restarting.

NOTE

Remember to save your modified project sketches with new
filenames so that you don’t accidentally delete your existing work!

Enter this code into the IDE:

// Project 11 - Creating a Quick-Read Thermometer That Blinks
the Temperature

#define LED 13

int blinks = 0;

void setup()

{

 pinMode(LED, OUTPUT);

}

int checkTemp()

{

 float voltage = 0;

 float celsius = 0;

 float hotTemp = 26;

 float coldTemp = 20;

 float sensor = 0;

 int result;

 // read the temperature sensor and convert the result to
degrees Celsius

 sensor = analogRead(0);

 voltage = (sensor * 5000) / 1024; // convert raw sensor
value to millivolts

 voltage = voltage - 500; // remove voltage offset

 celsius = voltage / 10; // convert millivolts to
Celsius

 // act on temperature range

 if (celsius < coldTemp)

 {

 result = 2;

 }

 else if (celsius >= coldTemp && celsius <= hotTemp)

 {

 result = 4;

 }

 else

 {

 result = 6; // (celsius > hotTemp)

 }

 return result;

}

void blinkLED(int cycles, int del)

{

 for (int z = 0 ; z < cycles ; z++)

 {

 digitalWrite(LED, HIGH);

 delay(del);

 digitalWrite(LED, LOW);

 delay(del);

 }

}

1 void loop()

{

 blinks = checkTemp();

 blinkLED(blinks, 500);

 delay(2000);

}

Because we use custom functions, all we have to do in void_loop() at 1 is
call them and set the delay. The function checkTemp() returns a value to the
integer variable blinks, and then blinkLED() will blink the LED blinks
times with a delay of 500 milliseconds. The sketch then pauses for 2
seconds before repeating.

Upload the sketch and watch the LED to see this thermometer in action. As
before, see if you can change the temperature of the sensor by blowing on it
or holding it between your fingers. Be sure to keep this circuit assembled,
since we’ll use it in the projects that follow.

Displaying Data from the Arduino in the
Serial Monitor
So far, we have sent sketches to the Arduino and used the LEDs to show us
output (such as temperatures and traffic signals). Blinking LEDs make it
easy to get feedback from the Arduino, but blinking lights can tell us only
so much. In this section, you’ll learn how to use the Arduino’s cable
connection and the IDE’s Serial Monitor window to display data from the
Arduino and send data to the Arduino from your computer’s keyboard.

The Serial Monitor
To open the Serial Monitor, start the IDE and click the Serial Monitor icon
on the toolbar, shown in Figure 5-2. It appears as a new tab in the IDE with
the output window, and should look similar to Figure 5-3.

Figure 5-2: The Serial Monitor icon on the IDE toolbar

Figure 5-3: Serial Monitor

As you can see in Figure 5-3, the Serial Monitor displays an input field at
the top, consisting of a single row and a Send button, and an output window
below it, where data from the Arduino is displayed. When the Autoscroll
box is checked (the chevron button next to the clock icon), the most recent

output is displayed, and once the screen is full, older data rolls off the
screen as newer output is received. If you uncheck Autoscroll, you can
manually examine the data using a vertical scroll bar.

Starting the Serial Monitor
Before we can use the Serial Monitor, we need to activate it by adding this
function to our sketch in void setup():

 Serial.begin(9600);

The value 9600 is the speed at which the data will travel between the
computer and the Arduino, also known as baud. This value must match the
speed setting at the bottom right of the Serial Monitor, as shown in Figure
5-3.

Sending Text to the Serial Monitor
To send text from the Arduino to the Serial Monitor to be displayed in the
output window, you can use Serial.print():

 Serial.print("Arduino for Everyone!");

This sends the text between the quotation marks to the Serial Monitor’s
output window.

You can also use Serial.println() to display text and then force any
following text to start on the next line:

 Serial.println("Arduino for Everyone!");

Displaying the Contents of Variables
You can also display the contents of variables in the Serial Monitor. For
example, this would display the contents of the variable results:

 Serial.println(results);

If the variable is a float, the display will default to two decimal places.
You can specify the number of decimal places as a number between 0 and 6
by entering a second parameter after the variable name. For example, to
display the float variable results to four decimal places, you would enter
the following:

 Serial.print(results,4);

Project #12: Displaying the Temperature in
the Serial Monitor
Using the hardware from Project 8, we’ll display temperature data in
Celsius and Fahrenheit in the Serial Monitor window. To do this, we’ll
create one function to determine the temperature values and another to
display them in the Serial Monitor.

Enter this code into the IDE:

// Project 12 - Displaying the Temperature in the Serial
Monitor

float celsius = 0;

float fahrenheit = 0;

void setup()

{

 Serial.begin(9600);

}

1 void findTemps()

{

 float voltage = 0;

 float sensor = 0;

 // read the temperature sensor and convert the result to
degrees C and F

 sensor = analogRead(0);

 voltage = (sensor * 5000) / 1024; // convert the raw
sensor value to

 // millivolts

 voltage = voltage - 500; // remove the voltage

offset

 celsius = voltage / 10; // convert millivolts to
Celsius

 fahrenheit = (1.8 * celsius) + 32; // convert Celsius to
Fahrenheit

}

2 void displayTemps()

{

 Serial.print("Temperature is ");

 Serial.print(celsius, 2);

 Serial.print(" deg. C / ");

 Serial.print(fahrenheit, 2);

 Serial.println(" deg. F");

 // use .println here so the next reading starts on a new
line

}

void loop()

{

 findTemps();

 displayTemps();

 delay(1000);

}

A lot is happening in this sketch, but we’ve created two functions,
findTemps() at 1 and displayTemps() at 2, to simplify things. These
functions are called in void loop(), which is quite simple. Thus, you see
one reason to create your own functions: to make your sketches easier to
understand and the code more modular and possibly reusable.

After uploading the sketch, wait a few seconds and then display the Serial
Monitor. The temperature in your area should be displayed in a similar
manner to that shown in Figure 5-4.

Figure 5-4: Result from Project 12

Debugging with the Serial Monitor
You can use the Serial Monitor to help debug (locate and fix errors in) your
sketches. For example, if you insert Serial.println(); statements in your
sketch containing brief notes about their location in the sketch, then you can
see when the Arduino passes each statement. For example, you might use
the line:

 Serial.println("now in findTemps()");

inside the function findTemps() to let you know when the Arduino is
running that function.

Making Decisions with while Statements
You can use while statements in a sketch to repeat instructions, as long as
(while) a given condition is true.

while
The condition is always tested before the code in the while statement is
executed. For example, while (temperature > 30) will test whether the
value of temperature is greater than 30. You can use any comparison
operator, or Boolean variable, within the parentheses to create the condition.

In the following sketch, the Arduino will count up to 10 seconds and then
continue with its program:

int a = 0; // an integer

while (a < 10)

{

 a = a + 1;

 delay(1000);

}

This sketch starts by setting the variable a to 0. It then checks that the value
of a is less than 10 (while (a < 10)), and, if so, adds 1 to that value,
waits 1 second (delay(1000)), and checks the value again. It repeats the
process until a has a value of 10. Once a is equal to 10, the comparison in
the while statement is false; therefore, the Arduino will continue on with
the sketch after the while loop brackets.

do-while
In contrast to while, the do-while structure places the test after execution
of the code within the do-while statement. Here’s an example:

int a = 0; // an integer

do

{

 delay(1000);

 a = a + 1;

} while (a < 100);

In this case, the code between the curly brackets will execute before the
conditions of the test (while (a < 100)) have been checked. As a result,
even if the conditions are not met, the loop will run once. You’ll decide
whether to use a while or a do-while statement when designing your
particular project.

Sending Data from the Serial Monitor to the
Arduino

To send data from the Serial Monitor to the Arduino, we need the Arduino
to listen to the serial buffer—the part of the Arduino that receives data from
the outside world via the serial pins (digital 0 and 1) that are also connected
to the USB interface to your computer. The serial buffer holds incoming
data from the Serial Monitor’s input window.

Project #13: Multiplying a Number by Two
To demonstrate the process of sending and receiving data via the Serial
Monitor, let’s dissect the following sketch. This sketch accepts a single digit
from the user, multiplies it by 2, and then displays the result in the Serial
Monitor’s output window. After you have uploaded the sketch, when you
open the Serial Monitor window, select No Line Ending in the window’s
drop-down menu. When entering data in the Serial Monitor, you need to
press CTRL-ENTER to send the data to the Arduino (not just ENTER).

// Project 13 - Multiplying a Number by Two

int number;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 number = 0; // set the variable to zero, ready for a
new read

 Serial.flush(); // clear any "junk" out of the serial
buffer before waiting

1 while (Serial.available() == 0)

 {

 // do nothing until something enters the serial buffer

 }

2 while (Serial.available() > 0)

 {

 number = Serial.read() - '0';

// read the number in the serial buffer and

// remove the ASCII text offset for zero: '0'

 }

 // Show me the number!

 Serial.print("You entered: ");

 Serial.println(number);

 Serial.print(number);

 Serial.print(" multiplied by two is ");

 number = number * 2;

 Serial.println(number);

}

The Serial.available() test in the first while statement at 1 returns 0 if
the user has not yet entered anything into the Serial Monitor. In other
words, it tells the Arduino, “Do nothing until the user enters something.”
The next while statement at 2 detects the number in the serial buffer and
converts the text code into an integer. Afterward, the Arduino displays the
number from the serial buffer and the multiplication results.

The Serial.flush() function at the start of the sketch clears the serial
buffer just in case any unexpected data is in it, readying it to receive the
next available data. Figure 5-5 shows the Serial Monitor window after the
sketch has run.

Figure 5-5: Sample input and output for Project 13

Although you can now enter numerical data into the Serial Monitor for the
Arduino to process, it currently only accepts inputs of one digit. Even
without this restriction, using integer variables limits the range of numbers

available. We can use long variables to increase this range, as discussed
next.

long Variables
To use the Serial Monitor to accept numbers with more than one digit, we
need to add some new code to our sketch, as you’ll see shortly. When
working with larger numbers, however, the int variable type can be
limiting because it has a maximum value of 32,767. Fortunately, we can
extend this limitation by using the long variable type. A long variable is a
whole number between −2,147,483,648 and 2,147,483,647, a much larger
range than that of an int variable (−32,768 to 32,767).

Project #14: Using long Variables
We’ll use the Serial Monitor to accept long variables and numbers larger
than one digit. This sketch accepts a number of many digits, multiplies that
number by 2, and then returns the result to the Serial Monitor:

// Project 14 - Using long Variables

long number = 0;

long a = 0;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 number = 0; // zero the incoming number ready for a new
read

 Serial.flush(); // clear any "junk" out of the serial
buffer before waiting

 while (Serial.available() == 0)

 {

 // do nothing until something comes into the serial
buffer-

 // when something does come in, Serial.available will

return how many

 // characters are waiting in the buffer to process

 }

 // one character of serial data is available, begin
calculating

 while (Serial.available() > 0)

 {

 // move any previous digit to the next column on the
left;

 // in other words, 1 becomes 10 while there is data in
the buffer

 number = number * 10;

 // read the next number in the buffer and subtract the
character 0

 // from it to convert it to the actual integer number

 a = Serial.read() - '0';

 // add this value a into the accumulating number

 number = number + a;

 // allow a short delay for more serial data to come into
Serial.available

 delay(5);

 }

 Serial.print("You entered: ");

 Serial.println(number);

 Serial.print(number);

 Serial.print(" multiplied by two is ");

 number = number * 2;

 Serial.println(number);

}

In this example, two while loops allow the Arduino to accept multiple
digits from the Serial Monitor. When the first digit is entered (the leftmost
digit of the number entered), it is converted to a number and then added to
the total variable number. If that’s the only digit, the sketch moves on. If
another digit is entered (for example, the 2 in 42), the total is multiplied by
10 to shift the first digit to the left, and then the new digit is added to the
total. This cycle repeats until the rightmost digit has been added to the total.
Don’t forget to select No Line Ending in the Serial Monitor window.

Figure 5-6 shows the input and output of this sketch.

Figure 5-6: Sample input and output from Project 14

Looking Ahead
The ability to create your own functions is an important skill that will
simplify your sketches and save you time and effort. You’ll make good use
of this knowledge in the next chapter, where you’ll learn how to do more
things with math on the Arduino, including making a game.

6

NUMBERS, VARIABLES, AND

ARITHMETIC

In this chapter you will
Generate random numbers

Create electronic dice

Learn about binary numbers

Use shift-register integrated circuits (ICs) to get more digital output pins

Test your knowledge of binary numbers with a quiz

Learn about arrays of variables

Display numbers on seven-segment LED modules

Learn how to use the modulo math function

Create a digital thermometer

You will learn a wide variety of useful new functions that will create more
project options, including random number generation, new kinds of math
functions, and variable storage in ordered lists called arrays. Furthermore,
you will learn how to use LED display modules in numeric form to display
data and simple images. Finally, we’ll combine these tools to create a game,
a digital thermometer, and more.

Generating Random Numbers

A program’s ability to generate random numbers can be very useful in
games and effects. For example, you can use random numbers to play a dice
or lottery game, create lighting effects with LEDs, or create visual or
auditory effects for a quiz game with the Arduino. Unfortunately, the
Arduino can’t choose a purely random number by itself. You have to help it
by providing a seed, an arbitrary starting number used in the calculations to
generate a random number.

Using Ambient Current to Generate a Random Number
The easiest way to generate a random number with the Arduino is to write a
program that reads the voltage from a free (disconnected) analog pin (for
example, analog pin 0) with this line in void setup():

 randomSeed(analogRead(0));

Even when nothing is wired to an analog input on the Arduino, static
electricity in the environment creates a tiny, measurable voltage. The
amount of this voltage is quite random. We can use this measure of ambient
voltage as our seed to generate a random number and then allocate it to an
integer variable using the random(lower, upper) function. Furthermore,
we can use the parameters lower and upper to set the lower and upper
limits of the range for the random number. For example, to generate a
random number between 100 and 1,000, you would use the following:

int a = 0;

a = random(100, 1001);

We’ve used the number 1,001 rather than 1,000 because the upper limit is
exclusive, meaning it’s not included in the range.

To generate a random number between 0 and some number, you can just
enter the upper limit. Here’s how you would generate a random number
between 0 and 6:

 a = random(7);

The example sketch in Listing 6-1 would generate a random number
between 0 and 1,000 and another random number between 10 and 50.

// Listing 6-1

int r = 0;

void setup()

{

 randomSeed(analogRead(0));

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Random number between zero and 1000 is: ");

 r = random(0, 1001);

 Serial.println(r);

 Serial.print("Random number between ten and fifty is: ");

 r = random(10, 51);

 Serial.println(r);

 delay(1000);

}

Listing 6-1: A random number generator

Figure 6-1 shows the result of Listing 6-1 in the Serial Monitor.

Figure 6-1: Output from Listing 6-1

Now that you know how to generate random numbers, let’s put that
knowledge to good use by creating an electronic die.

Project #15: Creating an Electronic Die
Our goal is to light one of six LEDs randomly to mimic the throw of a die.
We’ll choose a random number between 1 and 6, then turn on the
corresponding LED to indicate the result. We’ll create a function to select
one of six LEDs on the Arduino randomly and to keep the LED on for a
certain period of time. When the Arduino running the sketch is turned on or
reset, it should show random LEDs rapidly for a specified period of time
and then gradually slow the flashing until the final LED is lit. The LED
matching the resulting randomly chosen number will stay on until the
Arduino is reset or turned off.

The Hardware
To build the die, we’ll need the following hardware:

Six LEDs of any color (LED1 to LED6)

One 560 Ω resistor (R1)

Various connecting wires

One medium-sized breadboard

Arduino and USB cable

The Schematic
Because only one LED will be lit at a time, a single current-limiting resistor
can go between the cathodes of the LEDs and GND. Figure 6-2 shows the
schematic for our die.

Figure 6-2: Schematic for Project 15

The Sketch
Here’s the sketch for our die:

// Project 15 - Creating an Electronic Die

void setup()

{

 randomSeed(analogRead(0)); // seed the random number
generator

 for (int z = 1 ; z < 7 ; z++) // LEDs on pins 1-6 are
output

 {

 pinMode(z, OUTPUT);

 }

}

void randomLED(int del)

{

 int r;

 r = random(1, 7); // get a random number from 1 to 6

 digitalWrite(r, HIGH); // output to the matching LED on
digital pin 1-6

 if (del > 0)

 {

1 delay(del); // hold the LED on for the delay
received

 }

2 else if (del == 0)

 {

 do // delay entered was zero, hold the
LED on forever

 {}

3 while (1);

 }

 digitalWrite(r, LOW); // turn off the LED

}

void loop()

{

 int a;

 // cycle the LEDs around for effect

 for (a = 0 ; a < 100 ; a++)

 {

 randomLED(50);

 }

 // slow down

4 for (a = 1 ; a <= 10 ; a++)

 {

 randomLED(a * 100);

 }

 // and stop at the final random number and LED

 randomLED(0);

}

Here we use a loop in void setup() to activate the digital output pins. The
function randomLED() receives an integer that is used in the delay()
function at 1 to keep the LED turned on for the selected time. If the value of

the delay received at 2 is 0, then the function keeps the LED turned on
indefinitely, because we use

 do {} while (1);

at 3, which loops forever, because 1 is always 1.

To “roll the die,” we reset the Arduino to restart the sketch. To gradually
slow the change in the LEDs before the final value is displayed, we first
display a random LED 100 times for 50 milliseconds each time. Then, at 4
we slow down the flashing by increasing the delay between LED flashes
from 100 to 1,000 milliseconds, with each flash lasting 100 milliseconds.
The purpose of this is to simulate the “slowing down” of a die before it
finally settles on a value. With the last line, the Arduino displays the
outcome of the roll by keeping one LED lit:

 randomLED(0);

Modifying the Sketch
We can tinker with this project in many ways. For example, we could add
another six LEDs to roll two dice at once. Or display the result using only
the built-in LED, by blinking it a number of times to indicate the result of
the roll. Or use a button to roll the dice again. Use your imagination and
new skills to have some fun!

A Quick Course in Binary
Most children learn to count using the base-10 system, but computers
(including the Arduino) count using the binary number system.

Binary Numbers
Binary numbers consist of only 1s and 0s—for example, 10101010. In
binary, each digit from right to left represents 2 to the power of the column
number in which it appears (which increases from right to left). The
products in each column are then added to determine the value of the
number.

For example, consider the binary number 10101010, as shown in Table 6-1.
To convert the number 10101010 in binary to base 10, we add the totals in
each column as listed in the bottom row of the table:

128 + 0 + 32 + 0 + 8 + 0 + 2 + 0

The sum is 170, and therefore the binary number 10101010 equals 170 in
base 10. A binary number with eight columns (or bits) holds 1 byte of data;
1 byte of data can have a numerical value between 0 and 255. The leftmost
bit is referred to as the most significant bit (MSB), and the rightmost is the
least significant bit (LSB).

Table 6-1: Binary to Base-10 Number Conversion Example

27 26 25 24 23 22 21 20
1 0 1 0 1 0 1 0 Binary
128 64 32 16 8 4 2 1 Base 10

Binary numbers are great for storing certain types of data, such as on/off
patterns for LEDs, true/false settings, and the statuses of digital outputs.
Binary numbers are the building blocks of all types of data in computers.

Byte Variables
One way we can store binary numbers is by using a byte variable. For
example, we can create the byte variable outputs using the following code:

byte outputs = B11111111;

The B in front of the number tells Arduino to read the number as a binary
number (in this case, 11111111) instead of its base-10 equivalent of 255.
Listing 6-2 demonstrates this further.

// Listing 6-2

byte a;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 for (int count = 0 ; count < 256 ; count++)

 {

 a = count;

 Serial.print("Base-10 = ");

1 Serial.print(a, DEC);

 Serial.print(" Binary = ");

2 Serial.println(a, BIN);

 delay(1000);

 }

}

Listing 6-2: Binary number demonstration

We display byte variables as base-10 numbers using DEC 1 or as binary
numbers using BIN 2 as part of the Serial.print() function. After
uploading the sketch, you should see output in the Serial Monitor similar to
that shown in Figure 6-3.

Figure 6-3: Output from Listing 6-2

Increasing Digital Outputs with Shift
Registers
The Arduino board has 13 digital pins that we can use as outputs—but
sometimes 13 just isn’t enough. To add outputs, we can use a shift register
and still have plenty of room left on the Arduino for outputs. A shift register
is an integrated circuit (IC) with eight digital output pins that can be
controlled by sending a byte of data to the IC. For our projects, we will be
using the 74HC595 shift register shown in Figure 6-4.

Figure 6-4: The 74HC595 shift register IC

The 74HC595 shift register has eight digital outputs that can operate like
the Arduino digital output pins. The shift register itself takes up three
Arduino digital output pins, so the net gain is five output pins.

The principle behind the shift register is simple: we send 1 byte of data (8
bits) to the shift register, and it turns on or off the matching eight outputs
based on the 1 byte of data. The bits representing the byte of data match the
output pins in order from highest to lowest, so the leftmost bit of the data
represents output pin 7 of the shift register, and the rightmost bit of the data
represents output pin 0. For example, if we send B10000110 to the shift
register, then it will turn on outputs 1, 2, and 7 and will turn off outputs 0
and 3 to 6 until the next byte of data is received or the power is turned off.

More than one shift register can be connected together to provide an extra
eight digital output pins for every shift register attached to the same three

Arduino pins; this makes shift registers very convenient when you want to
control lots of LEDs. Let’s do that now by creating a binary number display.

Project #16: Creating an LED Binary Number
Display
In this project, we’ll use eight LEDs to display binary numbers from 0 to
255. Our sketch will use a for loop to count from 0 to 255 and will send
each value to the shift register, which will use LEDs to display the binary
equivalent of each number.

The Hardware
The following hardware is required:

One 74HC595 shift register IC

Eight LEDs (LED1 to LED8)

Eight 560 Ω resistors (R1 to R8)

One breadboard

Various connecting wires

Arduino and USB cable

The Schematic
Figure 6-5 shows the schematic symbol for the 74HC595.

Figure 6-5: 74HC595 schematic symbol

There are 16 pins on our shift register:

Pins 15 and 1 to 7 are the eight output pins that we control (labeled Q0 to
Q7, respectively).

Q7 outputs the first bit sent to the shift register and Q0 outputs the last.

Pin 8 connects to GND.

Pin 9 is called data out and is used to send data to another shift register if
one is present.

Pin 10 is always connected to 5 V (for example, the 5 V connector on the
Arduino).

Pins 11 and 12 are called clock and latch.

Pin 13 is called output enable and is usually connected to GND.

Pin 14 is for incoming bit data sent from the Arduino.

Pin 16 is used for power: 5 V from the Arduino.

To give you a sense of the way the pins are oriented, the semicircular notch
on the left end of the body of the shift register IC shown in Figure 6-4 lies
between pins 1 and 16.

The pins are numbered sequentially around the body in a counterclockwise
direction, as shown in Figure 6-6, the schematic for our LED binary
number display.

Figure 6-6: Schematic for Project 16

NOTE

Once you have finished with this example circuit, keep it assembled.
We’ll use it again for the next project.

The Sketch

And now for the sketch:

// Project 16 – Creating an LED Binary Number Display

#define DATA 6 // digital 6 to pin 14 on the
74HC595

#define LATCH 8 // digital 8 to pin 12 on the
74HC595

#define CLOCK 10 // digital 10 to pin 11 on the
74HC595

void setup()

{

 pinMode(LATCH, OUTPUT);

 pinMode(CLOCK, OUTPUT);

 pinMode(DATA, OUTPUT);

}

void loop()

{

 int i;

 for (i = 0; i < 256; i++)

 {

 digitalWrite(LATCH, LOW);

 shiftOut(DATA, CLOCK, MSBFIRST, i);

 digitalWrite(LATCH, HIGH);

 delay(200);

 }

}

In this sketch, we set the three pins connected to the shift register as outputs
in void setup() and then add a loop in void loop() that counts from 0 to
255 and repeats. The magic lies inside the loop. When we send a byte of
data (for example, 240, or B11110000) to the shift register in the for loop,
three things happen:

The latch pin 12 is set to LOW (that is, a low signal is applied to it from the
Arduino digital output pin 8). This is preparation for setting output pin 12 to
HIGH, which latches the data to the output pins after shiftOut() has
completed its task.

We send the byte of data (for example, B11110000) from Arduino digital pin
6 to the shift register and tell the shiftOut() function from which direction
to interpret the byte of data. For example, if we selected LSBFIRST, then

LEDs 1 to 4 would turn on and the others would turn off. If we used
MSBFIRST, then LEDs 5 to 8 would turn on and the others would turn off.

Finally, the latch pin 12 is set to HIGH (5 V is applied to it). This tells the
shift register that all the bits are shifted in and ready. At this point, the shift
register alters its output to match the data received.

Project #17: Making a Binary Quiz Game
In this project, we’ll use random numbers, the Serial Monitor, and the
circuit created in Project 16 to create a binary quiz game. The Arduino will
display a random binary number using the LEDs, and then you will enter
the decimal version of the binary number using the Serial Monitor. The
Serial Monitor will tell you whether your answer is correct, and the game
will continue with a new number.

The Algorithm
The algorithm can be divided into three functions. The displayNumber()
function will display a binary number using the LEDs. The getAnswer()
function will receive a number from the Serial Monitor and display it to the
user. Finally, the checkAnswer() function will compare the user’s number
to the random number generated and display the correct/incorrect status, as
well as the correct answer if the guess was incorrect.

The Sketch
The sketch generates a random number between 0 and 255, displays it in
binary using the LEDs, asks the user for their answer, and then displays the
result in the Serial Monitor. You’ve already seen all the functions used in
the sketch, so although there’s a lot of code here, it should look familiar.
We’ll dissect it with comments within the sketch and some commentary
following:

// Project 17 - Making a Binary Quiz Game

#define DATA 6 // connect to pin 14 on the
74HC595

#define LATCH 8 // connect to pin 12 on the

74HC595

#define CLOCK 10 // connect to pin 11 on the
74HC595

int number = 0;

int answer = 0;

1 void setup()

{

 pinMode(LATCH, OUTPUT); // set up the 74HC595 pins

 pinMode(CLOCK, OUTPUT);

 pinMode(DATA, OUTPUT);

 Serial.begin(9600);

 randomSeed(analogRead(0)); // initialize the random
number generator

 displayNumber(0); // clear the LEDs

}

2 void displayNumber(byte a)

{

 // send byte to be displayed on the LEDs

 digitalWrite(LATCH, LOW);

 shiftOut(DATA, CLOCK, MSBFIRST, a);

 digitalWrite(LATCH, HIGH);

}

3 void getAnswer()

{

 // receive the answer from the player

 int z = 0;

 Serial.flush();

 while (Serial.available() == 0)

 {

 // do nothing until something comes into the serial
buffer

 }

 // one character of serial data is available, begin
calculating

 while (Serial.available() > 0)

 {

 // move any previous digit to the next column on the
left; in

 // other words, 1 becomes 10 while there is data in the
buffer

 answer = answer * 10;

 // read the next number in the buffer and subtract the

character '0'

 // from it to convert it to the actual integer number

 z = Serial.read() - '0';

 // add this digit into the accumulating value

 answer = answer + z;

 // allow a short delay for any more numbers to come into
Serial.available

 delay(5);

 }

 Serial.print("You entered: ");

 Serial.println(answer);

}

4 void checkAnswer()

{

 // check the answer from the player and show the results

 if (answer == number) // Correct!

 {

 Serial.print("Correct! ");

 Serial.print(answer, BIN);

 Serial.print(" equals ");

 Serial.println(number);

 Serial.println();

 }

 else // Incorrect

 {

 Serial.print("Incorrect, ");

 Serial.print(number, BIN);

 Serial.print(" equals ");

 Serial.println(number);

 Serial.println();

 }

 answer = 0;

 delay(10000); // give the player time to review their
answer

}

5 void loop()

{

 number = random(256);

 displayNumber(number);

 Serial.println("What is the binary number in base 10? ");

 getAnswer();

 checkAnswer();

}

Let’s review how the sketch works. At 1, void setup() configures the
digital output pins to use the shift register, starts the Serial Monitor, and
seeds the random number generator. At 2, the custom function
displayNumber() accepts a byte of data and sends it to the shift register,
which uses LEDs to display the byte in binary form via the attached LEDs
(as in Project 16). At 3, the custom function getAnswer() accepts a number
from the user via the Serial Monitor (as in Project 14 in Chapter 5) and
displays it, as shown in Figure 6-7.

The function checkAnswer() at 4 compares the number entered by the
player in getAnswer() against the random number generated by the sketch
in void loop(). The player is then advised of a correct or incorrect answer
with corresponding binary and decimal values. Finally, in the main void
loop() at 5 from which the program runs, the Arduino generates the
random binary number for the quiz, calls the matching functions to display
it with hardware, and then receives and checks the player’s answer.

Figure 6-7 shows the game in play in the Serial Monitor.

Figure 6-7: Project 17 in play

Arrays

An array is a set of variables or values grouped together so that they can be
referenced as a whole. When dealing with lots of related data, you’ll find it
a good idea to use arrays to keep your data organized.

Defining an Array
Each item in an array is called an element. For example, suppose six float
variables contain temperatures taken over the last six hours; instead of
giving them all separate names, we can define an array called
temperatures with six elements like this:

float temperatures[6];

We can also insert values when defining the array. When we do that, we
don’t need to define the array size. Here’s an example:

float temperatures[]={11.1, 12.2, 13.3, 14.4, 15.5, 16.6};

Notice that this time, we didn’t explicitly define the size of the array within
the square brackets ([]); instead, its size is deduced based on the number of
elements set by the values inside the curly brackets ({}). Note that arrays of
any size can only contain one type of variable.

Referring to Values in an Array
We count the elements in an array beginning from the left and starting from
0; the temperatures[] array has elements numbered 0 to 5. We can refer to
individual values within an array by inserting the number of the element in
the square brackets. For example, to change the first element in
temperatures[] (currently 11.1) to 12.34, we would use this:

 temperatures[0] = 12.34;

Writing to and Reading from Arrays
In Listing 6-3, we demonstrate writing values to and reading values from an
array of five elements. The first for loop in the sketch writes a random

number into each of the array’s elements, and the second for loop retrieves
the elements and displays them in the Serial Monitor.

// Listing 6-3

void setup()

{

 Serial.begin(9600);

 randomSeed(analogRead(0));

}

int array[5]; // define our array of five integer elements

void loop()

{

 int i;

 Serial.println();

 for (i = 0 ; i < 5 ; i++) // write to the array

 {

 array[i] = random(10); // random numbers from 0 to 9

 }

 for (i = 0 ; i < 5 ; i++) // display the contents of
the array

 {

 Serial.print("array[");

 Serial.print(i);

 Serial.print("] contains ");

 Serial.println(array[i]);

 }

 delay(5000);

}

Listing 6-3: Array read/write demonstration

Figure 6-8 shows the output of this sketch in the Serial Monitor.

Figure 6-8: Listing 6-3 in action

Now that you know how to use with binary numbers, shift registers, and
arrays, it’s time to put that knowledge to use. In our next project, we’ll wire
up some digital number displays.

Seven-Segment LED Displays
LEDs are fun, but there are limits to the kinds of data that can be displayed
with individual lights. In this section, we’ll begin working with numeric
digits in the form of seven-segment LED displays, as shown in Figure 6-9.

Figure 6-9: Seven-segment display modules

These displays are perfect for displaying numbers, and that’s why you’ll
find them used in digital alarm clocks, speedometers, and the like. Each
module in a seven-segment LED display consists of eight LEDs. The
modules are also available in different colors. To reduce the number of pins
used by the display, all of the anodes or cathodes of the LEDs are connected
together—these are called common-anode or common-cathode modules,
respectively. Our projects will use common-cathode modules.

The display’s LEDs are labeled A to G and DP (for the decimal point).
There is an anode pin for each LED segment, and the cathodes are
connected to one common cathode pin. The layout of seven-segment LED
displays is always described as shown in Figure 6-10, with LED segment A
at the top, B to its right, and so on. So, for example, if you wanted to
display the number 7, then you would apply current to segments A, B, and
C.

The pins on each LED display module can vary, depending on the
manufacturer, but they always follow the basic pattern shown in Figure 6-
10. When you use one of these modules, always get the data sheet for the
module from the retailer to help save you time determining which pins are
which.

We’ll use the schematic symbol shown in Figure 6-11 for our seven-
segment LED display modules.

Figure 6-10: LED map for a typical seven-segment display module

Figure 6-11: Schematic symbol for a seven-segment display module

Controlling the LED
We’ll control the LED display using the method discussed in Project 17, by
connecting pins A through DP to the shift register outputs Q0 to Q7. Use
the matrix shown in Table 6-2 as a guide to help determine which segments
to turn on and off to display a particular number or letter.

The top row in the matrix is the shift register output pin that controls the
segments on the second row. Each row below this shows the digit that can
be displayed with the corresponding binary and decimal value to send to the
shift register.

Table 6-2: Display Segment Matrix

SR Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
Segment A B C D E F G DP Decimal
0 1 1 1 1 1 1 0 0 252
1 0 1 1 0 0 0 0 0 96
2 1 1 0 1 1 0 1 0 218
3 1 1 1 1 0 0 1 0 242
4 0 1 1 0 0 1 1 0 102
5 1 0 1 1 0 1 1 0 182
6 1 0 1 1 1 1 1 0 190
7 1 1 1 0 0 0 0 0 224
8 1 1 1 1 1 1 1 0 254
9 1 1 1 1 0 1 1 0 246
A 1 1 1 0 1 1 1 0 238
B 0 0 1 1 1 1 1 0 62
C 1 0 0 1 1 1 0 0 156
D 0 1 1 1 1 0 1 0 122
E 1 0 0 1 1 1 1 0 158
F 1 0 0 0 1 1 1 0 142

For example, to display the digit 7, as shown in Figure 6-12, we need to
turn on LED segments A, B, and C, which correspond to the shift register
outputs Q0, Q1, and Q2. Therefore, we will send the byte B1110000 into the
shift register (with shiftOut() set to LSBFIRST) to turn on the first three
outputs that match the desired LEDs on the module.

Figure 6-12: Displaying the digit 7

In our next project, we’ll create a circuit that displays, in turn, the digits 0
through 9 and then the letters A through F. The cycle repeats with the
decimal-point LED turned on.

Project #18: Creating a Single-Digit Display
In this project we’ll assemble a circuit to use a single-digit display.

The Hardware
The following hardware is required:

One 74HC595 shift register IC

One common-cathode seven-segment LED display

One 560 Ω resistor (R1)

One large breadboard

Various connecting wires

Arduino and USB cable

The Schematic
The schematic is shown in Figure 6-13.

Figure 6-13: Schematic for Project 18

When you’re wiring the LED module to the shift register, LED pins A
through G connect to pins Q0 through Q6, respectively, and DP connects to
Q7.

The Sketch
In the sketch for Project 18, we store the decimal values (see Table 6-2) in
the int digits[] array. In the void loop(), we send these values to the
shift register in sequential order at 1 and then repeat the process with the
decimal point on by adding 1 to the value sent to the shift register at 2:

// Project 18 - Creating a Single-Digit Display

#define DATA 6 // connect to pin 14 on
the 74HC595

#define LATCH 8 // connect to pin 12 on
the 74HC595

#define CLOCK 10 // connect to pin 11 on
the 74HC595

// set up the array with the segments for 0 to 9, A to F
(from Table 6-2)

int digits[] = {252, 96, 218, 242, 102, 182, 190, 224, 254,
246, 238, 62, 156, 122, 158, 142};

void setup()

{

 pinMode(LATCH, OUTPUT);

 pinMode(CLOCK, OUTPUT);

 pinMode(DATA, OUTPUT);

}

void loop()

{

 int i;

 for (i = 0 ; i < 16 ; i++) // display digits 0-9, A-F

 {

 digitalWrite(LATCH, LOW);

1 shiftOut(DATA, CLOCK, LSBFIRST, digits[i]);

 digitalWrite(LATCH, HIGH);

 delay(250);

 }

 for (i = 0 ; i < 16 ; i++) // display digits 0-9, A-F
with DP

 {

 digitalWrite(LATCH, LOW);

2 shiftOut(DATA, CLOCK, LSBFIRST, digits[i]+1); // +1 is to turn
on the DP bit

 digitalWrite(LATCH, HIGH);

 delay(250);

 }

}

Seven-segment LED displays are bright and easy to read. For example,
Figure 6-14 shows the result when this sketch is asked to display the digit 9
with the decimal point.

Figure 6-14: Digit displayed by Project 18

Modifying the Sketch: Displaying Double Digits
To use more than one shift register to control additional digital outputs,
connect pin 9 of the 74HC595 (which receives data from the Arduino) to
pin 14 of the second shift register. Once you’ve made this connection, two
bytes of data will be sent: the first to control the second shift register and
the second to control the first shift register. Here’s an example:

 digitalWrite(LATCH, LOW);

 shiftOut(DATA, CLOCK, MSBFIRST, 254); // data for second
74HC595

 shiftOut(DATA, CLOCK, MSBFIRST, 254); // data for first
74HC595

 digitalWrite(LATCH, HIGH);

Project #19: Controlling Two Seven-Segment
LED Display Modules
This project will show you how to control two seven-segment LED display
modules so that you can display two-digit numbers.

The Hardware
The following hardware is required:

Two 74HC595 shift register ICs

Two common-cathode seven-segment LED displays

Two 560 Ω resistors (R1 to R2)

One large breadboard or two smaller units

Various connecting wires

Arduino and USB cable

The Schematic
Figure 6-15 shows the schematic for two display modules.

Note that the shift registers’ data and clock pins are connected to each other
and then to the Arduino. The data line from Arduino digital pin 6 runs to
shift register 1, and then a link from pin 9 of shift register 1 runs to pin 14
of shift register 2.

To display a number between 0 and 99, we’ll need a more complicated
sketch. If a number is less than 10, we can just send the number followed by
a 0, as the right digit will display the number and the left digit will display
0. However, if the number is greater than 10, then we need to determine
each of the number’s two digits and send each to the shift registers
separately. To make this process easier, we’ll use the math function modulo.

Figure 6-15: Schematic for Project 19

Modulo

Modulo is a function that returns the remainder of a division operation. For
example, 10 modulo (or mod) 7 equals 3—in other words, the remainder of
10 divided by 7 equals 3. We use the percent sign (%) to represent modulo.
The following example uses modulo in a sketch:

int a = 8;

int b = 3;

int c = a % b;

In this example, the value of c will be 2. So, to determine a two-digit
number’s right-hand digit, we use the modulo function, which returns the
remainder when dividing the two numbers.

To automate displaying a single- or double-digit number, we’ll create the
function displayNumber() for our sketch. We use modulo as part of this
function to separate the digits of a two-digit number. For example, to
display the number 23, we first isolate the left-hand digit by dividing 23 by
10, yielding 2 (and a fraction that we can ignore). To isolate the right-hand
digit, we perform 23 modulo 10, which equals 3:

// Project 19 - Controlling Two Seven-Segment LED Display
Modules

// set up the array with the segments for 0 to 9, A to F
(from Table 6-2)

#define DATA 6 // connect to pin 14 on the
74HC595

#define LATCH 8 // connect to pin 12 on the
74HC595

#define CLOCK 10 // connect to pin 11 on the
74HC595

void setup()

{

 pinMode(LATCH, OUTPUT);

 pinMode(CLOCK, OUTPUT);

 pinMode(DATA, OUTPUT);

}

int digits[] = {252, 96, 218, 242, 102, 182, 190, 224, 254,
246, 238, 62, 156, 122, 158, 142};

void displayNumber(int n)

{

 int left, right=0;

1 if (n < 10)

 {

 digitalWrite(LATCH, LOW);

 shiftOut(DATA, CLOCK, LSBFIRST, digits[n]);

 shiftOut(DATA, CLOCK, LSBFIRST, 0);

 digitalWrite(LATCH, HIGH);

 }

 else if (n >= 10)

 {

2 right = n % 10; // remainder of dividing the number to
display by 10

 left = n / 10; // quotient of dividing the number to
display by 10

 digitalWrite(LATCH, LOW);

 shiftOut(DATA, CLOCK, LSBFIRST, digits[right]);

 shiftOut(DATA, CLOCK, LSBFIRST, digits[left]);

 digitalWrite(LATCH, HIGH);

 }

}

3 void loop()

{

 int i;

 for (i = 0 ; i < 100 ; i++)

 {

 displayNumber(i);

 delay(100);

 }

}

At 1, the function checks whether the number to be displayed is less than
10. If so, it sends the data for the number and a blank digit to the shift
registers. However, if the number is greater than 10, the function uses
modulo and division at 2 to separate the digits and then sends them to the
shift registers separately. Finally, in void loop() at 3, we set up and call
the function to display the numbers from 0 to 99.

Project #20: Creating a Digital Thermometer
In this project, we’ll add the TMP36 temperature sensor we created in
Project 8 in Chapter 4 to the double-digit circuit constructed for Project 19
to create a digital thermometer that displays values for 0 degrees and above.

The algorithm is simple: we read the voltage returned from the TMP36
(using the method from Project 12 in Chapter 5) and convert the reading to
degrees Celsius.

The Hardware
The following hardware is required:

The double-digit circuit from Project 19

One TMP36 temperature sensor

Connect the center output lead of the TMP36 to analog pin 5, the left lead
to 5 V, and the right lead to GND, and you’re ready to measure.

The Sketch
Here is the sketch:

// Project 20 - Creating a Digital Thermometer

#define DATA 6 // connect to pin 14 on the
74HC595

#define LATCH 8 // connect to pin 12 on the
74HC595

#define CLOCK 10 // connect to pin 11 on the
74HC595

int temp = 0;

float voltage = 0;

float celsius = 0;

float sensor = 0;

int digits[]={

 252, 96, 218, 242, 102, 182, 190, 224,

 254, 246, 238, 62, 156, 122, 158, 142

};

void setup()

{

 pinMode(LATCH, OUTPUT);

 pinMode(CLOCK, OUTPUT);

 pinMode(DATA, OUTPUT);

}

void displayNumber(int n)

{

 int left, right = 0;

 if (n < 10)

 {

 digitalWrite(LATCH, LOW);

 shiftOut(DATA, CLOCK, LSBFIRST, digits[n]);

 shiftOut(DATA, CLOCK, LSBFIRST, digits[0]);

 digitalWrite(LATCH, HIGH);

 }

 if (n >= 10)

 {

 right = n % 10;

 left = n / 10;

 digitalWrite(LATCH, LOW);

 shiftOut(DATA, CLOCK, LSBFIRST, digits[right]);

 shiftOut(DATA, CLOCK, LSBFIRST, digits[left]);

 digitalWrite(LATCH, HIGH);

 }

}

void loop()

{

 sensor = analogRead(5);

 voltage = (sensor * 5000) / 1024; // convert raw sensor
value to millivolts

 voltage = voltage - 500; // remove voltage offset

 celsius = voltage / 10; // convert millivolts to
Celsius

 temp = int(celsius); // change the floating-point
temperature to an int

 displayNumber(temp);

 delay(500);

}

As indicated, the sketch borrows code from previous projects:
displayNumber() from Project 19 and the temperature calculations from
Project 12. The delay(500) function in the second-to-last line of the sketch
keeps the display from changing too quickly when the temperature
fluctuates.

Looking Ahead
In this chapter, you have learned a lot of fundamental skills that you’ll use
over and over in your own projects. LED displays are relatively hardy, so

enjoy experimenting with them. However, there is a limit to the display
effects they can be used for, so in the next chapter, we make use of much
more detailed display methods for text and graphics.

7

EXPANDING YOUR ARDUINO

In this chapter you will
Learn about the broad variety of Arduino shields

Make your own Arduino shield using a ProtoShield

See how Arduino libraries can expand the available functions

Use a memory card module to record data that can be analyzed in a
spreadsheet

Build a temperature-logging device

Learn how to make a stopwatch using micros() and millis()

Understand Arduino interrupts and their uses

Another way to expand the capabilities of your Arduino is by using shields.
A shield is a circuit board that connects via pins to the sockets on the sides
of an Arduino. In the first project in this chapter, you’ll learn how to make
your own shield. Over time, as you experiment with electronics and
Arduino, you can make your circuits more permanent by building them
onto a ProtoShield, a blank printed circuit board that you can use to mount
custom circuitry.

Next, I’ll introduce a memory card module. We’ll use it in this chapter to
create a temperature-logging device to record temperatures over time; the
shield will be used to record data from the Arduino to be transferred
elsewhere for analysis.

You’ll learn about the functions micros() and millis(), which are very
useful for keeping time, as you’ll see in the stopwatch project. Finally, we’ll
examine interrupts.

Shields
You can add functionality to your Arduino board by attaching shields.
Hundreds of shields are available on the market, and they can be combined,
or stacked, to work together. One popular project, for example, combines a
GPS shield with a microSD memory card shield to create a device that logs
and stores position over time, for example to record a car’s path of travel or
the location of a new hiking trail. Other projects include Ethernet network
adapters that let the Arduino access the internet (Figure 7-1).

Figure 7-1: An Ethernet shield on an Arduino Uno

GPS satellite receivers let you track the location of the Arduino (Figure 7-
2). MicroSD memory card interfaces let the Arduino store data on a
memory card (Figure 7-3).

Figure 7-4 shows a stack that includes an Arduino Uno, a microSD memory
card shield to which data can be recorded, an Ethernet shield for connecting
to the internet, and an LCD shield to display information.

Figure 7-2: A GPS receiver shield (with separate GPS module)

Figure 7-3: A MicroSD card shield

Figure 7-4: Three stacked shields with an Arduino Uno

WARNING

When stacking shields, make sure that no shield uses the same
digital or analog pins used by another shield at the same time. If
you share pins between shields that use the same pin(s) for different
functions, you may damage your entire creation, so take care. The
suppliers of each shield should provide information showing which
pins are used by their shields.

ProtoShields
You can buy a variety of shields online, or make your own using a
ProtoShield. A ProtoShield is a blank circuit board that you can use to make
your own permanent Arduino shields. ProtoShields come preassembled or
in kit form, similar to the one shown in Figure 7-5.

A ProtoShield also makes a good base for a solderless breadboard, because
it keeps a small circuit within the physical boundary of your Arduino

creation (as shown in Figure 7-6). Smaller solderless breadboards fit within
the rows of sockets and can be temporarily mounted on the circuit board
with Blu Tack reusable putty or mounted more permanently with double-
sided tape. ProtoShields can also act as a more permanent foundation for
circuits that have been tested on a breadboard.

Figure 7-5: A ProtoShield kit

Figure 7-6: An example of small project mounted on a ProtoShield’s solderless breadboard

Building custom circuits on a ProtoShield requires some forward planning.
You have to design the circuit, make a schematic, and then plan the layout
of the components as they will sit on the ProtoShield. Finally, you will
solder the completed circuit onto your custom shield, but you should always
test it first using a solderless breadboard to ensure that it works. Some
ProtoShields come with a PDF schematic file that you can download and
print, intended specifically for drawing your project schematic.

Project #21: Creating a Custom Shield
In this project, you’ll create a custom shield containing two LEDs and
current-limiting resistors. This custom shield will make it easy to
experiment with LEDs on digital outputs.

The Hardware
The following hardware is required for this project:

One blank Arduino ProtoShield with stacking headers

Two LEDs of any color

Two 560 Ω resistors

Two 10 kΩ resistors

Two push buttons

Two 100 nF capacitors

The Schematic
The circuit schematic is shown in Figure 7-7.

Figure 7-7: Schematic for Project 21

The Layout of the ProtoShield Board
The next step is to learn the layout of the holes on the ProtoShield. The
rows and columns of holes on the ProtoShield generally match those of a
solderless breadboard. However, each ProtoShield may vary, so take the
time to determine how the holes are connected. On the example ProtoShield
shown in Figure 7-8, some holes are connected, as shown by the solid lines
between the holes, but a lot of holes have been left unconnected. This
design gives you a lot of flexibility in how you use your ProtoShield.

Figure 7-8: A blank ProtoShield shown from above

Note the two groups of holes surrounded by rectangles along the top and
bottom of the ProtoShield: this is where we solder the stackable headers
that allow the ProtoShield to slot into the Arduino board.

The Design
You need to convert the circuit shown in Figure 7-7 into a physical layout
that’s suitable for your ProtoShield. A good way to do this is to lay out your
circuit using graph paper, as shown in Figure 7-9. You can then mark the
connected holes on the graph paper and easily experiment until you find a
layout that works for your particular ProtoShield. If you don’t have any

graph paper, you can generate and print your own at
http://www.printfreegraphpaper.com/.

Figure 7-9: Planning our custom shield

After you’ve drawn a plan for your circuit, test-fit the components into the
ProtoShield to make sure that they’ll fit and that they aren’t too crowded. If
the ProtoShield has space for a reset button, always include one, because
the shield will block access to your Arduino’s RESET button.

Soldering the Components
Once you’re satisfied with the layout of the circuit on your ProtoShield and
you’ve tested the circuit to make sure it works, you can solder the
components. Using a soldering iron is not that difficult, and you don’t need
to buy an expensive soldering station for this type of work. A simple iron
rated at 25 to 40 watts, like the one shown in Figure 7-10, should do the
job.

http://www.printfreegraphpaper.com/

Figure 7-10: Soldering iron

NOTE

If soldering is new to you, download and read the instructional
comic book from http://mightyohm.com/soldercomic/.

When soldering the components, you may need to bridge them together
with a small amount of solder and wire cutoffs, as shown in Figure 7-11.

Check each solder connection as you go, because mistakes are easier to
locate and repair before the project is finished. When the time comes to
solder the four header sockets or header pins, keep them aligned by using
an existing shield to hold the new pins, as shown in Figure 7-12.

http://mightyohm.com/soldercomic/

Figure 7-11: A solder bridge

Figure 7-12: Soldering header pins

Figure 7-13 shows the finished product: a custom Arduino shield with two
LEDs and two buttons.

Figure 7-13: The completed custom shield

Testing Your ProtoShield
Before moving on, it’s a great idea to test your ProtoShield’s buttons and
LEDs. The sketch in Listing 7-1 uses the two buttons to turn the LEDs on or
off.

// Listing 7-1: ProtoShield test

void setup()

{

 pinMode(2, INPUT);

 pinMode(3, INPUT);

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

}

void loop()

{

 if (digitalRead(2) == HIGH)

 {

 digitalWrite(5, HIGH);

 digitalWrite(6, HIGH);

 }

 if (digitalRead(3) == HIGH)

 {

 digitalWrite(5, LOW);

 digitalWrite(6, LOW);

 }

}

Listing 7-1: Testing the ProtoShield’s buttons and lights

Expanding Sketches with Libraries
Just as an Arduino shield can expand our hardware, a library can add useful
functions to our sketches. These functions can allow us to use hardware
specific to a manufacturer’s shield. Anyone can create a library, just as
suppliers of various Arduino shields often write their own libraries to match
their hardware.

The Arduino IDE already includes a set of preinstalled libraries. To include
them in your sketches, choose Sketch▶Include Library. You should see
the collection of preinstalled libraries with names such as Ethernet,
LiquidCrystal, Servo, and so on. Many of these names will be self-
explanatory. (If a library is required for a project in this book, it will be
explained in detail in these pages.)

If you buy a new piece of hardware, you’ll generally need to download and
install its libraries from the hardware vendor’s site or from a provided link.
There are two methods for installing an Arduino library: downloading the
library in a ZIP file or using the Arduino Library Manager. Let’s see how
both methods work by walking through a download of the library required
by the microSD card shield (Figure 7-3).

Downloading an Arduino Library as a ZIP File
First, let’s try downloading and installing a library in ZIP format. You’ll
download the advanced library used by memory card modules to allow you
to read and write data to microSD and SD cards:

. Visit https://github.com/greiman/SdFat/ and click Code. Make sure
HTTPS is selected and then click Download ZIP, as demonstrated in
Figure 7-14.

Figure 7-14: Library download page

. After a moment, the file SdFat-master.zip will appear in your Downloads
folder, as shown in Figure 7-15. If you are using an Apple computer, the
ZIP file may be extracted automatically.

Figure 7-15: Downloads folder containing SdFat-master.zip

. Open the Arduino IDE and choose Sketch▶Include Library▶Add .ZIP
Library, as shown in Figure 7-16.

https://github.com/greiman/SdFat/

Figure 7-16: Starting the library installation process

You will be presented with a file manager dialog, as shown in Figure 7-17.
Navigate to your Downloads folder (or wherever you saved the ZIP file)
and click Open.

Figure 7-17: Locating the ZIP file

The Arduino IDE will now take care of the library installation. After a few
moments, you will be notified that the library has been installed by a

message in the IDE output window, as shown in Figure 7-18.

Figure 7-18: Arduino library installation success

. You can verify that the SdFat library has been installed and is available by
searching through the IDE’s Library Manager. To do this, click the Library
Manager icon in the vertical group on the left of the IDE, then search using
the box at the top, or scroll down until you see your library. For example, in
Figure 7-19 you can see that SdFat appears in the Library Manager.

Figure 7-19: Successful installation of the SdFat library

Importing an Arduino Library with Library Manager
The alternative method of installing an Arduino library is via the Arduino
IDE’s built-in Library Manager. This is a tool for accessing an online
repository of libraries that are available for use by the wider public and
have been personally approved by the Arduino team, or are just very
popular. You will generally access the Library Manager when instructed to
by a hardware supplier.

As an example, we’ll download the FastLED Arduino library, which is used
by a popular type of RGB LED.

To do this, open the Arduino IDE if you’ve not already done so, then open
the Library Manager. Enter FastLED in the search box at the top of the
manager, as shown in Figure 7-20. As you type, the manager will return
libraries that match your search data, and you can see the required library
has appeared.

Figure 7-20: Searching the Library Manager

Once the library is found and displayed in the Library Manager, move your
mouse cursor over the library description. You may have the option to select
a version number. Generally, the latest version is displayed by default, so

you simply need to click Install and wait for installation to complete.
Installation progress is shown in the output window, as shown in Figure 7-
21.

Figure 7-21: Library installation process

You can check that the library has been installed using the method
described earlier in this chapter.

SD Memory Cards
By using SD or microSD cards with your Arduino, you can capture data
from many sources, such as the TMP36 temperature sensor we used in
Chapter 4. You can also use the cards to store web server data or any files
that your project might use. To record and store the data you collect, you
can use a memory card like the one shown in Figure 7-22.

Figure 7-22: A microSD card with 16GB capacity

Both microSD and SD memory cards are available to work with your
Arduino.

NOTE

If your memory card isn’t brand new, you’ll need to format it before
you can use it. To format the card, plug it into a computer and
follow your operating system’s instructions for formatting memory
cards.

Connecting the Card Module

Before you can use the memory card, you’ll need to connect six wires from
the card reader module to your Arduino. Both card reader types (microSD
and SD) will have the same pins, which should be labeled as shown in
Figure 7-23.

Figure 7-23: SD card module

Make the connections between your Arduino and the card reader as shown
in Table 7-1.

Table 7-1: Connections Between the Card Module and Arduino

Module pin label To Arduino pin Module pin functions
5 V or Vcc 5 V Power
GND GND GND
CS D10 Chip select
MOSI D11 Data in from Arduino
MISO D12 Data out to Arduino
SCK D13 Clock

Testing Your SD Card
After you have finished connecting the card module to your Arduino—and
you have a new or newly formatted card—now is the time to make sure the
card is working correctly. To do so, follow these steps:

. Insert the memory card into the card module. Then connect the module to
the Arduino and the Arduino to your PC via the USB cable.

. Open the IDE and select File▶Examples▶SdFat▶SdInfo. This will load an
example sketch.

. Scroll down to line 36 in the sketch and change the value of const int
chipSelect from 4 to 10, as shown in Figure 7-24. This is necessary as the
pin used varies depending on the SD card hardware. Now upload this sketch
to your Arduino.

Figure 7-24: Altering the test sketch

. Finally, open the Serial Monitor window, set it to 9,600 baud, press any key
on the keyboard, and press ENTER. After a moment, you should see some
data about the microSD card, as shown in Figure 7-25.

Figure 7-25: Results of a successful memory card test

If the test results don’t appear in the Serial Monitor, try the following:

Remove the USB cable from your Arduino and remove and reinsert the
microSD card.

Make sure that the wiring connections match those in Table 7-1.

Check that the Serial Monitor baud rate is 9,600 and that a regular Arduino
Uno–compatible board is being used. The Mega and some other board
models have the SPI pins in different locations.

Reformat your memory card.

Failing all else, try a new name-brand memory card.

Finally, before either inserting your memory card or removing it, ensure the
entire project is disconnected from the USB and/or power supply.

Project #22: Writing Data to the Memory
Card
In this project, you’ll use a memory card to store data—specifically, a
multiplication table.

The Sketch

To write data to the memory card, connect your shield, insert a microSD
card, and then enter and upload the following sketch:

// Project 22 - Writing Data to the Memory Card

#include <SD.h>

int b = 0;

void setup()

{

 Serial.begin(9600);

 Serial.println("Initializing SD card...");

 pinMode(10, OUTPUT);

 // check that the memory card exists and is usable

 if (!SD.begin(10))

 {

 Serial.println("Card failed, or not present");

 // stop sketch

 return;

 }

 Serial.println("memory card is ready");

}

void loop()

{

1 // create the file for writing

 File dataFile = SD.open("DATA.TXT", FILE_WRITE);

 // if the file is ready, write to it:

 if (dataFile)

2 {

 for (int a = 0 ; a < 11 ; a++)

 {

 dataFile.print(a);

 dataFile.print(" multiplied by two is ");

 b = a * 2;

3 dataFile.println(b, DEC);

 }

4 dataFile.close(); // close the file once the system has
finished with it

 // (mandatory)

 }

 // if the file isn't ready, show an error:

 else

 {

 Serial.println("error opening DATA.TXT");

 }

 Serial.println("finished");

 do {} while (1);

}

Figure 7-26: Output from Project 22

The sketch creates a text file called DATA.TXT on the microSD card, as
shown in Figure 7-26.

Let’s review the void loop() section of the sketch to see how it created the
text file. The code in void loop() between 1 and 2 creates and opens the
file for writing. To write text to the file, we use dataFile.print() or
dataFile.println().

This code works in the same manner as, for example, Serial.println(),
so you can write it in the same manner as you would to the Serial Monitor.
At 1 we set the name of the created text file, which must be eight characters
or less, followed by a dot, and then three characters, such as DATA.TXT.

At 3, we use DEC as the second parameter. This states that the variable is a
decimal number and should be written to the text file as such. If we were
writing a float variable instead, then we would use a digit for the number
of decimal places to write (to a maximum of six).

When we’re finished writing data to the file, at 4, we use
dataFile.close() to close the file for writing. If this step is not followed,
the computer will not be able to read the created text file.

Project #23: Creating a Temperature-Logging
Device
Now that you know how to record data, let’s measure and record the
temperature every minute for 8 hours using our memory card setup from
Project 22 and the TMP36 temperature sensor circuit introduced in Chapter
4.

The Hardware
The following hardware is required:

One TMP36 temperature sensor

One breadboard

Various connecting wires

Memory card and module

Arduino and USB cable

Insert the microSD card into the shield, and then insert the shield into the
Arduino. Connect the left (5 V) pin of the TMP36 to Arduino 5 V, the
middle pin to analog, and the right pin to GND.

The Sketch
Enter and upload the following sketch:

// Project 23 - Creating a Temperature-Logging Device

#include <SD.h>

float sensor, voltage, celsius;

void setup()

{

 Serial.begin(9600);

 Serial.println("Initializing SD card...");

 pinMode(10, OUTPUT);

 // check that the memory card exists and can be used

 if (!SD.begin(10))

 {

 Serial.println("Card failed, or not present");

 // stop sketch

 return;

 }

 Serial.println("memory card is ready");

}

void loop()

{

 // create the file for writing

 File dataFile = SD.open("DATA.TXT", FILE_WRITE);

 // if the file is ready, write to it:

 if (dataFile)

 {

 for (int a = 0 ; a < 481 ; a++) // 480 minutes in 8
hours

 {

 sensor = analogRead(0);

 voltage = (sensor * 5000) / 1024; // convert raw sensor
value to

 // millivolts

 voltage = voltage - 500;

 celsius = voltage / 10;

 dataFile.print(" Log: ");

 dataFile.print(a, DEC);

 dataFile.print(" Temperature: ");

 dataFile.print(celsius, 2);

 dataFile.println(" degrees C");

 delay(599900); // wait just under one minute

 }

 dataFile.close(); // mandatory

 Serial.println("Finished!");

 do {} while (1);

 }

}

The sketch will take a little more than 8 hours to complete, but you can alter
this period by lowering the value in delay(599900).

After the sketch has finished, remove the microSD card from the Arduino,
insert it into your computer, and open the log file in a text editor, as shown
in Figure 7-27.

Figure 7-27: Results from Project 23

For more serious analysis of the captured data, delimit the lines of text
written to the log file with spaces or colons so that the file can be easily
imported into a spreadsheet. For example, you could import the file into
OpenOffice Calc or Excel to produce a spreadsheet like the one shown in
Figure 7-28.

Figure 7-28: Importing the data into a spreadsheet

Then you can easily perform some statistical analysis of the data, as shown
in Figure 7-29.

The temperature examples can be hacked to suit your own data analysis
projects. You can use these same concepts to record any form of data that

can be generated by an Arduino system.

Figure 7-29: Temperature analysis

Timing Applications with millis() and
micros()
Each time the Arduino starts running a sketch, it also records the passage of
time using milliseconds and microseconds. A millisecond is one thousandth
of a second (0.001), and a microsecond is one millionth of a second
(0.000001). You can use these values to measure the passage of time when
running sketches.

The following functions will access the time values stored in an unsigned
long variable:

 unsigned long a,b;

 a = micros();

 b = millis();

Due to the limitations of the unsigned long variable type (which stores
only positive values), the value will reset to 0 after reaching 4,294,967,295,
allowing for around 50 days of counting using millis() and 70 minutes
using micros(). Furthermore, due to the limitations of the Arduino’s
microprocessor, micros() values are always a multiple of four.

Let’s use these values to see how long it takes for the Arduino to turn a
digital pin from low to high and vice versa. To do this, we’ll read micros()
before and after a digitalWrite() function, find the difference, and display
it in the Serial Monitor. The only required hardware is your Arduino and
cable.

Enter and upload the sketch shown in Listing 7-2.

// Listing 7-2

unsigned long starting, finished, elapsed;

void setup()

{

 Serial.begin(9600);

 pinMode(3, OUTPUT);

 digitalWrite(3, LOW);

}

void loop()

{

1 starting = micros();

 digitalWrite(3, HIGH);

2 finished = micros();

3 elapsed = finished – starting;

 Serial.print("LOW to HIGH: ");

 Serial.print(elapsed);

 Serial.println(" microseconds");

 delay(1000);

4 starting = micros();

 digitalWrite(3, LOW);

 finished = micros();

 elapsed = finished - starting;

 Serial.print("HIGH to LOW: ");

 Serial.print(elapsed);

 Serial.println(" microseconds");

 delay(1000);

}

Listing 7-2: Timing digital pin state change with micros()

The sketch takes readings of micros() before and after the
digitalWrite(HIGH) function call, at 1 and 2, and then it calculates the
difference and displays it in the Serial Monitor at 3. This is repeated for the
opposite function at 4.

Now open the Serial Monitor to view the results, shown in Figure 7-30.

Figure 7-30: Output from Listing 7-2

Because the resolution is 4 microseconds, if the value is 8 microseconds,
we know that the duration is greater than 4 and less than or equal to 8.

Project #24: Creating a Stopwatch
Now that we can measure the elapsed time between two events, we can
create a simple stopwatch using an Arduino. Our stopwatch will use two
buttons: one to start or reset the count and one to stop counting and show
the elapsed time. The sketch will continually check each button’s status.
When the start button is pressed, a millis() value will be stored, and when
the stop button is pressed, a new millis() value will be stored. The custom
function displayResult() will convert the elapsed time from milliseconds

into hours, minutes, and seconds. Finally, the time will be displayed in the
Serial Monitor.

The Hardware
Use the ProtoShield as described earlier in this chapter and the following
additional hardware:

One breadboard

Two push buttons (S1 and S2)

Two 10 kΩ resistors (R1 and R2)

Various connecting wires

Arduino and USB cable

The Schematic
The circuit schematic is shown in Figure 7-31.

NOTE

You will use this circuit for the next project, so don’t pull it apart
when you’re finished!

Figure 7-31: Schematic for Project 24

The Sketch
Enter and upload this sketch:

// Project 24 – Creating a Stopwatch

unsigned long starting, finished, elapsed;

void setup()

{

 Serial.begin(9600);

1 pinMode(2, INPUT); // the start button

 pinMode(3, INPUT); // the stop button

 Serial.println("Press 1 for Start/reset, 2 for elapsed
time");

}

void displayResult()

{

 float h, m, s, ms;

 unsigned long over;

2 elapsed = finished - starting;

 h = int(elapsed / 3600000);

 over = elapsed % 3600000;

 m = int(over / 60000);

 over = over % 60000;

 s = int(over / 1000);

 ms = over % 1000;

 Serial.print("Raw elapsed time: ");

 Serial.println(elapsed);

 Serial.print("Elapsed time: ");

 Serial.print(h, 0);

 Serial.print("h ");

 Serial.print(m, 0);

 Serial.print("m ");

 Serial.print(s, 0);

 Serial.print("s ");

 Serial.print(ms, 0);

 Serial.println("ms");

 Serial.println();

}

void loop()

{

3 if (digitalRead(2) == HIGH)

 {

 starting = millis();

 delay(200); // for debounce

 Serial.println("Started...");

 }

4 if (digitalRead(3) == HIGH)

 {

 finished = millis();

 delay(200); // for debounce

 displayResult();

 }

}

The basis for our stopwatch is simple. At 1, we set up the digital input pins
for the start and stop buttons. At 3, if the start button is pressed, then the
Arduino notes the value for millis() that we use to calculate the elapsed
time once the stop button is pressed at 4. After the stop button is pressed,
the elapsed time is calculated in the function displayResult() at 2 and
shown in the Serial Monitor window.

You should see results like those in Figure 7-32 in the Serial Monitor.

Figure 7-32: Output from Project 24

Interrupts
An interrupt in the Arduino world is basically a signal that allows a
function to be called at any time within a sketch—for example, when a
digital input pin’s state changes or a timer event is triggered. Interrupts are
perfect for calling a function to interrupt the normal operation of a sketch,
such as when a button is pressed. This type of function is often referred to
as an interrupt handler.

When an interrupt is triggered, the normal operation and running of your
program is halted temporarily as the interrupt function is called and
executed. Then, when the interrupt function exits, whatever was happening
in the program continues exactly where it left off.

Interrupt functions should be short and simple. They should exit quickly,
and keep in mind that if the interrupt function does something that the main
loop is already doing, then the interrupt function is going to temporarily
override the main loop’s activity before the main loop resumes. For
example, if the main loop is regularly sending Hello out the serial port and
the interrupt function sends --- when it is triggered, then you could see any
of these come out the serial port: H----ello, He----llo, Hel----lo, Hell----o, or
Hello----.

The Arduino Uno offers two interrupts that are available using digital pins 2
and 3. When properly configured, the Arduino will monitor the voltage
applied to the pins. When the voltage changes in a certain defined way
(when a button is pressed, for example), an interrupt is triggered, causing a
corresponding function to run—maybe something that sends “Stop Pressing
Me!”

Interrupt Modes
One of four changes (or modes) can trigger an interrupt:

LOW No current is applied to the interrupt pin.

CHANGE The current changes, either between on and off or between off and
on.

RISING The current changes from off to on at 5 V.

FALLING The current changes from on at 5 V to off.

For example, to detect when a button attached to an interrupt pin has been
pressed, you could use the RISING mode. Or, for example, if you had an
electric trip wire running around your garden (connected between 5 V and
the interrupt pin), then you could use the FALLING mode to detect when the
wire has been tripped and broken.

NOTE

The delay() and Serial.available() functions will not work
within a function that has been called by an interrupt.

Configuring Interrupts
To configure interrupts, use the following in void setup():

 attachInterrupt(0, function, mode);

 attachInterrupt(1, function, mode);

Here, 0 is for digital pin 2, 1 is for digital pin 3, function is the name of the
function to call when the interrupt is triggered, and mode is one of the four
modes that triggers the interrupt.

Activating or Deactivating Interrupts
Sometimes you won’t want to use the interrupts within a sketch. You can
deactivate a single interrupt using:

detachInterrupt(digitalPinToInterrupt(pin))

where pin is the digital pin number used. Or you can deactivate them all
using the following:

noInterrupts(); // deactivate interrupts

And then reactivate them with this:

interrupts(); // reactivate interrupts

Interrupts work quickly and they are very sensitive. These qualities make
them useful for time-critical applications or for “emergency stop” buttons
on projects.

Project #25: Using Interrupts

We’ll use the circuit from Project 24 to demonstrate the use of interrupts.
Our example will blink the built-in LED every 500 milliseconds, during
which time both interrupt pins will be monitored. When the button on
interrupt 0 is pressed, the value for micros() will be displayed in the Serial
Monitor, and when the button on interrupt 1 is pressed, the value for
millis() will be displayed.

The Sketch
Enter and upload the following sketch:

// Project 25 – Using Interrupts

#define LED 13

void setup()

{

 Serial.begin(9600);

 pinMode(13, OUTPUT);

 attachInterrupt(0, displayMicros, RISING);

 attachInterrupt(1, displayMillis, RISING);

}

1 void displayMicros()

{

 Serial.write("micros() = ");

 Serial.println(micros());

}

2 void displayMillis()

{

 Serial.write("millis() = ");

 Serial.println(millis());

}

3 void loop()

{

 digitalWrite(LED, HIGH);

 delay(500);

 digitalWrite(LED, LOW);

 delay(500);

}

This sketch will blink the onboard LED as shown in void loop() at 3.
When interrupt 0 is triggered, the function displayMicros() at 1 will be

called; when interrupt 1 is triggered, the function displayMillis() at 2
will be called. After either function has finished, the sketch resumes
running the code in void loop().

Open the Serial Monitor window and press the two buttons to view the
values for millis() and micros(), as shown in Figure 7-33.

Figure 7-33: Output from Project 25

Looking Ahead
This chapter has given you more tools and options that you can adapt to
create and improve your own projects. In future chapters, we will work with
more Arduino shields, use interrupts for timing projects, and use the
memory card module in other data-logging applications.

8

LED NUMERIC DISPLAYS AND

MATRICES

In this chapter, you will
Use MAX7219-based numeric LED displays

Build your own digital stopwatch timer

Use MAX7219-based LED matrix modules

Build a scrolling text LED display

Although LED numeric displays (such as those found in contemporary
digital alarm clocks) may not be on the bleeding edge of display
technology, they are easy to read and—more importantly—easy to use with
our Arduino boards.

You learned how to use one- and two-digit LED numeric displays in
Chapter 6. However, using more than two digits at a time can become
messy—there’s a lot more wiring, more control ICs, and so on to take care
of. Fortunately, there’s a popular IC that can control up to 64 LEDs (eight
digits of a numeric display) with only three control wires from our Arduino:
the MAX7219 LED driver IC from Maxim Integrated.

The MAX7219 is available in both a through-hole package type, which
means it has metal legs that can fit into a circuit board or a solderless
breadboard (Figure 8-1), and a surface-mount package type (Figure 8-2).

Figure 8-1: The MAX7219 in a through-hole package type

Figure 8-2: The MAX7219 in a surface-mount package type

In this chapter, you’ll learn how to use the MAX7219 to control up to eight
numeric LED digits. You’ll also learn how to use the MAX7219 to control
interesting LED matrix modules that allow for scrolling text displays.

LED Numeric Displays
LED numeric displays that use the MAX7219 come in many shapes and
sizes, usually with four to eight digits fitted to the module. For our
examples, we’re using an eight-digit module, which is easily available and
great value for the money (see Figure 8-3).

Figure 8-3: The eight-digit LED module

These modules have the surface-mount version of the MAX7219, shown in
Figure 8-2, on the back. The modules usually include some inline header
pins to allow for attaching control wires. If you haven’t already done so,
solder these to your module, as shown in Figure 8-4.

Figure 8-4: Inline header pins connected to an eight-digit LED module

Before you can use the numeric display, you’ll need to connect five wires to
both the display and the Arduino. This is easily done by connecting male-

to-female jumper wires to the header pins that you soldered to the board.
Make the connections as shown in Table 8-1.

Table 8-1: Connections Between the Display Module and Arduino

Module pin label Arduino pin Module pin function
Vcc 5V Power (+)
GND GND Power (−) or ground
DIN D12 Data in
CS D10 Chip select
CLK D11 Clock signal

Installing the Library
There are several Arduino libraries for the MAX7219. These libraries vary
according to the configuration of the display module used. We will use the
LedControl library. You will need to download the library ZIP file from
https://github.com/wayoda/LedControl/. Click Clone or Download and
then Download ZIP, as shown in Figure 8-5.

Figure 8-5: Downloading the LedControl library

Once you have the ZIP file, install it as described in Chapter 7. Next, to use
the display module, we will first examine a demonstration sketch that uses
the required functions. Enter and upload the basic sketch shown in Listing
8-1.

// Listing 8-1

1 #include "LedControl.h" // need the library

LedControl lc = LedControl(12, 11, 10, 1);

void setup()

{

2 lc.shutdown(0, false); // enable display

 lc.setIntensity(0, 3); // set brightness

 lc.clearDisplay(0); // clear screen

}

void loop()

{

 // numbers with decimal point

 for (int a = 0; a < 8; a++)

 {

3 lc.setDigit(0, a, a, true);

 delay(500);

 lc.clearDisplay(0) ; // clear screen

 }

 // dashes

 for (int a = 0; a < 8; a++)

 {

4 lc.setChar(0, a, '-', false);

 delay(500);

 lc.clearDisplay(0) ; // clear screen

 }

 // numbers without decimal point

 for (int a = 0; a < 8; a++)

 {

 lc.setDigit(0, a, a, false);

 delay(500);

 lc.clearDisplay(0) ; // clear screen

 }

5 // display "abcdef"

 lc.setDigit(0, 5, 10, false);

 lc.setDigit(0, 4, 11, false);

 lc.setDigit(0, 3, 12, false);

 lc.setDigit(0, 2, 13, false);

 lc.setDigit(0, 1, 14, false);

 lc.setDigit(0, 0, 15, false);

 delay(500);

 lc.clearDisplay(0) ; // clear screen

}

Listing 8-1: Display module demonstration sketch

Let’s take a look at how the sketch in Listing 8-1 works. At 1, we include
the necessary code to load the library for the display module. The
LedControl() function has four parameters:

LedControl lc = LedControl(12, 11, 10, 1);

The first three say which digital pins are connected (see Table 8-1), and the
fourth parameter is the number of display modules connected to the
Arduino—in this case one. (You can daisy-chain more than one module.)

At 2, we have three functions that control aspects of the display. The first
one turns the display on or off:

lc.shutdown(0, false);

The first parameter is the display. We use 0 because only one display is
connected. If you have connected multiple displays, the second is display 1,
the third is display 2, and so on. The second parameter specifies whether the
display is on or off: false for on, true for off.

The second function is used to set the brightness of the LEDs in the display:

lc.setIntensity(0, 3);

The first parameter is the display number. The second is the brightness,
which can be between 0 and 15 inclusive.

The third function simply turns all the LEDs off:

lc.clearDisplay(0);

This is great for clearing previously displayed data.

At 3, we display a digit on the screen using setDigit():

lc.setDigit(0, a, b, true);

The first parameter is the display number. The second is the physical
position of the digit on the display; for an eight-digit display, this value
ranges from 7 (the leftmost digit) to 0 (the rightmost digit). The third

parameter is the actual number to display (0 to 9). If you use 10 to 16, you
can display the letters A to F, as we’ve done at 5. Finally, the fourth
parameter controls the decimal point: true for on and false for off.

You can also write the characters A to F, H, L, P, dash, period, and
underscore using setChar(), as at 4:

lc.setChar(0, a, '-', false);

The parameters are the same, except you enclose the character with single
quotes.

Now that we’ve been through all the commands for showing numbers and
characters on the display, let’s put them into action.

Project #26: Digital Stopwatch
You learned about timing in Project 24 in Chapter 7, and you’ve just
learned how to use a display module, so now you can combine these
concepts to create a digital stopwatch. While not accurate to Olympic
timing levels, this is a fun and useful project. Your stopwatch will be able to
display milliseconds, seconds, minutes, and up to nine hours.

You will need to connect the ProtoShield (or equivalent circuit) as described
in Chapter 7 and to the numeric display used earlier in this chapter. Then
just upload the following sketch:

// Project 26 – Digital Stopwatch

#include "LedControl.h" // need the library

LedControl lc = LedControl(12, 11, 10, 1);

unsigned long starting, finished, elapsed;

void setup()

{

 pinMode(2, INPUT); // the start button

 pinMode(3, INPUT); // the stop button

 lc.shutdown(0, false); // enable display

 lc.setIntensity(0, 3); // set brightness

 lc.clearDisplay(0); // clear screen

 starting = millis();

}

1 void displayResultLED()

{

 float h, m, s, ms;

 int m1, m2, s1, s2, ms1, ms2, ms3;

 unsigned long over;

 finished = millis();

 elapsed = finished - starting;

2 h = int(elapsed / 3600000);

 over = elapsed % 3600000;

 m = int(over / 60000);

 over = over % 60000;

 s = int(over / 1000);

 ms = over % 1000;

3 // display hours

 lc.setDigit(0, 7, h, true);

 // display minutes

 m1 = m / 10;

 m2 = int(m) % 10;

 lc.setDigit(0, 6, m1, false);

 lc.setDigit(0, 5, m2, true);

 // display seconds

 s1 = s / 10;

 s2 = int(s) % 10;

 lc.setDigit(0, 4, s1, false);

 lc.setDigit(0, 3, s2, true);

 // display milliseconds (1/100 s)

 ms1 = int(ms / 100);

 ms2 = (int((ms / 10)) % 10);

 ms3 = int(ms) % 10;

 lc.setDigit(0, 2, ms1, false);

 lc.setDigit(0, 1, ms2, false);

 lc.setDigit(0, 0, ms2, false);

}

void loop()

{

4 if (digitalRead(2) == HIGH) // reset count

 {

 starting = millis();

 delay(200); // for debounce

 }

5 if (digitalRead(3) == HIGH) // display count for five

seconds then resume

 {

 finished = millis();

 delay(5000); // for debounce

 }

 displayResultLED();

}

A moment after the sketch has been uploaded, the display will start
counting up, as shown in Figure 8-6.

Figure 8-6: The stopwatch at work

Just as we did in Project 24, in this sketch we use millis() to track the
elapsed time. We have put the time calculation and display in the function
void displayResultLED() 1.

At 2, you can see how the elapsed time in milliseconds is broken down into
hours, minutes, seconds, and milliseconds. Then, each digit of the display
from left to right is filled with the corresponding time values, starting with
hours 3. The stopwatch controls are simple: when the user presses the
button connected to digital input 2, the counter is reset to zero by making
the starting time equal to the current value returned by millis() 4. When
the button connected to digital input 3 is pressed 5, the display is frozen;
this functionality is ideal for taking a lap reading. Note, however, that the
counting continues and the display resumes after about five seconds.

This project can easily be changed to display data in a simpler format—
such as hours, minutes, and seconds—or to be used for longer periods, such

as up to 24 hours. But for now, let’s move on to a more complex project
involving LED matrix display boards.

Project #27: Using LED Matrix Modules
The MAX7219 can control up to 64 LEDs. These displayed numbers in the
last project. Here, we’ll use modules that arrange the LEDs in an 8 × 8
matrix form that is ideal for more interesting applications, such as
displaying fixed or scrolling text.

LED matrix modules are generally sold either as individual units or in sets
of four; both are shown in Figure 8-7.

You may also see these advertised as kits; however, the cost savings is
negligible, so save time with the preassembled versions. The LED displays
fit onto the socketed pins on the module, as shown in Figure 8-8, allowing
you to change colors easily.

Figure 8-7: LED matrix modules

Figure 8-8: A removable LED matrix

Take care when inserting the LED matrix into the module, as some LED
matrices have pins that get bent easily. Experience has shown that you still
need to solder inline header pins to the matrix modules. However, these
pins are generally included with the module and fit neatly, as shown in
Figure 8-9.

Figure 8-9: Inline header pins connected to a matrix module

Once again, before you can use the matrix modules, you’ll need to connect
five wires to both the module and the Arduino, just as you did with the
numeric display. Make the connections as shown in Table 8-2.

Table 8-2: Connections Between the Matrix Module and Arduino

Module pin label Arduino pin Module pin function
Vcc 5V Power (+)
GND GND Power (−) or ground
DIN D11 Data in
CS D9 Chip select
CLK D13 Clock signal

Installing the Library
You’ll use a different library for these modules than for the MAX7219. To
get the library, visit https://github.com/bartoszbielawski/LEDMatrixDriver/
and click Clone or Download, then Download ZIP, as shown in Figure 8-
10.

https://github.com/bartoszbielawski/LEDMatrixDriver/

Figure 8-10: Downloading the LEDMatrixDriver library

After you have downloaded the ZIP file, install it as described in Chapter 7.
Enter and upload the sketch that follows. (At this point, I’d like to remind
you that all the code in this book can be downloaded from
https://nostarch.com/arduino-workshop-2nd-edition/.)

NOTE

If you’re using a single matrix module, change the value of const
int LEDMATRIX_SEGMENTS = 4 on line 4 from 4 to 1.

// Project 27 - Using LED Matrix Modules

1 #include <LEDMatrixDriver.hpp>

const uint8_t LEDMATRIX_CS_PIN = 9;

// Number of matrix modules you are connecting

const int LEDMATRIX_SEGMENTS = 4;

const int LEDMATRIX_WIDTH = LEDMATRIX_SEGMENTS * 8;

LEDMatrixDriver lmd(LEDMATRIX_SEGMENTS, LEDMATRIX_CS_PIN);

// Text to display

2 char text[] = "** LED MATRIX DEMO! ** (1234567890) ++
\"ABCDEFGHIJKLMNOPQRSTUVWXYZ\" ++ <$%/=?'.@,> --";

// scroll speed (smaller = faster)

3 const int ANIM_DELAY = 30;

void setup() {

4 // init the display

 lmd.setEnabled(true);

 lmd.setIntensity(2); // 0 = low, 10 = high

https://nostarch.com/arduino-workshop-2nd-edition/

}

int x = 0, y = 0; // start top left

// font definition

5 byte font[95][8] = { {0, 0, 0, 0, 0, 0, 0, 0}, // SPACE

 {0x10, 0x18, 0x18, 0x18, 0x18, 0x00, 0x18, 0x18}, // EXCL

 {0x28, 0x28, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00}, // QUOT

 {0x00, 0x0a, 0x7f, 0x14, 0x28, 0xfe, 0x50, 0x00}, // #

 {0x10, 0x38, 0x54, 0x70, 0x1c, 0x54, 0x38, 0x10}, // $

 {0x00, 0x60, 0x66, 0x08, 0x10, 0x66, 0x06, 0x00}, // %

 {0, 0, 0, 0, 0, 0, 0, 0}, // &

 {0x00, 0x10, 0x18, 0x18, 0x08, 0x00, 0x00, 0x00}, // '

 {0x02, 0x04, 0x08, 0x08, 0x08, 0x08, 0x08, 0x04}, // (

 {0x40, 0x20, 0x10, 0x10, 0x10, 0x10, 0x10, 0x20}, //)

 {0x00, 0x10, 0x54, 0x38, 0x10, 0x38, 0x54, 0x10}, // *

 {0x00, 0x08, 0x08, 0x08, 0x7f, 0x08, 0x08, 0x08}, // +

 {0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x08}, // COMMA

 {0x00, 0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00}, // -

 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x06}, // DOT

 {0x00, 0x04, 0x04, 0x08, 0x10, 0x20, 0x40, 0x40}, // /

 {0x00, 0x38, 0x44, 0x4c, 0x54, 0x64, 0x44, 0x38}, // 0

 {0x04, 0x0c, 0x14, 0x24, 0x04, 0x04, 0x04, 0x04}, // 1

 {0x00, 0x30, 0x48, 0x04, 0x04, 0x38, 0x40, 0x7c}, // 2

 {0x00, 0x38, 0x04, 0x04, 0x18, 0x04, 0x44, 0x38}, // 3

 {0x00, 0x04, 0x0c, 0x14, 0x24, 0x7e, 0x04, 0x04}, // 4

 {0x00, 0x7c, 0x40, 0x40, 0x78, 0x04, 0x04, 0x38}, // 5

 {0x00, 0x38, 0x40, 0x40, 0x78, 0x44, 0x44, 0x38}, // 6

 {0x00, 0x7c, 0x04, 0x04, 0x08, 0x08, 0x10, 0x10}, // 7

 {0x00, 0x3c, 0x44, 0x44, 0x38, 0x44, 0x44, 0x78}, // 8

 {0x00, 0x38, 0x44, 0x44, 0x3c, 0x04, 0x04, 0x78}, // 9

 {0x00, 0x18, 0x18, 0x00, 0x00, 0x18, 0x18, 0x00}, // :

 {0x00, 0x18, 0x18, 0x00, 0x00, 0x18, 0x18, 0x08}, // ;

 {0x00, 0x10, 0x20, 0x40, 0x80, 0x40, 0x20, 0x10}, // <

 {0x00, 0x00, 0x7e, 0x00, 0x00, 0xfc, 0x00, 0x00}, // =

 {0x00, 0x08, 0x04, 0x02, 0x01, 0x02, 0x04, 0x08}, // >

 {0x00, 0x38, 0x44, 0x04, 0x08, 0x10, 0x00, 0x10}, // ?

 {0x00, 0x30, 0x48, 0xba, 0xba, 0x84, 0x78, 0x00}, // @

 {0x00, 0x1c, 0x22, 0x42, 0x42, 0x7e, 0x42, 0x42}, // A

 {0x00, 0x78, 0x44, 0x44, 0x78, 0x44, 0x44, 0x7c}, // B

 {0x00, 0x3c, 0x44, 0x40, 0x40, 0x40, 0x44, 0x7c}, // C

 {0x00, 0x7c, 0x42, 0x42, 0x42, 0x42, 0x44, 0x78}, // D

 {0x00, 0x78, 0x40, 0x40, 0x70, 0x40, 0x40, 0x7c}, // E

 {0x00, 0x7c, 0x40, 0x40, 0x78, 0x40, 0x40, 0x40}, // F

 {0x00, 0x3c, 0x40, 0x40, 0x5c, 0x44, 0x44, 0x78}, // G

 {0x00, 0x42, 0x42, 0x42, 0x7e, 0x42, 0x42, 0x42}, // H

 {0x00, 0x7c, 0x10, 0x10, 0x10, 0x10, 0x10, 0x7e}, // I

 {0x00, 0x7e, 0x02, 0x02, 0x02, 0x02, 0x04, 0x38}, // J

 {0x00, 0x44, 0x48, 0x50, 0x60, 0x50, 0x48, 0x44}, // K

 {0x00, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x7c}, // L

 {0x00, 0x82, 0xc6, 0xaa, 0x92, 0x82, 0x82, 0x82}, // M

 {0x00, 0x42, 0x42, 0x62, 0x52, 0x4a, 0x46, 0x42}, // N

 {0x00, 0x3c, 0x42, 0x42, 0x42, 0x42, 0x44, 0x38}, // O

 {0x00, 0x78, 0x44, 0x44, 0x48, 0x70, 0x40, 0x40}, // P

 {0x00, 0x3c, 0x42, 0x42, 0x52, 0x4a, 0x44, 0x3a}, // Q

 {0x00, 0x78, 0x44, 0x44, 0x78, 0x50, 0x48, 0x44}, // R

 {0x00, 0x38, 0x40, 0x40, 0x38, 0x04, 0x04, 0x78}, // S

 {0x00, 0x7e, 0x90, 0x10, 0x10, 0x10, 0x10, 0x10}, // T

 {0x00, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x3e}, // U

 {0x00, 0x42, 0x42, 0x42, 0x42, 0x44, 0x28, 0x10}, // V

 {0x80, 0x82, 0x82, 0x92, 0x92, 0x92, 0x94, 0x78}, // W

 {0x00, 0x42, 0x42, 0x24, 0x18, 0x24, 0x42, 0x42}, // X

 {0x00, 0x44, 0x44, 0x28, 0x10, 0x10, 0x10, 0x10}, // Y

 {0x00, 0x7c, 0x04, 0x08, 0x7c, 0x20, 0x40, 0xfe}, // Z

};

6 void drawString(char* text, int len, int x, int y)

{

 for (int idx = 0; idx < len; idx ++)

 {

 int c = text[idx] - 32;

 // stop if char is outside visible area

 if (x + idx * 8 > LEDMATRIX_WIDTH)

 return;

 // only draw if char is visible

 if (8 + x + idx * 8 > 0)

 drawSprite(font[c], x + idx * 8, y, 8, 8);

 }

}

7 void scrollText()

{

 int len = strlen(text);

 drawString(text, len, x, 0);

 lmd.display();

 delay(ANIM_DELAY);

 if (--x < len * -8) {

 x = LEDMATRIX_WIDTH;

 }

}

void loop()

{

 scrollText();

}

A moment or two after the sketch has uploaded, you should see text
scrolling from right to left across your LED display modules.

Now let’s dig in to see how this sketch works. There’s a lot of code, but
don’t let that put you off. Starting at 1, we call the required functions to use
the library and set up the displays. At 2, an array of characters contains the
text to show on the display modules. You can change this later if you’d like.
You can also adjust the speed of scrolling by altering the value at 3: the
smaller the number, the faster the scroll speed.

At 4, we have two functions. This function turns the display on or off:

lmd.setEnabled(true);

And this one sets the brightness of the LEDs in the display module:

lmd.setIntensity(x);

The setIntensity() function takes values between 0 (dim) and 9 (bright).

The font used by the display is defined in the huge array at 5. We’ll return
to that in the next section. Finally, the functions drawstring() 6 and
scrollText() 7 are required for display operation.

Editing the Display Font
You can easily specify which characters are usable in the display by
changing the data in the byte font array 5. First, recall that each matrix
module is made up of eight rows of eight LEDs. This means you have 64
LEDs available for any character you create.

Each row of LEDs is defined by a hexadecimal number, and eight of these
hexadecimal numbers represent a character. For example, the letter N is
defined by:

{0x00, 0x42, 0x42, 0x62, 0x52, 0x4a, 0x46, 0x42}, // N

To visualize the character, we convert the hexadecimal numbers to binary.
For example, our letter N converted from hexadecimal to binary is:

0 0 0 0 0 0 0 0 = 0x00

0 1 0 0 0 0 1 0 = 0x42

0 1 0 0 0 0 1 0 = 0x42

0 1 1 0 0 0 1 0 = 0x62

0 1 0 1 0 0 1 0 = 0x52

0 1 0 0 1 0 1 0 = 0x4a

0 1 0 0 0 1 1 0 = 0x46

0 1 0 0 0 0 1 0 = 0x42

You can see how the 1s represent the character against a field of 0s, with the
1s being LEDs turned on and the 0s being LEDs turned off. So, to create
your own characters, just reverse the process. For example, a nice smiley
face can be represented as:

0 1 1 1 1 1 1 0 = 0x7e

1 0 0 0 0 0 0 1 = 0x81

1 0 1 0 0 1 0 1 = 0xa5

1 0 0 0 0 0 0 1 = 0x81

1 0 1 0 0 1 0 1 = 0xa5

1 0 0 1 1 0 0 1 = 0x99

1 0 0 0 0 0 0 1 = 0x81

0 1 1 1 1 1 1 0 = 0x7e

This would be represented in the array as:

{0x7e,0x81,0xa5,0x81,0xa5,0x99,0x81,0x7e} // smiley

You can either replace an existing line in the font array with your new data
or add your data to the end of the array as another element. If you add
another line, you need to increase the first parameter in the byte declaration
so that the first parameter equals the number of defined characters (in this
case, 96):

byte font[96][8]

You’re probably wondering by now how to refer to your custom character
in the sketch. The display library uses the character order in the ASCII

chart, which can be found at
https://www.arduino.cc/en/Reference/ASCIIchart/.

If you add another character after the last one in the sketch (which is Z by
default), the next character in the table is [. Thus, to scroll three smiley
faces across the display, you would set the line with text to display to:

char text[] = "[[[";

An example of this output can be seen in Figure 8-11.

Figure 8-11: Using custom characters to display smiley faces

Looking Ahead
Now that you know how to use them, working with LED numeric and
matrix displays will be a cinch. However, there are more types of displays,
so turn to the next chapter to learn about another one: liquid crystal
displays.

https://www.arduino.cc/en/Reference/ASCIIchart/

9

LIQUID CRYSTAL DISPLAYS

In this chapter you will
Use character LCD modules to display text and numeric data

Create custom characters to display on character LCD modules

Use color LCD modules to display text and data

Create a temperature history–graphing thermometer display

For some projects, you’ll want to display information to the user
somewhere other than on a desktop computer monitor. One of the easiest
and most versatile ways to display information is with a liquid crystal
display (LCD) module and your Arduino. You can display text, custom
characters, and numeric data using a character LCD module and color
graphics with a graphic LCD module.

Character LCD Modules
LCD modules that display characters such as text and numbers are the most
inexpensive and simplest to use of all LCDs. They can be purchased in
various sizes, which are measured by the number of rows and columns of
characters they can display. Some include a backlight and allow you to
choose the color of the characters and the background color. Any LCD with
an HD44780- or KS0066-compatible interface and a 5 V backlight should
work with your Arduino. The first LCD we’ll use is a 16-character–by–2-
row LCD module with a backlight, as shown in Figure 9-1.

Figure 9-1: Example LCD module with trimpot and header pins

The trimpot (the variable resistor for the LCD) has a value of 10 kΩ and is
used to adjust the display contrast. If the header pins have not already been
soldered into the row of holes along the top of the LCD, you’ll need to do
this to make insertion into the breadboard straightforward.

The holes along the top of the LCD are numbered 1 through 16. Number 1
is closest to the corner of the module and marked as VSS (connected to
GND) in the schematic shown in Figure 9-2. We’ll refer to this schematic
for all of the LCD examples in this book. In some rare situations, you could
find yourself with an LCD that has a 4.2 V instead of a 5 V backlight. (If
you are unsure of this, check with your supplier.) If this is the case, place a
1N4004 diode in series between the Arduino 5 V and the LCD LED+ pin.

Figure 9-2: Basic LCD schematic

Using a Character LCD in a Sketch
To use the character LCD shown in Figure 9-1, we will first explore the
required functions and how they work through some simple demonstrations.
Before moving on, you’ll need to install the required Arduino library from
the Library Manager. Using the method described in Chapter 7, search for
and install the “LiquidCrystal by Arduino, Adafruit” library. Then you can
enter and upload the basic sketch shown in Listing 9-1.

// Listing 9-1

#include <LiquidCrystal.h>

LiquidCrystal lcd(4, 5, 6, 7, 8, 9); // pins for RS, E, DB4,
DB5, DB6, DB7

void setup()

{

 lcd.begin(16, 2);

 lcd.clear();

}

void loop()

{

 lcd.setCursor(0, 5);

 lcd.print("Hello");

 lcd.setCursor(1, 6);

 lcd.print("world!");

 delay(10000);

}

Listing 9-1: LCD demonstration sketch

Figure 9-3 shows the result of Listing 9-1.

Figure 9-3: LCD demonstration: “Hello world!”

Now to see how the sketch in Listing 9-1 works. First, we need to add a line
whose purpose is to include the library for LCD modules (which is
automatically installed with the Arduino IDE). Then we need to tell the
library which pins are connected to the Arduino. To do this, we add the
following lines before the void setup() method:

#include <LiquidCrystal.h>

LiquidCrystal lcd(4, 5, 6, 7, 8, 9); // pins for RS, E, DB4,
DB5, DB6, DB7

The numbers entered in the LiquidCrystal function match the pins labeled
on the LCD. If you’re unsure about your LCD’s pinouts, contact the

supplier.

If you need to use different digital pins on the Arduino, adjust the pin
numbers in the second line of this code.

Next, in void setup(), we tell the Arduino the size of the LCD in columns
and rows. For example, here’s how we’d tell the Arduino that the LCD has
2 rows of 16 characters each:

 lcd.begin(16, 2);

Displaying Text
With the LCD setup complete, clear the LCD’s display with the following:

 lcd.clear();

Then, to position the cursor, which is the starting point for the text, use this:

 lcd.setCursor(x, y);

Here, x is the column (0 to 15) and y is the row (0 or 1). Next, to display the
word text, for example, you would enter the following:

 lcd.print("text");

Now that you can position and locate text, let’s move on to displaying
variable data.

Displaying Variables or Numbers
To display the contents of variables on the LCD screen, use this line:

 lcd.print(variable);

If you’re displaying a float variable, you can specify the number of
decimal places to use. For example, here lcd.print(pi, 3) tells the
Arduino to display the value of pi to three decimal places, as shown in
Figure 9-4:

 float pi = 3.141592654;

 lcd.print("pi: ");

 lcd.print(pi, 3);

Figure 9-4: LCD displaying a floating-point number

When you want to display an integer on the LCD screen, you can display it
in hexadecimal or binary, as shown in Listing 9-2.

// Listing 9-2

 int zz = 170;

 lcd.setCursor(0, 0);

 lcd.print("Binary: ");

 lcd.print(zz, BIN); // display 170 in binary

 lcd.setCursor(0, 1);

 lcd.print("Hexadecimal: ");

 lcd.print(zz, HX); // display 170 in hexadecimal

Listing 9-2: Functions for displaying binary and hexadecimal numbers

The LCD will then display the text shown in Figure 9-5.

Figure 9-5: Results of the code in Listing 9-2

Project #28: Defining Custom Characters
In addition to using the standard letters, numbers, and symbols available on
your keyboard, you can define up to eight of your own characters in each

sketch. Notice in the LCD module that each character is made up of eight
rows of five dots, or pixels. Figure 9-6 shows a close-up.

Figure 9-6: Each character is made up of eight rows of five pixels.

To display your own characters, you must first define each one using an
array. For example, to create a smiley face, you could use the following:

byte a[8] = { B00000,

 B01010,

 B01010,

 B00000,

 B00100,

 B10001,

 B01110,

 B00000 };

Each number in the array addresses an individual pixel in the display. A 0
turns off a pixel, and a 1 turns it on. The elements in the array represent the
rows of pixels in the display; the top element is the top row, the next
element is the second row down, and so on.

NOTE

When you’re planning your custom characters, it can be helpful to
plan the character using some graph paper. Each square that is
filled in represents a 1, and each empty square represents a 0 in the
array.

In this example, since the first element is B00000, all the pixels in the top
row are turned off. In the next element, B01010, every other pixel is turned
on, and the 1s form the tops of the eyes. The following rows continue to fill
out the character.

Next, assign the array (which defines your new character) to the first of the
eight custom character slots in void setup() with the following function:

 lcd.createChar(0, a); // assign the array a[8] to custom
character slot 0

Finally, to display the character, add the following in void loop():

 lcd.write(byte(0));

To display our custom character, we’d use the following code:

// Project 28 - Defining Custom Characters

#include <LiquidCrystal.h>

LiquidCrystal lcd(4, 5, 6, 7, 8, 9); // pins for RS, E, DB4,
DB5, DB6, DB7

byte a[8] = { B00000,

 B01010,

 B01010,

 B00000,

 B00100,

 B10001,

 B01110,

 B00000 };

void setup()

{

 lcd.begin(16, 2);

 lcd.createChar(0, a);

}

void loop()

{

 lcd.write(byte(0)); // write the custom character 0 to
the next cursor

 // position

}

Figure 9-7 shows the smiley faces displayed on the LCD screen.

Figure 9-7: The result of Project 28

Character LCD modules are simple to use and somewhat versatile. For
example, using what you’ve learned, you could create a detailed digital
thermometer by combining this LCD and the temperature measurement part
of Project 20, on page 122 in Chapter 6. However, if you need to display a
lot of data or graphical items, you will need to use a graphic LCD module.

Graphic LCD Modules
Graphic LCD modules are larger and more expensive than character
modules, but they’re also more versatile. You can use them not only to
display text but also to draw lines, dots, circles, and more to create visual
effects. The graphic LCD used in this book is a 128 × 160-pixel color
module with an ST7735-compatible interface, as shown in Figure 9-8.

Figure 9-8: A graphic LCD module

Connecting the Graphic LCD
Before you can use the graphic LCD, you’ll need to connect eight wires
between the LCD and the Arduino. This is easily done with male-to-female

jumper wires, as the LCD has the connection pins presoldered at the
factory. Make the connections as shown in Table 9-1.

Table 9-1: Connections Between the Graphic LCD Module and Arduino

LCD pin label To Arduino pin LCD pin function
Vcc 5 V VDD
GND GND VSS (GND)
CS D10 Chip select
RST D8 Reset
A0 (or DC) D9 Control
SDA D11 Data in	
SCK D13 Clock in
LED 3.3 V Backlight LED

Using the LCD
Before moving on, you’ll need to install the required Arduino library from
the Library Manager. Using the method described in Chapter 7, search for
and install the “TFT by Arduino, Adafruit” library.

To use the LCD, insert the following three lines before void setup():

#include <TFT.h> // include the graphics LCD
library

#include <SPI.h> // include the library for the
SPI data bus

TFT TFTscreen = TFT(10, 9, 8); // allocate pins to LCD

#include <SPI.h> // library for SPI data bus

(Don’t panic about the “SPI data bus”; for now, the line above is all you
need to know. We’ll examine the SPI bus in more detail in Chapter 19.)

Then add the following lines inside void setup() to prepare the display:

 TFTscreen.begin(); // activate LCD

 TFTscreen.background(0, 0, 0); // clear the LCD screen

Controlling the Display

There are five text sizes you can choose from, as shown in Figures 9-9 and
9-10.

The first thing you need to consider is the background color for the display
you are generating. This is set with:

 TFTscreen.background(b, g, r); // set background color

Figure 9-9: Four of the five text sizes available on the LCD

Figure 9-10: The largest of the five text sizes available on the LCD

You set the color of the background using RGB (red, green, blue) values
between 0 and 255. For example, a white background would be maximum
red, maximum green, and maximum blue—so 255, 255, 255. A pure red
background would have a value of 255 for red and values of 0 for green and

blue. For a black background, use zero for all three values. (You can find a
handy list of RGB color tables at
https://www.rapidtables.com/web/color/RGB_Color.html.)

Next, you need to set the text size if you’re writing text to the LCD for the
first time or if you need to change the size mid-sketch. To do this, use:

TFTscreen.setTextSize(x);

where x is a number between 1 and 5 that matches the text sizes shown in
Figures 9-9 and 9-10.

Then you set the color of the text with the following function:

TFTscreen.stroke(B, G, R);

where B, G, and R are the corresponding values for your blue, green, and red
color levels, respectively.

Finally, to write text to your screen, use the following function:

TFTscreen.text("Hello, world!", x, y);

This will display the text “Hello, world!” with the top left of the text
positioned on the LCD at x, y.

This works great for static text. However, if you want to display a numeric
variable, you need to do a little more work. The variable needs to be
converted from a number type to a character array whose size will match
the largest possible value. For example, if you’re reading the Arduino’s
analog input 0 and want to display the value, use this:

char analogZero[4];

Then during the sketch, before sending the analog value to the LCD,
convert the value to a string, like so:

String sensorVal = String(analogRead(A0));

This string gets converted and inserted into the character array:

https://www.rapidtables.com/web/color/RGB_Color.html

sensorVal.toCharArray(analogZero, 4);

Finally, to display the value on the LCD, we can use the .text() command
as usual:

TFTscreen.text(analogZero, x, y);

where the value of analogZero is displayed with the top left of the text
positioned at x, y.

Now that we’ve been through all the commands for using text on the LCD,
let’s put them into action in the next project.

Project #29: Seeing the Text Functions in
Action
With this project, you’ll make your LCD display text in five sizes as well as
the numeric value read from your Arduino’s analog input 0.

The Sketch
Wire up your LCD as described in Table 9-1 and then upload the following
sketch:

// Project 29 - Seeing the Text Functions in Action

#include <TFT.h> // Arduino TFT LCD library

#include <SPI.h> // SPI bus library

TFT TFTscreen = TFT(10, 9, 8); // allocate digital pins
to LCD

char analogZero[4];

void setup()

{

 TFTscreen.begin(); // activate LCD

 TFTscreen.background(0, 0, 0); // set display to black

}

void loop()

{

 TFTscreen.stroke(255, 255, 255); // white text

 TFTscreen.setTextSize(1);

 TFTscreen.text("Size One", 0, 0);

 TFTscreen.setTextSize(2);

 TFTscreen.text("Size Two", 0, 10);

 TFTscreen.setTextSize(3);

 TFTscreen.text("Size 3", 0, 30);

 TFTscreen.setTextSize(4);

 TFTscreen.text("Size 4", 0, 55);

 delay(2000);

 TFTscreen.background(0, 0, 0); // set display to black

 TFTscreen.setTextSize(5);

 TFTscreen.text("Five", 0, 0);

 delay(2000);

 TFTscreen.background(0, 0, 0); // set display to black

 TFTscreen.stroke(255, 255, 255); // white text

 TFTscreen.setTextSize(1);

 TFTscreen.text("Sensor Value :\n ", 0, 0);

 TFTscreen.setTextSize(3);

 String sensorVal = String(analogRead(A0));

 // convert the reading to a char array

 sensorVal.toCharArray(analogZero, 4);

 TFTscreen.text(analogZero, 0, 20);

 delay(2000);

 TFTscreen.background(0, 0, 0); // set display to black

}

Running the Sketch
You should see all five sizes of text displayed on the LCD over two screens.
Then you should see a third screen with the value from analog input 0, like
the example shown in Figure 9-11.

Figure 9-11: Analog input value shown on TFT LCD

Creating More Complex Display Effects with
Graphic Functions
Now let’s look at the functions we can use to create various display effects.
Keep in mind that the graphic LCD screen has a resolution of 160 columns
by 128 pixels, but when we refer to these columns and pixels in functions in
our sketches, they are counted from 0 to 159 across and 0 to 127 down.
Also, as with the text example earlier, we still need to use the five lines of
code mentioned in “Using a Character LCD in a Sketch” on page 169 to
initialize the display.

There are various functions that allow you to display dots (single pixels),
lines, rectangles, and circles on the display. Apply your project
requirements and add a dash of imagination to create a colorful and useful
display output. We’ll run through those functions now, and then you can see
them in action through a demonstration sketch.

Before drawing any object, you need to define its color. This is done with

TFTscreen.stroke(B, G, R);

where B, G, and R are the corresponding values for your blue, green, and red
color levels, respectively.

To draw a single dot on the display, we use

TFTscreen.point(X, Y);

where X and Y are the horizontal and vertical coordinates of the dot. With
our LCD, the X range falls between 0 and 159 and the Y range falls between
0 and 127.

To draw a line from one point to another, we use

TFTscreen.line(X1, Y1, X2, Y2);

where X1 and Y1 are the coordinates of the starting point and X2 and Y2 are
the coordinates of the end of the line.

To draw a circle, we use

TFTscreen.circle(X, Y, R);

where X and Y are the coordinates of the center of the circle, and R is the
radius of the circle in pixels. If you wish to fill the circle (or a rectangle,
described a bit later) with a color, instead of just drawing an outline,
precede the circle() function with

TFTscreen.fill(B, G, R);

where B, G, and R are the corresponding values for your blue, green, and red
fill levels, respectively. Note that a fill color doesn’t change the shape’s
outline, so you still need to precede the shape function with the stroke()
function.

If you wish to draw more than one filled item, you only need to use the
fill() command once. If you then want to turn off the fill and revert to
outlines only, use this:

TFTscreen.noFill();

Finally, you can draw rectangles with the following function:

TFTscreen.rect(X1, Y1, X2, Y2);

where X1, Y1 are the coordinates for the top left of the rectangle and X2, Y2
are the coordinates for the bottom right of the rectangle.

Project #30: Seeing the Graphic Functions in
Action
Now that we’ve been through all the commands for using the graphic
functions on the LCD, let’s put them into action in this project.

The Sketch
Wire up your LCD as described in Table 9-1 and then upload the following
sketch:

// Project 30 - Seeing the Graphic Functions in Action

#include <TFT.h> // Arduino TFT LCD library

#include <SPI.h> // SPI bus library

TFT TFTscreen = TFT(10, 9, 8); // allocate digital pins to
LCD

int a;

void setup()

{

 TFTscreen.begin(); // activate LCD

 TFTscreen.background(0, 0, 0); // set display to black

 randomSeed(analogRead(0)); // for random numbers

}

void loop()

{

 // random dots

 for (a = 0; a < 100; a++)

 {

 TFTscreen.stroke(random(256), random(256), random(256));

 TFTscreen.point(random(160), random(120));

 delay(10);

 }

 delay(1000);

 TFTscreen.background(0, 0, 0); // set display to black

 // random lines

 for (a = 0; a < 100; a++)

 {

 TFTscreen.stroke(random(256), random(256), random(256));

 TFTscreen.line(random(160), random(120), random(160),
random(120));

 delay(10);

 }

 delay(1000);

 TFTscreen.background(0, 0, 0); // set display to black

 // random circles

 for (a = 0; a < 50; a++)

 {

 TFTscreen.stroke(random(256), random(256), random(256));

 TFTscreen.circle(random(160), random(120), random(50));

 delay(10);

 }

 delay(1000);

 TFTscreen.background(0, 0, 0); // set display to black

 // random filled circles

 for (a = 0; a < 50; a++)

 {

 TFTscreen.fill(random(256), random(256), random(256));

 TFTscreen.stroke(random(256), random(256), random(256));

 TFTscreen.circle(random(160), random(120), random(50));

 delay(10);

 }

 delay(1000);

 TFTscreen.background(0, 0, 0); // set display to black

 // random rectangles

 TFTscreen.noFill();

 for (a = 0; a < 50; a++)

 {

 TFTscreen.stroke(random(256), random(256), random(256));

 TFTscreen.rect(random(160), random(120), random(160),
random(120));

 delay(10);

 }

 delay(1000);

 TFTscreen.background(0, 0, 0); // set display to black

 // random filled rectangles

 TFTscreen.noFill();

 for (a = 0; a < 50; a++)

 {

 TFTscreen.fill(random(256), random(256), random(256));

 TFTscreen.stroke(random(256), random(256), random(256));

 TFTscreen.rect(random(160), random(120), random(160),
random(120));

 delay(10);

 }

 delay(1000);

 TFTscreen.background(0, 0, 0); // set display to black

}

After the sketch has uploaded, the display will run through all the graphic
functions we have examined in this chapter. For example, you should see
the lines shown in Figure 9-12.

With the functions discussed so far and some imagination, you can create a
variety of display effects or display data graphically. In the next section,
we’ll build on our quick-read thermometer project using the LCD screen
and some of these functions.

Figure 9-12: Random lines on the LCD

Project #31: Creating a Temperature History
Monitor

In this project, our goal is to measure the temperature once every 20
minutes and display the last 120 readings in a dot graph. Each reading will
be represented as a pixel, with the temperature on the vertical axis and time
on the horizontal axis.

The most current reading will appear on the left, and the display will
continually scroll the readings from left to right. The current temperature
will also be displayed as a numeral.

The Algorithm
Although it may sound complex, this project is fairly easy, requiring only
two functions. The first function takes a temperature reading from the
TMP36 temperature sensor and stores it in an array of 120 values. Each
time a new reading is taken, the previous 119 values are moved down the
array to make way for the new reading, and the oldest reading is erased.

The second function draws on the LCD screen. It displays the current
temperature, a scale for the graph, and the positions of each pixel for the
display of the temperature data over time.

The Hardware
Here’s what you’ll need to create this project:

One 160 × 128-pixel ST7735 TFT LCD module, as used in this chapter

One TMP36 temperature sensor

Various connecting wires

One breadboard

Arduino and USB cable

Connect the graphic LCD as described in Table 9-1 and connect the TMP36
sensor to 5 V, analog 5, and GND as you did in Project 20 in Chapter 6.

The Sketch
Our sketch combines the code we used to measure temperature in Chapter 6
and the graphic functions described earlier in this chapter. Enter and upload

the following sketch, which includes relevant comments about the functions
used:

// Project 31 - Creating a Temperature History Monitor

#include <TFT.h> // Arduino TFT LCD library

#include <SPI.h> // SPI bus library

TFT TFTscreen = TFT(10, 9, 8);

// allocate digital pins to LCD

int tcurrent = 0;

int tempArray[120];

char currentString[3];

void getTemp() // function to read temperature from TMP36

{

 float sum = 0;

 float voltage = 0;

 float sensor = 0;

 float celsius;

 // read the temperature sensor and convert the result to
degrees C

 sensor = analogRead(5);

 voltage = (sensor * 5000) / 1024;

 voltage = voltage - 500;

 celsius = voltage / 10;

 tcurrent = int(celsius);

 // insert the new temperature at the start of the array of
past temperatures

 for (int a = 119 ; a >= 0 ; --a)

 {

 tempArray[a] = tempArray[a - 1];

 }

 tempArray[0] = tcurrent;

}

void drawScreen() // generate TFT LCD display effects

{

 int q;

 // display current temperature

 TFTscreen.background(0, 0, 0); // clear screen to black

 TFTscreen.stroke(255, 255, 255); // white text

 TFTscreen.setTextSize(2);

 TFTscreen.text("Current:", 20, 0);

 String tempString = String(tcurrent);

 tempString.toCharArray(currentString, 3);

 TFTscreen.text(currentString, 115, 0);

 // draw scale for graph

 TFTscreen.setTextSize(1);

 TFTscreen.text("50", 0, 20);

 TFTscreen.text("45", 0, 30);

 TFTscreen.text("40", 0, 40);

 TFTscreen.text("35", 0, 50);

 TFTscreen.text("30", 0, 60);

 TFTscreen.text("25", 0, 70);

 TFTscreen.text("20", 0, 80);

 TFTscreen.text("15", 0, 90);

 TFTscreen.text("10", 0, 100);

 TFTscreen.text(" 5", 0, 110);

 TFTscreen.text(" 0", 0, 120);

 TFTscreen.line(20, 20, 20, 127);

 // plot temperature data points

 for (int a = 25 ; a < 145 ; a++)

 {

 // convert the temperature value to a suitable y-axis
position on the LCD

 q = (123 - (tempArray[a - 25] * 2));

 TFTscreen.point(a, q);

 }

}

void setup()

{

 TFTscreen.begin(); // activate LCD

 TFTscreen.background(0, 0, 0); // set display to black

}

void loop()

{

 getTemp();

 drawScreen();

 for (int a = 0 ; a < 20 ; a++) // wait 20 minutes until the
next reading

 {

 delay(60000); // wait 1 minute

 }

}

Running the Sketch

The resulting display should look something like Figure 9-13.

Figure 9-13: Results of Project 31

Modifying the Sketch
Different people can interpret data better when they see it presented in
different visual formats. For this reason, you may want to create a bar graph
instead, with vertical lines indicating the values.

This type of project could also be used to display other kinds of data, such
as the voltage from various sensors as measured by analog input pins. Or
you could add another temperature sensor and show both values at once.
Almost anything that returns a value can be displayed using the graphic
LCD module.

Looking Ahead
Now that you have experience with LCDs, you can see that the Arduino is
in fact a small computer: it can accept and process incoming data and
display it to the outside world. But this is only the beginning. In the next
chapter, you’ll examine libraries in much more depth, learn to write your
own library, and then use your new library with the temperature sensor used
in previous projects.

10

CREATING YOUR OWN ARDUINO

LIBRARIES

In this chapter you will
Learn the components of an Arduino library

Create a simple library for a repetitive task

Learn how to install your library in the Arduino IDE

Create a library that accepts values to perform a function

Create a library that processes data from a sensor and returns values in an
easy-to-use form

Recall Project 22, described in Chapter 7, where you installed an Arduino
library that included the functions needed to save data to an SD card. Using
the library reduced the amount of time needed to write a sketch, as the
library provides the functions related to the card module.

In the future, as you write sketches to solve your own problems and
perform your own tasks, you may find yourself repeatedly using certain
functions that you have created. At that point, it will be sensible to create
your own Arduino library, which you can easily install and use in your
sketches.

In this chapter, you will learn how to convert functions into an Arduino
library. By following the examples presented here, you’ll learn what you
need to know to make your own custom libraries. Let’s do this now.

Creating Your First Arduino Library
For our first example, consider Listing 10-1. It contains two functions,
blinkSlow() and blinkFast(), which are used to blink the Arduino’s
onboard LED at a slow or fast rate, respectively.

// Listing 10-1

void setup()

{

 pinMode(13, OUTPUT); // using onboard LED

}

void blinkSlow()

{

 for (int i = 0; i < 5; i++)

 {

 digitalWrite(13, HIGH);

 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);

 }

}

void blinkFast()

{

 for (int i = 0; i < 5; i++)

 {

 digitalWrite(13, HIGH);

 delay(250);

 digitalWrite(13, LOW);

 delay(250);

 }

}

void loop()

{

 blinkSlow();

 delay(1000);

 blinkFast();

 delay(1000);

}

Listing 10-1: Blinking the Arduino’s onboard LED

Without a library, every time you wrote a new sketch and wanted to use the
blinkSlow() and blinkFast() functions, you would have to enter them
manually. On the other hand, if you put the code for your functions in a
library, from then on, you’ll be able to call the library using just one line of
code at the start of your sketch.

Anatomy of an Arduino Library
An Arduino library consists of three files, as well as some optional example
sketches that demonstrate how the library could be used. The three requisite
files for every Arduino library are these:

<library>.h The header file

<library>.cpp The source file

KEYWORDS.TXT The keyword definitions

In the first two filenames, you’ll replace <library> with the actual name of
your library. For our first example, we will call our Arduino library blinko.
Thus, our two files will be blinko.h and blinko.cpp.

The Header File
The blinko.h file is known as a header file, because it contains the
definitions of functions, variables, and so on used inside the library. The
header file for the blinko library is shown in Listing 10-2.

// Listing 10-2

/*

1 blinko.h - Library for flashing an Arduino's onboard LED
connected to D13

*/

2 #ifndef blinko_h

#define blinko_h

3 #include "Arduino.h" // gives library access to standard types
and constants

 // of the Arduino language

4 class blinko // functions and variables used in the library

{

 public:

 blinko();	

 void slow();

 void fast();

};

5 #endif

Listing 10-2: The blinko library header file

The header file shares some similarities with a typical Arduino sketch, but
there are also some differences. At 1, there’s a useful comment about the
purpose of the library. While such comments are not necessary, they should
be included to make the library easier for others to use.

At 2, the code checks whether the library has been declared in the host
sketch. At 3, the standard Arduino library is included to allow our blinko
library access to the standard Arduino sketch functions, types, and
constants.

Then, at 4, we create a class. You can think of a class as a collection in one
spot of all the variables and functions required for the library, including the
name of the library. Within the class, there can be public variables and
functions, which can be accessed by the sketch that needs to use the library;
there can also be private variables and functions, which can be used only
from inside the class. Finally, each class has a constructor with the same
name as the class, which is used to create an instance of the class. This may
sound complex. However, after reviewing the examples in this chapter and
making a few libraries of your own, you’ll be confident in these
constructions.

Inside our class, you can see we have the constructor for our library,
blinko(), and two functions that will be in the library: slow() and fast().
They follow the public: statement, which means they can be used by
anyone (“any member of the public”) who accesses the blinko library.

Finally, at 5, we end the header definition. By wrapping the header
definition inside an if statement, we ensure that the header isn’t loaded
twice.

The Source File

Next, let’s take a look at the blinko.cpp file. The .cpp file is known as a
source file, because it contains the code that will be run when the library is
used. The source file for the blinko library is given in Listing 10-3.

// Listing 10-3

/*

1 blinko.cpp - Library for flashing an Arduino's onboard LED
connected to D13

*/

2 #include “Arduino.h” // gives library access to standard types
and constants

 // of the Arduino language

#include "blinko.h"

3 blinko::blinko() // things to do when library is activated

{

	 pinMode(13, OUTPUT);

}

4 void blinko::slow()

{

	 for (int i=0; i<5; i++)

	 {

 	 	 digitalWrite(13, HIGH);

	 	 delay(1000);

	 	 digitalWrite(13, LOW);

	 	 delay(1000);

	 }

}

4 void blinko::fast()

{

	 for (int i=0; i<5; i++)

	 {

	 	 digitalWrite(13, HIGH);

 	 	 delay(250);

 	 	 digitalWrite(13, LOW);

	 	 delay(250);

	 }

}

Listing 10-3: The blinko library source file

The source file contains the functions we’ve written that we’ll want
available to reuse. In addition, some new structural elements are required
here. At 2, we give our library access to both the standard Arduino
functions, types, and constants and our own library header file.

At 3 we have the definition of the constructor function. The constructor
contains things that should happen when the library is used. In our example,
we have set digital pin 13 as an output, as we are using the Arduino’s
onboard LED.

Starting at 4, we list the functions we want to include in this library. They
are just like the functions that you would create in a stand-alone sketch,
with one important difference: their definition starts with the library class
name and two colons. For example, instead of typing void fast(), you
type void blinko::fast().

The KEYWORDS.TXT File
Finally, we need to create the KEYWORDS.TXT file. The Arduino IDE uses
this file to determine the keywords in the library, then highlights those
words in the IDE. Listing 10-4 is the KEYWORDS.TXT file for our blinko
library.

// Listing 10-4

blinko	 	 KEYWORD1

slow	 	 KEYWORD2

fast	 	 KEYWORD2

Listing 10-4: The blinko library keywords file

The first line is the name of the library and is referred to as KEYWORD1. The
library’s functions are both called KEYWORD2. Note that the space between
the keywords and their definitions must be created by pressing TAB, not by
pressing the spacebar.

At this point, you have the three files needed for a working library. It’s a
great idea to also include an example sketch so users can understand what
the functions do. Listing 10-5 is our example sketch for the blinko library.

// Listing 10-5, blinkotest.ino

1 #include <blinko.h>

2 blinko ArduinoLED;

void setup() {

}

void loop()

{

3 ArduinoLED.slow(); // blink LED slowly, once every second

 delay(1000);

4 ArduinoLED.fast(); // blink LED rapidly, four times per
second

 delay(1000);

}

Listing 10-5: An example sketch for our blinko library

As you can see, the sketch is basic. It just shows the use of both the slow()
and fast() functions in our library. All the end user needs to do after
installing the library is to include the library 1, create an instance 2, and
then call either function when required as shown at 3 and 4.

Installing Your New Arduino Library
Now that you’ve created a new Arduino library, an easy way to store and
distribute it is to make a ZIP file. Future users who obtain the ZIP file can
easily install the library, as demonstrated earlier in Chapter 7.

Creating a ZIP File Using Windows 7 and Later
To create a ZIP file with Windows, follow these instructions.

First, place the three library files and the example sketch (stored in its own
folder, as are all sketches) into one location. Figure 10-1 shows an example.

Figure 10-1: Our Arduino library files in one folder

Select all the files, right-click anywhere over the highlighted files, and
select Send To▶Compressed (Zipped) Folder, as shown in Figure 10-2.

A new file will appear in the folder, with a .zip extension and name editing
enabled. For our library, change the name to blinko and then press ENTER,
as shown in Figure 10-3.

Now you can move on to “Installing Your New Library” on page 193.

Figure 10-2: Compressing the library files

Figure 10-3: Changing the name of the library ZIP file

Creating a ZIP File Using Mac OS X or Later
To create a ZIP file with Mac OS X, gather the three library files and the
example sketch (stored in its own folder, as are all sketches) into one
location. Figure 10-4 shows an example.

Figure 10-4: Our Arduino library files

Select all the files, right-click anywhere over the files, and select Compress
4 Items, as shown in Figure 10-5.

Figure 10-5: Compressing the library files

After a moment, a new file called Archive.zip will appear in the folder, as
shown in Figure 10-6.

Figure 10-6: The files have been compressed.

Click on the Archive.zip folder and change the name to blinko.zip, as shown
in Figure 10-7.

Figure 10-7: Our Arduino library installation ZIP file

You now have a library ZIP file that you can easily distribute to others or
install yourself.

Installing Your New Library
At this point you can install your library using the ZIP file method detailed
in “Downloading an Arduino Library as a ZIP File” on page 134 in Chapter
7. Once the file has been installed and you have restarted the Arduino IDE,
select Sketch▶Include Library to see your library listed, as shown in
Figure 10-8.

Figure 10-8: Our Arduino library, now available in the IDE

Furthermore, you can now easily access the example sketch; select
File▶Examples▶blinko, as shown in Figure 10-9.

Figure 10-9: Our Arduino library example sketch is installed.

Creating a Library That Accepts Values to
Perform a Function
Now that you have the knowledge to create a basic Arduino library, you can
move on to the next level: creating a library that can accept values and act
on them. Once again, we will look an at example function within a sketch
and convert it into a more useful library.

Consider the sketch shown in Listing 10-6. It uses the function void
blinkType(), which tells the Arduino how many times to blink its onboard
LED and the on/off period.

// Listing 10-6

void setup() {

 pinMode(13, OUTPUT); // use onboard LED

}

void blinkType(int blinks, int duration)

// blinks - number of times to blink the LED

// duration – blink duration in milliseconds

{

 for (int i = 0; i < blinks; i++)

 {

 digitalWrite(13, HIGH);

 delay(duration);

 digitalWrite(13, LOW);

 delay(duration);

 }

}

void loop()

{

 // blink LED 10 times, with 250 ms duration

 blinkType(10, 250);

 delay(1000);

 // blink LED three times, with 1 second duration

 blinkType(3, 1000);

 delay(1000);

}

Listing 10-6: Demonstration sketch for the blinkType() function

As you can see, the function void blinkType() accepts two values and
then acts on them. The first value is the number of times to turn the onboard
LED on and off, and the second value is the delay time in milliseconds for
each blink.

Let’s turn this function into an Arduino library named blinko2. Listing 10-7
shows the header file for this library.

// Listing 10-7

/*

 blinko2.h - Blinking the Arduino's onboard LED on D13

 Accepts number of blinks and on/off delay

*/

#ifndef blinko2_h

#define blinko2_h

#include "Arduino.h"

class blinko2

{

 public:

 blinko2();	

 void blinkType(int blinks, int duration);

1 private:

 int blinks;

 int duration;

};

#endif

Listing 10-7: The blinko2 library header file

The header file maintains the same structure as the header file for the
original blinko library. However, there is a new section at 1 called private.
The variables declared in the private section are for internal use within the
library and cannot be used by the greater Arduino sketch. You can see these
variables in use within the library source file shown in Listing 10-8.

// Listing 10-8

/*

 blinko2.cpp - Blinking the Arduino's onboard LED on D13

 Accepts number of blinks and on/off delay

*/

#include "Arduino.h"

#include "blinko2.h"

blinko2::blinko2()

{

1 pinMode(13, OUTPUT);

}

2 void blinko2::blinkType(3int blinks, 4int duration)

{

 for (int i=0; i<blinks; i++)

 {

 digitalWrite(13, HIGH);

 delay(duration);

 digitalWrite(13, LOW);

 delay(duration);

 }

}

Listing 10-8: The blinko2 library source file

The source file for blinko2 maintains the same structure as the source file
for the original blinko library.

We set digital pin 13 to an output at 1. At 2, we declare the function
blinkType(), which accepts the number of times to blink at 3 and the delay
time at 4. You can see this in operation via the example sketch for our
library in Listing 10-9.

// Listing 10-9

#include <blinko2.h>

blinko2 ArduinoLED;

void setup() {}

void loop()

{

 ArduinoLED.blinkType(3,250);

// blink LED three times, with a duration of 250 ms

 delay(1000);

 ArduinoLED.blinkType(10,1000);

// blink LED 10 times, with a duration of 1 second

 delay(1000);

}

Listing 10-9: An example sketch for our blinko2 library

Next, we need to create the keywords file for our new blinko2 library. Don’t
forget to use a tab and not spaces between the words. Here is our
KEYWORDS.TXT file:

blinko2 KEYWORD1

blinkType KEYWORD2

Now create your ZIP file and install the library using the methods described
earlier in this chapter. Then open and run the blinko2 example sketch to

experience how it works.

Creating a Library That Processes and
Displays Sensor Values
For our final example of an Arduino library, we’ll revisit the Analog
Devices TMP36 temperature sensor used in several of our earlier projects.
Our ArduinoTMP36 example library will take the raw value from the
TMP36 and display the temperature in both Celsius and Fahrenheit via the
Serial Monitor.

First, connect your TMP36 to the Arduino by following the schematic
shown in Figure 10-10.

Figure 10-10: Schematic for use with the ArduinoTMP36 library

Listing 10-10 is a sketch that we wish to turn into a library. It uses two
functions, readC() and readF(), to take the raw reading from the TMP36
sensor via analog pin 0, convert it to degrees Celsius and Fahrenheit, and
return the results.

// Listing 10-10

// display temperature from TMP36 sensor in C and F

float temperature;

float readC()

{

 float tempC;

 tempC = analogRead(0);

 tempC = tempC = (tempC * 5000) / 1024;

 tempC = tempC - 500;

 tempC = tempC / 10;

 return tempC;

}

float readF()

{

 float tempC;

 float tempF;

 tempC = analogRead(0);

 tempC = tempC = (tempC * 5000) / 1024;

 tempC = tempC - 500;

 tempC = tempC / 10;

 tempF = (tempC * 1.8) + 32;

 return tempF;

}

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Temperature in Celsius is: ");

 temperature = readC();

 Serial.println(temperature);

 Serial.print("Temperature in Fahrenheit is: ");

 temperature = readF();

 Serial.println(temperature);

 delay(1000);

}

Listing 10-10: TMP36 demonstration sketch

The functions for temperature conversion are ideal candidates for inclusion
in a library, which we will call ArduinoTMP36. The header file is shown in
Listing 10-11.

// Listing 10-11

1 #ifndef ArduinoTMP36_h

#define ArduinoTMP36_h

#include "Arduino.h"

class ArduinoTMP36

{

2 public:

 ArduinoTMP36();

 float readC();

 float readF();

3 private:

 float tempC;

 float tempF;

};

#endif

Listing 10-11: The ArduinoTMP36 library header file

At this point, you probably recognize the structure of the header file. We set
up the definitions at 1. Inside the class at 2, we declare the public items,
which include the constructor and the readC() and readF() functions. We
also declare the private items at 3; these include the two variables used
within the library.

Next we have the library source file, shown in Listing 10-12.

// Listing 10-12

#include "Arduino.h"

#include "ArduinoTMP36.h"

ArduinoTMP36::ArduinoTMP36()

{

}

float ArduinoTMP36::readC()

{

 float tempC;

 tempC = analogRead(0);

 tempC = tempC=(tempC*5000)/1024;

 tempC = tempC-500;

 tempC = tempC/10;

 return tempC;

}

float ArduinoTMP36::readF()

{

 float tempC;

 float tempF;

 tempC = analogRead(0);

 tempC = tempC=(tempC*5000)/1024;

 tempC = tempC-500;

 tempC = tempC/10;

 tempF = (tempC*1.8)+32;

 return tempF;

}

Listing 10-12: The ArduinoTMP36 library source file

The source file contains the two functions used to calculate the
temperatures. They are defined as float because they return a floating-
point value. The temperatures are determined using the same formulas as in
Project 8 in Chapter 4.

Finally, we need to create the keywords file for our new ArduinoTMP36
library. Don’t forget to use a tab and not spaces between the words. Our
KEYWORDS.TXT file is shown here:

ArduinoTMP36 KEYWORD1

readC KEYWORD2

readF KEYWORD2

Now create your ZIP file and install the library using the methods described
earlier in this chapter. Then open and run the ArduinoTMP36 example
sketch, shown in Listing 10-13.

// Listing 10-13

1 #include <ArduinoTMP36.h>

ArduinoTMP36 thermometer;

2 float temperature;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Temperature in Celsius is: ");

3 temperature=thermometer.readC();

 Serial.println(temperature);

 Serial.print("Temperature in Fahrenheit is: ");

4 temperature=thermometer.readF();

 Serial.println(temperature);

 delay(1000);

}

Listing 10-13: An example sketch for the ArduinoTMP36 library

Simply include the library and create the instance at 1. Then declare a
variable to accept the output from the library at 2. After that, the
temperature is requested and returned in Celsius and Fahrenheit at points 3
and 4, respectively.

Open the Serial Monitor window and set the data speed to 9,600 baud, and
you should be presented with a scrolling updated list of the current
temperature in Celsius and Fahrenheit, like that shown in Figure 10-11.

Figure 10-11: Example of output from the ArduinoTMP36 library

Now you can appreciate how much time and sketch size is saved by using a
library instead of including the functions every time you create a new
sketch.

Looking Ahead

Now that you have experience with writing Arduino libraries, you can
create your own. This will help you to gain a deeper understanding of the
libraries provided by other sources. You can also practice by creating
libraries for the projects in this book you’ve already completed.

In the next chapter, you will learn how to work with user input entered via
numeric keypads, so turn the page to get started.

11

NUMERIC KEYPADS

In this chapter you will
Learn how to connect numeric keypads to your Arduino

Read values from the keypad in a sketch

Expand on decision systems with the switch case statement

Create a PIN-controlled lock or switch

Using a Numeric Keypad
As your projects become more involved, you might want to accept numeric
input from users when your Arduino isn’t connected to a device with a
keyboard. For example, you might like the ability to turn something on or
off by entering a secret number. One option would be to wire up 10 or more
push buttons to various digital input pins (for the numbers 0 through 9), but
it’s much easier to use a numeric keypad like the one shown in Figure 11-1.

Figure 11-1: A numeric keypad

One of the benefits of using a keypad is that it uses only 8 pins for 16 active
buttons, and with the use of a clever Arduino library, you won’t need to add
pull-down resistors for debouncing as we did in Chapter 4.

At this point, you will need to download and install the Arduino Keypad
library, which is available from https://github.com/Chris--
A/Keypad/archive/master.zip.

Wiring a Keypad
Physically wiring the keypad to the Arduino is easy. With the keypad facing
up, take a look at the end of the ribbon cable. You’ll see eight female
connectors in a row, as shown in Figure 11-2.

https://github.com/Chris--A/Keypad/archive/master.zip

Figure 11-2: The keypad connector

Reading from left to right, the sockets are numbered from 8 to 1. For all the
keypad projects in this book, you’ll plug the keypad pins into the Arduino
pins as shown in Table 11-1.

Table 11-1: Keypad-to-Arduino Connections

Keypad pin number Arduino pin
8 Digital 9
7 Digital 8
6 Digital 7
5 Digital 6
4 Digital 5
3 Digital 4
2 Digital 3
1 Digital 2

Programming for the Keypad
When you write a sketch for the keypad, you must include certain lines of
code to enable the keypad, as identified in Listing 11-1. The required code

starts at 1 and ends at 5.

// Listing 11-1

1 // Beginning of keypad configuration code

#include <Keypad.h>

const byte ROWS = 4; // set display to four rows

const byte COLS = 4; // set display to four columns

2 char keys[ROWS][COLS] = {

 {'1','2','3','A'},

 {'4','5','6','B'},

 {'7','8','9','C'},

 {'*','0','#','D'}

};

3 byte rowPins[ROWS] = {9, 8, 7, 6};

4 byte colPins[COLS] = {5, 4, 3, 2};

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins,
ROWS, COLS);

5 // End of keypad configuration code

void setup()

{

 Serial.begin(9600);

}

void loop(){

 char key = keypad.getKey();

 if (key){

 Serial.print(key);

 }

}

Listing 11-1: Numeric keypad demonstration sketch

At 2, we introduce keys, a char variable array that contains one or more
letters, numbers, or symbols that can be generated with a computer
keyboard. In this case, it contains the numbers and symbols that your
Arduino can expect from the keypad.

The lines of code at 3 and 4 define which digital pins are used on the
Arduino. Using these lines and Table 11-1, you can change the digital pins
used for input if you want.

Testing the Sketch
After uploading the sketch, open the Serial Monitor and press some keys on
the keypad. The characters for the keys you pressed will be displayed in the
Serial Monitor, as shown in Figure 11-3.

Figure 11-3: The result of pressing keys on the keypad

Making Decisions with switch case
When you need to compare two or more variables against another value,
you’ll often find it easier and neater to use a switch case statement instead
of an if then statement, because switch case statements can make an
indefinite number of comparisons and run code when the comparison
returns true. For example, if we had the integer variable xx with a possible
value of 1, 2, or 3 and we wanted to run different code based on whether the
value was 1, 2, or 3, we could use code like the following to replace our if
then statement:

switch(xx)

{

 case 1:

 // do something when the value of xx is 1

 break; // finish and move on with sketch

 case 2:

 // do something when the value of xx is 2

 break;

 case 3:

 // do something when the value of xx is 3

 break;

 default:

 // do something if xx is not 1, 2 or 3

 // default is optional

}

The optional default: section at the end of this code segment lets you
choose to run some code when true comparisons no longer exist in the
switch case statement.

Project #32: Creating a Keypad-Controlled
Lock
In this project, we’ll start to create a keypad-controlled lock. We’ll use the
basic setup described in the sketch in Listing 11-1, but we’ll also include a
six-digit secret code that a user needs to enter on the keypad. The Serial
Monitor will tell the user whether the code they’ve input is correct or not.

The secret code is stored in the sketch but is not displayed to the user. The
sketch will call different functions depending on whether the input code
(PIN) is correct. To activate and deactivate the lock, the user must press *
and then the secret number, followed by #.

The Sketch
Enter and upload this sketch:

// Project 32 - Creating a Keypad-Controlled Lock

// Beginning of necessary code

#include <Keypad.h>

const byte ROWS = 4; // set display to four rows

const byte COLS = 4; // set display to four columns

char keys[ROWS][COLS] = {

 {'1','2','3','A'},

 {'4','5','6','B'},

 {'7','8','9','C'},

 {'*','0','#','D'}

};

byte rowPins[ROWS] = {9, 8, 7, 6};

byte colPins[COLS] = {5, 4, 3, 2};

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins,
ROWS, COLS);

// End of necessary code

1 char PIN[6]={'1','2','3','4','5','6'}; // our secret number

char attempt[6]={0,0,0,0,0,0};

int z=0;

void setup()

{

 Serial.begin(9600);

}

void correctPIN() // do this if the correct PIN is entered

{

 Serial.println("Correct PIN entered...");

}

void incorrectPIN() // do this if an incorrect PIN is entered

{

 Serial.println("Incorrect PIN entered!");

}

void checkPIN()

{

 int correct=0;

2 for (int i = 0;

 i < 6 ;

 i++)

 {

// Goes step-by-step through the 6-character array.

// If each char matches each char in the PIN, increments the

// counter.

if (attempt[i]==PIN[i])

 {

 correct++;

 }

 }

 if (correct==6)

 {

3 correctPIN();

 }

 else

 {

4 incorrectPIN();

 }

 for (int i=0; i<6; i++) // removes previously entered code

attempt

 {

 attempt[i]=0;

 }

}

void readKeypad()

{

 char key = keypad.getKey();

 if (key != NO_KEY)

 {

5 switch(key)

 {

 case '*':

 z=0;

 break;

 case '#':

 delay(100); // removes the possibility of switch bounce

 checkPIN();

 break;

 default:

 attempt[z]=key;

 z++;

 }

 }

}

void loop()

{

6 readKeypad();

}

Understanding the Sketch
After the usual setup routines (as described in Listing 11-1), the sketch
continually “listens” to the keypad by running the function readKeypad() at
6. After a key is pressed, the Arduino examines the value of the key using a
switch case statement at 5. The Arduino stores the values of the keys
pressed on the keypad in the array attempt, and when the user presses #,
the Arduino calls the function checkPIN().

At 2, the Arduino compares the values of the pressed keys against the PIN
stored in the array PIN at 1. If the correct sequence is entered, the function
correctPIN() at 3 is called, where you can add your own code to execute.
If an incorrect sequence is entered, the function incorrectPIN() at 4 is

called. Finally, once the user’s entry has been checked, the code deletes the
entry from memory so the code is ready for the next test.

Testing the Sketch
After you’ve uploaded the sketch to your Arduino, open the Serial Monitor
window, press star (*) on the numeric keypad, type the secret number, and
then enter the pound sign (#). Try entering both correct and incorrect
numbers. Your results should be similar to the output shown in Figure 11-4.

This example serves as a perfect foundation for your own PIN-activated
devices, such as locks, alarms, or anything else you can imagine. Just be
sure to replace the code in correctPIN() and incorrectPIN() with the
code you want to run when a correct or incorrect sequence is entered.

Figure 11-4: Results from entering correct and incorrect PINs

Looking Ahead
You have learned yet another way to gather input for your Arduino. You’ve
also gained the foundational knowledge to create a useful method of
controlling a sketch using a numeric keypad, as well as the foundations for
a combination lock to access anything that your Arduino can control.
Furthermore, you’ve learned the very useful switch case statement. In the
next chapter, you’ll learn about another form of input: the touchscreen.

12

ACCEPTING USER INPUT WITH

TOUCHSCREENS

In this chapter you will
Learn how to connect a resistive touchscreen to your Arduino

Discover the values that can be returned from the touchscreen

Create a simple on/off touch switch

Learn how to use the map() function

Create an on/off touch switch with a dimmer-style control

We see touchscreens everywhere today: on smartphones, tablets, and even
portable video game systems. So why not use a touchscreen to accept input
from an Arduino user?

Touchscreens
Touchscreens can be quite expensive, but we’ll use an inexpensive model
available from Adafruit (part numbers 333 and 3575), originally designed
for the Nintendo DS game console.

This touchscreen, which measures about 2.45 by 3 inches, is shown in
Figure 12-1.

Figure 12-1: A touchscreen mounted on a solderless breadboard

Notice the horizontal ribbon cable connected to the small circuit board on
the right. This breakout board is used to attach the Arduino and the
breadboard to the touchscreen. The header pins included with the breakout
board will need to be soldered before use. Figure 12-2 shows a close-up of
the breakout board.

Figure 12-2: The touchscreen breakout board

Connecting the Touchscreen
Connect the touchscreen breakout board to an Arduino as shown in Table
12-1.

Table 12-1: Touchscreen Breakout Board Connections

Breakout board pin Arduino pin
X− A3
Y+ A2
X+ A1
Y− A0

Project #33: Addressing Areas on the
Touchscreen
The touchscreen has two layers of resistive coating between the top layer of
plastic film and the bottom layer of glass. One coating acts as the x-axis,
and the other is the y-axis. As current passes through each coating, the
resistance of the coating varies depending on where it has been touched;
when the current is measured, the x and y positions of the touched area can
be determined.

In this project, we’ll use the Arduino to record touched locations on the
screen. We’ll also have it convert information from the touches into integers
that represent areas of the screen.

The Hardware
The following hardware is required:

One Adafruit touchscreen, part 333

One Adafruit breakout board, part 3575

Male-to-male jumper wires

One solderless breadboard

Arduino and USB cable

Connect the touchscreen as described in Table 12-1 and connect the
Arduino to the PC via the USB cable.

The Sketch
Enter and upload the following sketch:

// Project 33 - Addressing Areas on the Touchscreen

int x,y = 0;

1 int readX() // returns the value of the touchscreen's x-axis

{

 int xr=0;

 pinMode(A0, INPUT);

 pinMode(A1, OUTPUT);

 pinMode(A2, INPUT);

 pinMode(A3, OUTPUT);

 digitalWrite(A1, LOW); // set A1 to GND

 digitalWrite(A3, HIGH); // set A3 as 5V

 delay(5);

 xr=analogRead(0); // stores the value of the x-axis

 return xr;

}

2 int readY() // returns the value of the touchscreen's y-axis

{

 int yr=0;

 pinMode(A0, OUTPUT);

 pinMode(A1, INPUT);

 pinMode(A2, OUTPUT);

 pinMode(A3, INPUT);

 digitalWrite(14, LOW); // set A0 to GND

 digitalWrite(16, HIGH); // set A2 as 5V

 delay(5);

 yr=analogRead(1); // stores the value of the y-axis

 return yr;

}

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print(" x = ");

 x=readX();

3 Serial.print(x);

 y=readY();

 Serial.print(" y = ");

4 Serial.println(y);

 delay (200);

}

The functions readX() and readY() at 1 and 2 read the current from the
touchscreen’s resistive layers, measure it using analogRead(), and return
the read values. The sketch rapidly runs these two functions to provide the
real-time position of the screen area being touched and displays this
information in the Serial Monitor at 3 and 4. (The delay(5) in each
function is required to allow the input/output pins time to change their
states.)

Testing the Sketch
To test the sketch, watch the Serial Monitor window while you touch the
screen and notice how the x and y values change as you move your finger
around the screen. Also take note of the values displayed when the screen is
not being touched, as shown in Figure 12-3.

Figure 12-3: Values that appear when the touchscreen is not touched

You can use the values that display when you’re not touching the screen in
your sketch to detect when the screen is not being touched. Also, displays
may vary slightly, so it is important to map out your own unit so you have
an understanding of its display boundaries.

Mapping the Touchscreen
You can plot the coordinates for each corner of your touchscreen by
touching the corners of the screen and recording the values returned, as
shown in Figure 12-4.

Figure 12-4: A touchscreen map

After you’ve created your touchscreen map, you can mathematically divide
it into smaller regions, which you can then use with if statements to cause
specific actions to occur depending on where the screen is touched. We’ll
do that in Project 34.

Project #34: Creating a Two-Zone On/Off
Touch Switch

In this project, we’ll use our touchscreen map to create an on/off switch.
Start by dividing the touchscreen in half vertically, as shown in Figure 12-5.

The Arduino will determine which zone of the screen was touched by
comparing the recorded coordinates of the touch to the boundaries of each
half of the screen. When the zone has been determined, the code responds
by returning on or off (though it could also send an on or off signal to a
device).

Figure 12-5: On/off switch map

The Sketch
Enter and upload the following sketch:

// Project 34 - Creating a Two-Zone On/Off Touch Switch

int x,y = 0;

void setup()

{

 Serial.begin(9600);

 pinMode(10, OUTPUT);

}

void switchOn()

{

 digitalWrite(10, HIGH);

 Serial.print("Turned ON at X = ");

 Serial.print(x);

 Serial.print(" Y = ");

 Serial.println(y);

 delay(200);

}

void switchOff()

{

 digitalWrite(10, LOW);

 Serial.print("Turned OFF at X = ");

 Serial.print(x);

 Serial.print(" Y = ");

 Serial.println(y);

 delay(200);

}

int readX() // returns the value of the touchscreen's x-axis

{

 int xr=0;

 pinMode(A0, INPUT);

 pinMode(A1, OUTPUT);

 pinMode(A2, INPUT);

 pinMode(A3, OUTPUT);

 digitalWrite(A1, LOW); // set A1 to GND

 digitalWrite(A3, HIGH); // set A3 as 5V

 delay(5);

 xr=analogRead(0);

 return xr;

}

int readY() // returns the value of the touchscreen's y-axis

{

 int yr=0;

 pinMode(A0, OUTPUT);

 pinMode(A1, INPUT);

 pinMode(A2, OUTPUT);

 pinMode(A3, INPUT);

 digitalWrite(A0, LOW); // set A0 to GND

 digitalWrite(A2, HIGH); // set A2 as 5V

 delay(5);

 yr=analogRead(1);

 return yr;

}

void loop()

{

 x=readX();

 y=readY();

1 // test for ON

 if (x<=515 && x>=80)

 {

 switchOn();

 }

2 // test for OFF

 if (x<950 && x>=516)

 {

 switchOff();

 }

}

Understanding the Sketch
The two if statements used in void loop() check for a touch on the left or
right side of the screen. If the left side is touched, the touch is detected as an
“on” press at 1. If the right side is touched (an “off” press), the touch is
detected at 2.

NOTE

The y-axis is ignored because the touchscreen is split vertically, so it
doesn’t matter whether you touch the screen higher up or lower
down. If we were to create horizontal boundaries, the y-axis would
need to be checked as well, as you’ll see in Project 35.

Testing the Sketch

The output of this sketch is shown in Figure 12-6. The status of the switch
and the coordinates are shown after each screen touch.

Figure 12-6: Output from Project 34

Using the map() Function
There may come a time when you need to convert an integer that falls
within one range into a value that falls into another range. For example, the
x values of your touchscreen might run from 100 to 900, but you might
have to translate that to a range of 0 to 255 to control an 8-bit output.

To do this we use the map() function, which is laid out as:

map(value, fromLow, fromHigh, toLow, toHigh);

For example, to translate 450 on the touchscreen to the range 0–255, you
would use this code:

x = map(450, 100, 900, 0, 255);

This would give x a value of 95. You’ll use the map() function in Project
35.

Project #35: Creating a Three-Zone Touch
Switch
In this project, we’ll create a three-zone touch switch for an LED on digital
pin 3 that turns the LED on or off and adjusts the brightness from 0 to 255
using PWM (as explained in Chapter 3).

The Touchscreen Map
Our touchscreen map is shown in Figure 12-7.

Figure 12-7: Touchscreen map for a three-zone touch switch

The touchscreen map is divided into off and on zones and a brightness
control zone. We measure the values returned by the touchscreen to
determine which part has been touched, then react accordingly.

The Sketch
Enter and upload the following sketch:

// Project 35 - Creating a Three-Zone Touch Switch

int x,y = 0;

void setup()

{

 pinMode(3, OUTPUT);

 Serial.begin(9600);

}

void switchOn()

{

 digitalWrite(3, HIGH);

 delay(200);

}

void switchOff()

{

 digitalWrite(3, LOW);

 delay(200);

}

void setBrightness()

{

 int PWMvalue;

1 PWMvalue=map(x, 80, 950, 0, 255);

 analogWrite(3, PWMvalue);

}

int readX() // returns the value of x-axis

{

 int xr=0;

 pinMode(A0, INPUT);

 pinMode(A1, OUTPUT);

 pinMode(A2, INPUT);

 pinMode(A3, OUTPUT);

 digitalWrite(A1, LOW); // set A1 to GND

 digitalWrite(A3, HIGH); // set A3 as 5V

 delay(5);

 xr=analogRead(0);

 return xr;

}

int readY() // returns the value of y-axis

{

 int yr=0;

 pinMode(A0, OUTPUT);

 pinMode(A1, INPUT);

 pinMode(A2, OUTPUT);

 pinMode(A3, INPUT);

 digitalWrite(A0, LOW); // set A0 to GND

 digitalWrite(A2, HIGH); // set A2 as 5V

 delay(5);

 yr=analogRead(1);

 return yr;

}

void loop()

{

 x=readX();

 y=readY();

2 // test for ON

 if (x<=950 && x>=515 && y>= 500 && y>900)

 {

 switchOn();

 }

3 // test for OFF

 if (x>80 && x<515 && y>= 500 && y>900)

 {

 switchOff();

 }

 // test for brightness

4 if (y>=100 && y<=500)

 {

 setBrightness();

 }

 Serial.println(x);

}

Understanding the Sketch
Like the sketch for the two-zone map, this sketch will check for touches in
the on and off zones (which are now smaller, because half the screen is
reserved for the brightness zone) at 2 and 3 and for any touches above the
horizontal divider, which we’ll use to determine brightness, at 4. If the
screen is touched in the brightness area, the position on the x-axis is
converted to a relative value for PWM using the map() function at 1, and
the LED is adjusted accordingly using the function setBrightness().

You can use these same functions to create any number of switches or
sliders with this simple and inexpensive touchscreen. Furthermore, you
could create your own library to easily return X and Y values and control
the brightness in any sketch you write in the future.

Looking Ahead
This chapter introduced you to the touchscreen, another way of accepting
user data and controlling your Arduino. In the next chapter, we’ll focus on
the Arduino board itself, learn about some of the different versions
available, and create our own version on a solderless breadboard.

13

MEET THE ARDUINO FAMILY

In this chapter you will
Learn how to build your own Arduino circuit on a solderless breadboard

Explore the features and benefits of a wide range of Arduino-compatible
boards

Learn about open source hardware

We’ll break down the Arduino design into a group of parts, and then you’ll
build your own Arduino circuit on a solderless breadboard. Building your
own circuit can save you money, especially when you’re working with
changing projects and prototypes. You’ll also learn about some new
components and circuitry. Then we’ll explore ways to upload sketches to
your homemade Arduino that don’t require extra hardware. Finally, we’ll
examine the more common alternatives to the Arduino Uno and explore
their differences.

Project #36: Creating Your Own Breadboard
Arduino
As your projects and experiments increase in complexity or number, the
cost of purchasing Arduino boards for each task can easily get out of hand,
especially if you like to work on more than one project at a time. At this
point, it’s cheaper and easier to integrate the circuitry of an Arduino board
into your project by building an Arduino circuit on a solderless breadboard
that you can then expand for your specific project. It should cost less than

$10 in parts to reproduce the basic Arduino circuitry on a breadboard
(which itself is usually reusable if you’re not too hard on it). It’s easier to
make your own if your project has a lot of external circuitry, because it
saves you running lots of wires from an Arduino back to the breadboard.

The Hardware
To build a minimalist Arduino, you’ll need the following hardware:

One breadboard

Various connecting wires

One 7805 linear voltage regulator

One 16 MHz crystal oscillator

One ATmega328P-PU microcontroller with Arduino bootloader

One 1 µF, 25 V electrolytic capacitor (C1)

One 100 µF, 25 V electrolytic capacitor (C2)

Two 22 pF, 50 V ceramic capacitors (C3 and C4)

One 100 nF, 50 V ceramic capacitor (C5)

Two 560 Ω resistors (R1 and R2)

One 10 kΩ resistor (R3)

Two LEDs of your choice (LED1 and LED2)

One push button (S1)

One six-way header pin

One PP3-type battery snap

One 9 V PP3-type battery

Some of these parts might be new to you. In the following sections, I’ll
explain each part and show you an example and a schematic of each.

7805 Linear Voltage Regulator

A linear voltage regulator contains a simple circuit that converts one
voltage to another. The regulator included in the parts list is the 7805 type,
which can convert a voltage between 7 and 30 V to a fixed 5 V, with a
current up to 1 A—perfect for running our breadboard Arduino. Figure 13-
1 shows an example of a 7805 in a TO-220 package next to a ruler for scale.

Figure 13-1: A 7805 linear voltage regulator with a ruler marked in millimeters

Figure 13-2: 7805 schematic symbol

Figure 13-2 shows the schematic symbol for the 7805. When you’re
looking at the labeled side of the 7805, the pin on the left (underneath the
letter J) is for input voltage, the center pin connects to GND, and the right-
hand pin (underneath the letter G) is the 5 V output connection. The metal
tab at the top is drilled to allow it to connect to a larger piece of metal
known as a heat sink. We use a heat sink when the circuit draws up to the
maximum of 1 A of current, because the 7805 will become quite warm, like
a hot coffee, at that level of use. The metal tab is also connected to GND.
We will need one 7805 regulator for our example.

16 MHz Crystal Oscillator
More commonly known as simply a crystal, the crystal oscillator creates an
electrical signal with a very accurate frequency. In this case, the frequency
is 16 MHz. The crystal we’ll use is shown in Figure 13-3.

Figure 13-3: A crystal oscillator with a ruler marked in millimeters

Compare this image to the crystal on your Arduino board. They should be
identical in shape and size.

Figure 13-4: Crystal oscillator schematic symbol

Crystals are not polarized. Their schematic symbol is shown in Figure 13-4.

The crystal determines the microcontroller’s speed of operation. For
example, the microcontroller circuit we’ll be assembling runs at 16 MHz,
which means it can execute 16 million processor instructions per second.
That doesn’t mean it can execute a line of a sketch or a function that
rapidly, however, since it takes many processor instructions to interpret a
single line of code.

Atmel ATmega328P-PU Microcontroller IC
As noted in Chapter 2, a microcontroller is a tiny computer that is the brains
of our breadboard Arduino. It contains a processor that executes
instructions, various types of memory to hold data and instructions from our
sketch, and various ways to send and receive data. An example of the
ATmega328P-PU is shown in Figure 13-5. When looking at the IC in the
photo, notice that pin number 1 is at the bottom left of the IC and is marked
by a small dot.

Figure 13-5: An ATmega328P-PU

The schematic symbol for the microcontroller is shown in Figure 13-6.

Figure 13-6: Microcontroller schematic symbol

Not all microcontrollers contain the Arduino bootloader, the software that
allows it to wait for the Arduino IDE to send it a new sketch to run. When
choosing a microcontroller to include in a homemade Arduino, be sure to
select one that already includes the bootloader. These are generally
available from the same retailers that sell Arduino boards, such as Adafruit,
PMD Way, and SparkFun.

The Schematic
Figure 13-7 shows the circuit schematic.

Figure 13-7: Schematic for Project 36

The schematic contains two sections. The first, on the left, is the power
supply, which reduces the voltage to a smooth 5 V. You’ll see an LED that
is lit when the power is on. The second section, on the right, consists of the
microcontroller, the reset button, the programming pins, and another LED.
This LED is wired to the ATmega328P-PU pin that is used as Arduino pin
13.

Use the schematic to wire up your Arduino. Don’t forget to run the wires to
the six-way pin header (shown in Figure 13-8), represented by the six

circles at the bottom of the schematic. We’ll use this connection later in the
chapter to upload a sketch to our homemade Arduino.

The circuit will be powered using a 9 V battery and matching snap
connector, as shown in Figure 13-9. Connect the red lead of the battery
snap connector to the positive (+) point and the black lead to the negative
(–) point on the left side of the circuit.

Figure 13-8: The six-way pin header

Figure 13-9: A 9 V battery and snap connector

Identifying the Arduino Pins
Where are all the Arduino pins on our homemade Arduino? All the analog,
digital, and other pins available on the normal Arduino board are also
available in our breadboard version; you simply connect directly to the
microcontroller.

In our breadboard Arduino, the R2 and LED2 are on digital pin 13. Table
13-1 lists the Arduino pins on the left and the matching ATmega328P-PU
pins on the right.

Table 13-1: Pins for ATmega328P-PU

Arduino pin name ATmega328P-PU pin
RST 1
RX/D0 2
TX/D1 3
D2 4
D3 5
D4 6
(5 V only) 7
GND 8
D5 11
D6 12
D7 13
D8 14
D9 15
D10 16
D11 17
D12 18
D13 19
(5 V only) 20
AREF 21
GND 22
A0 23
A1 24
A2 25
A3 26
A4 27
A5 28

To avoid confusion, retailers such as Adafruit and Freetronics sell adhesive
labels to place over the microcontroller, like those shown in Figure 13-10
(order at
https://www.freetronics.com.au/collections/arduino/products/microcontrolle
r-labels-arduino-pinout/).

https://www.freetronics.com.au/collections/arduino/products/microcontroller-labels-arduino-pinout/

Figure 13-10: Pin labels

Running the Sketch
Now it’s time to upload a sketch. We’ll start by uploading a simple sketch
to blink the LED:

// Project 36 - Creating Your Own Breadboard Arduino

void setup()

{

 pinMode(13, OUTPUT);

}

void loop()

{

 digitalWrite(13, HIGH);

 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);

}

You can upload the sketch in one of three ways.

Using the Microcontroller Swap Method

The most inexpensive way to upload a sketch is to remove the
microcontroller from an existing Arduino, insert the microcontroller from
your homemade Arduino, upload the sketch, and then swap the
microcontrollers again.

To remove a microcontroller from the Arduino safely, use an IC extractor,
as shown in Figure 13-11.

Figure 13-11: Using an IC extractor to remove a microcontroller

Figure 13-12: Bending the microcontroller pins

When removing the microcontroller, be sure to pull both ends out evenly
and slowly at the same time—and take your time! Removing the component
might be difficult, but eventually the microcontroller will come out.

Figure 13-13: Correct orientation of the microcontroller in an Arduino

When inserting a microcontroller into the breadboard or your Arduino, you
may have to bend the pins a little to make them perpendicular to the body of
the microcontroller so that they can slide in easily. To do this, place one side
of the component against a flat surface and gently push down; then repeat
on the other side, as shown in Figure 13-12.

Finally, when you return the original microcontroller to your Arduino
board, remember that the end with the notch should be on the right side, as
shown in Figure 13-13.

Connecting to an Existing Arduino Board
You can also use the USB interface of an Arduino Uno to upload sketches
to the microcontroller in your breadboard Arduino. Using this method
reduces wear on the Arduino board’s socket and saves you money, because
you won’t need to buy a separate USB programming cable.

Here’s how to upload a sketch to the microcontroller using the USB
interface:

. Remove the microcontroller from your Arduino Uno and unplug the USB
cable.

. Remove the power (if connected) from the breadboard Arduino circuit.

. Connect a wire from Arduino digital pin 0 to pin 2 of the breadboard’s
ATmega328P-PU; connect another wire from Arduino digital pin 1 to pin 3
of the ATmega328P-PU.

. Connect the 5 V and GND from the Uno to the matching areas on the
breadboard.

. Connect a wire from Arduino RST to pin 1 of the ATmega328P-PU.

. Plug the USB cable into the Arduino Uno board.

At this point, the computer should behave as if it were an ordinary Arduino
Uno, so you should be able to upload sketches to the breadboard circuit’s
microcontroller normally and use the Serial Monitor if necessary.

Using an FTDI Programming Cable
The final method is the easiest, but it requires the purchase of a USB
programming cable, known as an FTDI cable (simply because the USB
interface circuitry inside is made by a company called FTDI). When
purchasing an FTDI cable, make sure it’s the 5 V model, because the 3.3 V
model will not work properly. This cable (shown in Figure 13-14) has a
USB plug on one end and a socket with six wires on the other. The USB
end of this cable contains circuitry equivalent to the USB interface on an
Arduino Uno board. The six-wire socket connects to the header pins shown
in Figures 13-7 and 13-8.

Figure 13-14: An FTDI cable

When you’re connecting the cable, be sure that the side of the socket with
the black wire connects to the GND pin on the breadboard’s header pins.
Once the cable is connected, it also supplies power to the circuit, just as a
normal Arduino board would do.

Before uploading your sketch or using the serial monitor, change the board
type to Arduino Duemilanove or Diecimila by choosing Tools▶Board and
then selecting the correct microcontroller (Figure 13-15).

Figure 13-15: Changing the board type in the IDE

Once you have selected a method of uploading, test it by uploading the
Project 36 sketch. Now you should be able to design more complex circuits
using only a breadboard, which will let you create more projects for less
money. You can even build more permanent projects from scratch if you
learn to make your own printed circuit boards.

The Many Arduino and Alternative Boards
Although we have been working exclusively with the Arduino Uno board
throughout the book, you can choose from many alternative boards. These
will vary in physical size, the number of input and output pins, memory
space for sketches, and price.

One of the crucial differences between boards is the microcontroller used.
Current boards generally use the ATmega328 or the ATmega2560
microcontroller, and the Due uses another, more powerful version called the
SAM3X8E. The main differences among these (including both versions of
the ATmega328) are summarized in Table 13-2.

Table 13-2: Microcontroller Comparison Chart

 ATmega328P-
PU

ATmega328P
SMD

ATmega2560 SAM3X8E

User-replaceable? Yes No No No
Processing speed 16 MHz 16 MHz 16 MHz 84 MHz
Operating voltage 5 V 5 V 5 V 3.3 V
Number of digital pins 14

(6 PWM
capable)

14

(6 PWM
capable)

54

(14 PWM
capable)

54

(12 PWM
capable)

Number of analog input
pins

6 8 16 12

DC current per

I/O pin

40 mA 40 mA 40 mA 3–15 mA

Available flash memory 31.5KB 31.5KB 248KB 512KB
EEPROM size 1KB 1KB 4KB No EEPROM
SRAM size 2KB 2KB 8KB 96KB

The main parameters used to compare various Arduino-compatible boards
are the types of memory they contain and the amount of each type.
Following are the three types of memory:

Flash memory is the space available to store a sketch after it has been
compiled and uploaded by the IDE.

EEPROM (electrically erasable programmable read-only memory) is a
small space that can store byte variables, as you’ll learn in Chapter 19.

SRAM is the space available to store variables from your programs.

NOTE

Many Arduino boards are available in addition to the Uno, and the
few described here are only the tip of the iceberg. When you’re
planning large or complex projects, don’t be afraid to scale up to
the larger Mega boards. By the same token, if you need only a few
I/O pins for a more permanent project, consider the Nano or even a
LilyPad.

Let’s explore the range of available boards.

Arduino Uno
The Uno is currently considered the standard Arduino board. All Arduino
shields ever made should be compatible with the Uno. The Uno is
considered the easiest-to-use Arduino board due to its built-in USB
interface and removable microcontroller.

Freetronics Eleven
Many boards on the market emulate the function of the Arduino Uno, and
some have even improved on the standard design. One of these is the
Freetronics Eleven, shown in Figure 13-16.

Figure 13-16: A Freetronics Eleven

Although the Eleven is completely compatible with the Arduino Uno, it
offers several improvements that make it a worthwhile product. The first is
the large prototyping area just below the digital I/O pins. This area allows
you to construct your own circuit directly on the main board, which can
save you space and money since you won’t need to purchase a separate
prototyping shield.

Second, the transmitter/receiver (TX/RX), power, and D13 LEDs are
positioned on the far right of the board; this placement allows them to be
visible even when a shield is attached. Finally, the Eleven uses a micro-
USB socket, which is much smaller than the standard USB socket used on
the Uno. This makes designing your own shield simpler, since you don’t
have to worry about your connections bumping into the USB socket. The
Eleven is available from http://www.freetronics.com.au/products/eleven/.

The Adafruit Pro Trinket
The Adafruit Pro Trinket (Figure 13-17) is a miniaturized version of the
Arduino Uno designed for working with solderless breadboards, wearable

http://www.freetronics.com.au/products/eleven/

electronics, or any situation in which you need a much smaller board.

Figure 13-17: An Adafruit Pro Trinket

There are some slight differences from the Arduino Uno (for example, no
serial output unless you use an external FTDI cable); however, for the price
this board is a great value. The Pro Trinket is available from
http://www.adafruit.com/trinket/.

The Arduino Nano
When you need a compact, assembled Arduino-compatible board, the Nano
should fit the bill. Also designed to work in a solderless breadboard, the
Nano (Figure 13-18) is a tiny but powerful Arduino.

http://www.adafruit.com/trinket/

Figure 13-18: An Arduino Nano

The Nano measures only 0.7 inches by 1.77 inches (17.8 mm by 44.9 mm),
yet it offers all the functionality of the classic Arduino Duemilanove.
Furthermore, it uses the SMD version of the ATmega328P, so it has two
extra analog input pins (A6 and A7). The Nano is available from
https://store.arduino.cc/usa/arduino-nano/.

The LilyPad
The LilyPad is designed to be integrated into creative projects, such as
wearable electronics. In fact, you can actually wash a LilyPad with water
and a mild detergent, so it’s ideal to use for lighting up a sweatshirt, for
example. The board design is unique, as shown in Figure 13-19.

https://store.arduino.cc/usa/arduino-nano/

Figure 13-19: An Arduino LilyPad

The I/O pins on the LilyPad require that wires be soldered to the board, so
the LilyPad is more suited for use with permanent projects. As part of its
minimalist design, it has no voltage regulation circuitry, so it’s up to the
user to provide their own supply between 2.7 and 5.5 V. The LilyPad also
lacks a USB interface, so a 5 V FTDI cable is required to upload sketches.
You can get Arduino LilyPad or compatible boards from almost any
Arduino retailer.

The Arduino Mega 2560
When you run out of I/O pins on your Arduino Uno or you need space for
much larger sketches, consider a Mega 2560, shown in Figure 13-20. It is
physically a much larger board than the Uno, measuring 4.3 inches by 2.1
inches (109.2 mm by 53.4 mm).

Figure 13-20: An Arduino Mega 2560

Although the Mega 2560 board is much larger than the Uno, you can still
use most Arduino shields with it, and Mega-sized prototyping shields are
available for larger projects that the Uno can’t accommodate. Since the
Mega uses the ATmega2560 microcontroller, its memory space and I/O
capabilities (as described in Table 13-2) are much greater than those of the
Uno. Additionally, four separate serial communication lines increase its
data transmission capabilities. You can get Mega 2560 boards from almost
any Arduino retailer.

The Freetronics EtherMega
When you need an Arduino Mega 2560, a microSD card shield, and an
Ethernet shield to connect to the internet, your best option is an EtherMega
(Figure 13-21), because it has all these functions on a single board and is
less expensive than purchasing each component separately. The EtherMega
is available from http://www.freetronics.com/em/.

http://www.freetronics.com/em/

Figure 13-21: A Freetronics EtherMega

The Arduino Due
With an 84 MHz processor that can run your sketches much faster, this is
the most powerful Arduino board ever released. As you can see in Figure
13-22, the board is quite like the Arduino Mega 2560, but there is an extra
USB port for external devices and different pin labels.

Furthermore, the Due has just over 16 times the memory of an Uno board,
so you can create really complex and detailed sketches. However, the Due
operates only on 3.3 V—so any circuits, shields, or other devices connected
to the analog or digital pins cannot have a voltage greater than 3.3 V. While
you need to be aware of these limitations, generally the benefits of using the
Due outweigh the changes in the hardware.

Figure 13-22: An Arduino Due

NOTE

When shopping for your next Arduino board or accessory, be sure to
buy from a reputable retailer that offers support and a guarantee.
The internet is flooded with cheap alternatives, but manufacturers
often cut corners to make these abnormally low-priced products,
and you might have no way of seeking recompense if you’re sold a
faulty or incorrectly specified product.

OPEN SOURCE HARDWARE

The Arduino hardware design is released to the public so that anyone can
manufacture, modify, distribute, and use it as they see fit. This type of distribution falls
under the umbrella of open source hardware—a recent movement that is in opposition
to the concept of copyrights and other legal protection of intellectual property. The
Arduino team decided to allow its designs to be free for the benefit of the larger
hardware community and for the greater good.
In the spirit of open source hardware, many organizations that produce accessories for
or modifications of the original Arduino boards publish their designs under the same
license. This allows for a much faster process of product improvement than would be
possible for a single organization developing the product alone.

Looking Ahead
This chapter has given you a broader picture of the types of hardware
available and introduces the idea of a breadboard Arduino that you build
yourself. You’ve seen the parts that make up the Arduino design, and
you’ve seen how to build your own Arduino using a solderless breadboard.
You now know how to make more than one Arduino-based prototype
without having to purchase more boards. You also know about the variety
of Arduino boards on the market, and you should be able to select the board
that best meets your needs. Finally, you’ve gained an understanding of the
open source movement and Arduino’s participation in it.

In the next chapter, you’ll learn to use a variety of motors and begin
working on your own Arduino-controlled motorized robot!

14

MOTORS AND MOVEMENT

In this chapter you will
Use a servo to create an analog thermometer

Learn how to control the speed and direction of DC electric motors

Learn how to control small stepper motors

Use an Arduino motor shield

Begin work on a motorized robot vehicle

Use simple microswitches for collision avoidance

Use infrared and ultrasonic distance sensors for collision avoidance

Making Small Motions with Servos
A servo (short for servomechanism) is an electric motor with a built-in
sensor. It can be commanded to rotate to a specific angular position. By
attaching the shaft of the servo to other machines, like wheels, gears, and
levers, you can precisely control items in the external world. For example,
you might use a servo to control the steering of a remote control car by
connecting the servo to a horn, a small arm or bar that the servo rotates. An
example of a horn is one of the hands on an analog clock. Figure 14-1
shows a servo and three types of horns.

Figure 14-1: A servo and various horns

Selecting a Servo
When you’re selecting a servo, consider several parameters:

Speed The time it takes for the servo to rotate, usually measured in seconds
per angular degree, revolutions per minute (RPM), or seconds per 60
degrees.

Rotational range The angular range through which the servo can rotate—
for example, 180 degrees (half of a full rotation) or 360 degrees (one
complete rotation).

Current How much current the servo draws. When using a servo with an
Arduino, you may need to use an external power supply for the servo.

Torque The amount of force the servo can exert when rotating. The greater
the torque, the heavier the item the servo can control. The torque produced
is generally proportional to the amount of current used.

The servo shown in Figure 14-1 is a generic SG90-type servo. It is
inexpensive and can rotate up to 180 degrees, as shown in Figure 14-2.

Figure 14-2: Example servo rotation range

Connecting a Servo
It’s easy to connect a servo to an Arduino because it needs only three wires.
If you’re using the SG90, the darkest wire connects to GND, the center wire
connects to 5 V, and the lightest wire (the pulse or data wire) connects to a
digital pin. If you’re using a different servo, check its data sheet for the
correct wiring.

Putting a Servo to Work
Now let’s put our servo to work. In this sketch, the servo will turn through
its rotational range. Connect the servo to your Arduino as described, with
the pulse wire connected to digital pin 4, and then enter and upload the
sketch in Listing 14-1.

// Listing 14-1

#include <Servo.h>

Servo myservo;

void setup()

{

 myservo.attach(4);

}

void loop()

{

 myservo.write(180);

 delay(1000);

 myservo.write(90);

 delay(1000);

 myservo.write(0);

 delay(1000);

}

Listing 14-1: Servo demonstration sketch

In this sketch, we use the Servo library, which needs to be installed. Follow
the instructions outlined in Chapter 7. In the Library Manager, find and then
install the “Servo by Michael Margolis, Arduino” library. Create an instance
of the servo with the following:

#include <Servo.h>

Servo myservo;

Then, in void setup(), we tell the Arduino which digital pin the servo
control is using:

myservo.attach(4); // control pin on digital 4

Now we simply move the servo with the following:

myservo.write(x);

Here, x is an integer between 0 and 180 representing the angular position to
which the servo will be moved. When running the sketch in Listing 14-1,
the servo will rotate across its maximum range, stopping at the extremes (0
degrees and 180 degrees) and at the midpoint (90 degrees). When looking at
your servo, note that the 180-degree position is on the left and 0 degrees is
on the right.

In addition to pushing or pulling objects, servos can be used to
communicate data in a similar way as an analog gauge. For example, you
could use a servo as an analog thermometer, as you’ll see in Project 37.

Project #37: Building an Analog
Thermometer
Using our servo and the TMP36 temperature sensor from earlier chapters,
we’ll build an analog thermometer. We’ll measure the temperature and then
convert this measurement to an angle between 0 and 180 degrees to indicate
a temperature between 0 and 30 degrees Celsius. The servo will rotate to
the angle that matches the current temperature.

The Hardware
The required hardware is minimal:

One TMP36 temperature sensor

One breadboard

One small servo

Various connecting wires

Arduino and USB cable

The Schematic
The circuit is also very simple, as shown in Figure 14-3.

Figure 14-3: Schematic for Project 37

The Sketch
The sketch will determine the temperature using the same method used in
Project 8 in Chapter 4. Then it will convert the temperature into an angular
rotation value for the servo.

Enter and upload the following sketch:

// Project 37 - Building an Analog Thermometer

float voltage = 0;

float sensor = 0;

float currentC = 0;

int angle = 0;

#include <Servo.h>

Servo myservo;

void setup()

{

 myservo.attach(4);

}

1 int calculateservo(float temperature)

{

 float resulta;

 int resultb;

 resulta = -6 * temperature;

 resulta = resulta + 180;

 resultb = int(resulta);

 return resultb;

}

void loop()

{

 // read current temperature

 sensor = analogRead(0);

 voltage = (sensor*5000)/1024;

 voltage = voltage-500;

 currentC = voltage/10;

 // display current temperature on servo

 1 angle = calculateservo(currentC);

 // convert temperature to a servo position

 if (angle>=0 && angle <=30)

 {

 myservo.write(angle); // set servo to temperature

 delay(1000);

 }

}

Most of this sketch should be clear to you at this point, but the function
calculateservo() at 1 is new. This function converts the temperature into
the matching angle for the servo to use according to the following formula:

angle = (–6 × temperature) + 180

You might find it useful to make a backing sheet to show the range of
temperatures that the servo will display, with a small arrow to create a
realistic effect. An example is shown in Figure 14-4. You can download a
printable version of the backing sheet from the book’s website:
https://nostarch.com/arduino-workshop-2nd-edition/.

Figure 14-4: A backing sheet indicates the temperature on our thermometer.

Using Electric Motors
The next step in our motor-controlling journey is to work with small electric
motors. Small motors are used for many applications, from small fans to toy
cars to model railroads.

Selecting a Motor
As with servos, you need to consider several parameters when you’re
choosing an electric motor:

The operating voltage The voltage at which the motor is designed to
operate. This can vary, from 3 V to more than 12 V.

The current without a load The amount of current the motor uses at its
operating voltage while spinning freely, without anything connected to the
motor’s shaft.

https://nostarch.com/arduino-workshop-2nd-edition/

The stall current The amount of current used by the motor when it is
trying to turn but cannot because of the load on the motor.

The speed at the operating voltage The motor’s speed in RPM.

Our example will use a small, inexpensive electric motor with a speed of
8,540 RPM when running on 3 V, similar to the one shown in Figure 14-5.

Figure 14-5: Our small electric motor

To control our motor we’ll use a transistor, introduced in Chapter 3.
Because our motor uses up to 0.7 A of current (more than can be passed by
the BC548 transistor), we’ll use a transistor called a Darlington for this
project.

The TIP120 Darlington Transistor
A Darlington transistor is nothing more than two transistors connected
together. It can handle high currents and voltages. The TIP120 Darlington
can pass up to 5 A of current at 60 V, which is more than enough to control
our small motor. The TIP120 uses a similar schematic symbol as the
BC548, as shown in Figure 14-6, but the TIP120 transistor is physically
larger than the BC548.

Figure 14-6: TIP120 schematic symbol

The TIP120 uses the TO-220 housing style, as shown in Figure 14-7.

Figure 14-7: The TIP120

When you’re looking at the TIP120 from the labeled side, the pins from left
to right are base (B), collector (C), and emitter (E). The metal heat sink tab
is also connected to the collector.

Project #38: Controlling the Motor
In this project, we’ll control the motor by adjusting the speed.

The Hardware
The following hardware is required:

One small 3 V electric motor

One 1 kΩ resistor (R1)

One breadboard

One 1N4004 diode

One TIP120 Darlington transistor

A separate 3 V power source

Various connecting wires

Arduino and USB cable

You must use a separate power source for motors, because the Arduino
cannot supply enough current for the motor in all possible situations. If the
motor becomes stuck, then it will draw up to its stall current, which could
be more than 1 A. That’s more than the Arduino can supply, and if it
attempts to supply that much current the Arduino could be permanently
damaged.

A separate battery holder is a simple solution. For a 3 V supply, a two-cell
AA battery holder with flying leads will suffice, such as the one shown in
Figure 14-8.

Figure 14-8: A two-cell AA battery holder

The Schematic
Assemble the circuit as shown in the schematic in Figure 14-9.

Figure 14-9: Schematic for Project 38

The Sketch
In this project, we’ll adjust the speed of the motor from stopped (zero) to
the maximum and then reduce it back to zero. Enter and upload the
following sketch:

// Project 38 - Controlling the Motor

void setup()

{

 pinMode(5, OUTPUT);

}

void loop()

{

1 for (int a=0; a<256; a++)

 {

 analogWrite(5, a);

2 delay(100);

 }

3 delay(5000);

4 for (int a=255; a>=0; a--)

 {

 analogWrite(5,a);

 delay(100);

 }

 delay(5000);

}

We control the speed of the motor using pulse-width modulation (as
demonstrated in Project 3 in Chapter 3). Recall that we can do this only
with digital pins 3, 5, 6, 9, 10, and 11. Using this method, current is applied
to the motor in short bursts: the longer the burst, the faster the speed, as the
motor is on more than it is off during a set period of time. So at 1, the motor
speed starts at zero and increases slowly; you can control the acceleration
by changing the delay value at 2. At 3, the motor is running as fast as
possible and holds that speed for 5 seconds. Then, from 4, the process
reverses, and the motor slows to a stop.

NOTE

When it starts moving, you may hear a whine from the motor, which
sounds like the sound of an electric train or a tram when it moves
away from a station. This is normal and nothing to worry about.

The diode is used in the same way it was with the relay control circuit
described in Figure 3-19 on page 42 to protect the circuit. When the current
is switched off from the motor, stray current exists for a brief time inside
the motor’s coil and has to go somewhere. The diode allows the stray
current to loop around through the coil until it dissipates as a tiny amount of
heat.

Using Small Stepper Motors
Stepper motors are different from regular DC motors, in that they divide a
full rotation of the motor into a fixed number of steps. They do this by
using two coil windings that are independently controlled. So instead of
controlling a rotation with varying voltage as with a regular DC motor, you
instead turn on or off the coils in a stepper motor in a certain pattern to
rotate the shaft in either direction a set number of times. This control makes
steppers ideal for jobs that need precise motor positioning. They are quite
commonly found in devices from computer printers to advanced
manufacturing devices.

We will demonstrate stepper motor operation using the model 28BYJ-48, as
shown in Figure 14-10. This type of stepper motor can be controlled to
rotate to one of 4,096 positions; that is, one full rotation is divided into
4,096 steps.

Figure 14-10: A stepper motor and controller board

The board next to the motor is used as an interface between your Arduino
and the stepper motor, making connection easy and fast. It is usually
supplied along with the stepper motor. A close-up is shown in Figure 14-11.

Figure 14-11: The stepper motor controller board

Now to connect your stepper motor to the Arduino. Make the connections
as shown in Table 14-1.

Table 14-1: Connections Between the Stepper Motor Controller Board and the Arduino

Control board pin label Arduino pin
IN1 D8
IN2 D9
IN3 D10
IN4 D11
5–12 V+ 5 V
5–12 V− GND

You can briefly run the stepper motor using power from your Arduino if
nothing else is drawing power from the Arduino. However, this is not
recommended. Instead, use an external 5 V power supply such as a plug
pack or other convenient source. As the controller board doesn’t have a DC
socket, you can use an external socket with terminal blocks to make easy,
solderless connections, as shown in Figure 14-12.

Figure 14-12: DC socket terminal block

You can then connect jumper wires from the + and – connectors on the
terminal blocks to those on the stepper motor controller board. To simplify
controlling the stepper motor in our Arduino sketches, you can use a neat
Arduino library called CheapStepper. You can download it from
https://github.com/tyhenry/CheapStepper/archive/master.zip and install it
using the method described in Chapter 7.

Once you have successfully installed the library and connected your stepper
motor as described earlier, enter and upload Listing 14-2.

// Listing 14-2

1 #include <CheapStepper.h>

2 CheapStepper stepper (8, 9, 10, 11);

3 boolean clockwise = true;

boolean cclockwise = false;

4 void setup()

{

https://github.com/tyhenry/CheapStepper/archive/master.zip

 stepper.setRpm(20);

 Serial.begin(9600);

}

void loop()

{

 Serial.println("stepper.moveTo (Clockwise, 0)");

5 stepper.moveTo (clockwise, 0);

 delay(1000);

 Serial.println("stepper.moveTo (Clockwise, 1024)");

5 stepper.moveTo (clockwise, 1024);

 delay(1000);

 Serial.println("stepper.moveTo (Clockwise, 2048)");

 stepper.moveTo (clockwise, 2048);

 delay(1000);

 Serial.println("stepper.moveTo (Clockwise, 3072)");

 stepper.moveTo (clockwise, 3072);

 delay(1000);

 Serial.println("stepper.moveTo (CClockwise, 512)");

5 stepper.moveTo (cclockwise, 512);

 delay(1000);

 Serial.println("stepper.moveTo (CClockwise, 1536)");

5 stepper.moveTo (cclockwise, 1536);

 delay(1000);

 Serial.println("stepper.moveTo (CClockwise, 2560)");

 stepper.moveTo (cclockwise, 2560);

 delay(1000);

 Serial.println("stepper.moveTo (CClockwise, 3584)");

 stepper.moveTo (cclockwise, 3584);

 delay(1000);

}

Listing 14-2: Testing the stepper motor

Operation of the stepper motor is quite simple. We first include the library
at 1 and create an instance of the motor at 2. (If you wish to change the
digital pins used for the controller board, update them here.) The control

function uses true and false for clockwise and counterclockwise rotation,
respectively, so we assign these to Boolean variables at 3 to make things
clearer. Finally, the motor can be instructed to rotate to one of the 4,096
positions using the function:

Stepper.moveTo(direction, location);

where the direction is either clockwise or cclockwise and the location is a
value between 0 and 4,095. This is done starting at 5 and repeatedly through
the end of the sketch.

Furthermore, in void setup() at 4, we set the motor’s rotational speed to
20 RPM using:

stepper.setRpm(20);

This is the recommended speed for our stepper motor. Other motors will
vary, so you should check with the supplier for these details.

A few moments after you upload the sketch, your stepper motor will start
rotating to various positions, and you can see the commands echoed in the
Serial Monitor, as shown in Figure 14-13.

Figure 14-13: Commands sent to the stepper motor

Project #39: Building and Controlling a
Robot Vehicle
Although controlling the speed of one DC motor can be useful, let’s move
into more interesting territory by controlling four DC motors at once and
affecting their speed and direction. Our goal is to construct a four-wheeled
vehicle-style robot that we’ll continue to work on in the next few chapters.
Here I’ll describe the construction and basic control of our robot.

Our robot has four motors that each control one wheel, allowing it to travel
at various speeds as well as rotate in place. You will be able to control the
speed and direction of travel, and you will also learn how to add parts to
enable collision avoidance and remote control. Once you have completed
the projects in this book, you will have a solid foundation for creating your
own versions of this robot and bringing your ideas to life.

The Hardware
You’ll need the following hardware :

Robot vehicle chassis with four DC motors and wheels

Four-cell AA battery holder with wired output

Four alkaline AA cells

L293D Motor Drive Shield for Arduino

Arduino and USB cable

The Chassis
The foundation of any robot is a solid chassis containing the motors,
drivetrain, and power supply. An Arduino-powered robot also needs to have
room to mount the Arduino and various external parts.

You can choose from many chassis models available on the market. To keep
things simple, we’re using an inexpensive robot chassis that includes four
small DC motors that operate at around 6 V DC and matching wheels, as
shown in Figure 14-14.

Figure 14-14: Our robot chassis

The task of physically assembling the robot chassis will vary between
models, and you may need a few basic tools such as screwdrivers and
pliers. If you’re not sure about your final design but wish to get your robot
moving, a favored technique is to hold the electronics to the chassis with
sticky products such as Blu Tack.

The Power Supply
The motors included with the robot chassis typically operate at around 6 V
DC, so we’ll use a four-cell AA battery holder to power our robot, as shown
in Figure 14-15.

Figure 14-15: A battery holder for four AA cells

Some AA cell battery holders will not have the wiring needed to connect to
our project and instead will have connections for a 9 V battery snap (as our
unit in Figure 14-15 does). In this case, you’ll need a battery snap like the
one in Figure 14-16.

Figure 14-16: A battery cable used to connect the battery holder to the Arduino

The Schematic
The final requirement is to create the circuitry to control the four motors in
the chassis. Although we could use the circuitry shown in Figure 14-9 for
each of the motors, this wouldn’t allow us to control the direction of the

motors and could be somewhat inconvenient to wire up ourselves. Instead,
we’ll use a motor shield. A motor shield contains the circuitry we need to
handle the higher current drawn by the motors and accepts commands from
the Arduino to control both the speed and direction of the motors. For our
robot, we’ll use an L293D Motor Drive Shield for Arduino, as shown in
Figure 14-17.

Figure 14-17: An L293D Motor Drive Shield for Arduino

Connecting the Motor Shield
Making the required connections to the motor shield is simple: connect the
wires from the battery holder to the terminal block at the bottom left of the
shield, as shown in Figure 14-18. The black wire (negative) must be on the
right side and the red wire on the left.

Figure 14-18: DC power connection

Next you need to connect each DC motor to the motor shield. We’ll refer to
the two DC motors at the front of the chassis as motor 2 (left) and motor 1
(right) and the two DC motors at the rear as motor 3 (left) and motor 4
(right). Each motor will have a red and a black wire, so connect them to the
matching terminal blocks on the left-hand and right-hand side of the motor
shield, as shown in Figure 14-19.

Figure 14-19: Connecting the motors

When connecting the wires from the DC motors, note that the black wires
are on the outside ends of the terminal blocks and the red wires are on the
internal ends. Furthermore, each terminal block is labeled with our
matching motor number (M1, M2, M3, and M4) for easy reference.

If your motor’s wires are not color coded, you may have to swap them after
the first run to determine which way is forward or backward.

After you’ve connected the power and motor wires to the shield and the
shield to your Arduino, the robot should look something like the one in
Figure 14-20.

Figure 14-20: Our robot is ready for action!

The Sketch
Now to get the robot moving. To simplify its operation, we first need to
download and install the Arduino library for the motor drive shield. Follow
the instructions outlined in Chapter 7. In the Library Manager, find and then
install the “Adafruit Motor Shield library by Adafruit.”

After a moment, the Adafruit Motor Shield library v1 will appear. Click
Install and wait for the library to be installed. You can then close the
Library Manager window.

Now we’ll create some functions to operate our robot. Because two motors
are involved, we’ll need four movements:

Forward motion

Reverse motion

Rotate clockwise

Rotate counterclockwise

Thus, we’ll need four functions in our sketch to match our four movements:
goForward(), goBackward(), rotateLeft(), and rotateRight(). Each
accepts a value in milliseconds, which is the length of time required to
operate the movement, and a PWM value between 0 and 255. For example,
to move forward for 2 seconds at full speed, we’d use
goForward(255,2000).

Enter and save the following sketch (but don’t upload it just yet):

// Project 39 - Building and Controlling a Robot Vehicle

#include <AFMotor.h>

1 AF_DCMotor motor1(1); // set up instances of each motor

AF_DCMotor motor2(2);

AF_DCMotor motor3(3);

AF_DCMotor motor4(4);

2 void goForward(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(FORWARD);

 motor2.run(FORWARD);

 motor3.run(FORWARD);

 motor4.run(FORWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

2 void goBackward(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(BACKWARD);

 motor2.run(BACKWARD);

 motor3.run(BACKWARD);

 motor4.run(BACKWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

2 void rotateLeft(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(FORWARD);

 motor2.run(BACKWARD);

 motor3.run(BACKWARD);

 motor4.run(FORWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

2 void rotateRight(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(BACKWARD);

 motor2.run(FORWARD);

 motor3.run(FORWARD);

 motor4.run(BACKWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void setup()

{

 delay(5000);

}

void loop()

{

 goForward(127,5000);

 delay(1000);

 rotateLeft(127,2000);

 delay(1000);

 goBackward(127,5000);

 delay(1000);

 rotateRight(127,5000);

 delay(5000);

}

Controlling the robot is easy thanks to the four custom functions in the
sketch. Each custom function makes use of the library functions used to
control a motor. Before you can use these functions, you need to create an
instance for each motor, as shown at 1.

The direction of travel for each motor is set using:

Motor.run(direction)

The value of direction is either FORWARD, REVERSE, or RELEASE, to set the
motor’s rotational direction forward or backward or cut power to the motor,
respectively.

To set the speed of the motor, we use:

Motor.setSpeed(speed)

The value of speed is between 0 and 255; it is the range of PWM used to
control the rotational speed of the motor.

Therefore, in each of our four custom functions at 2, we use the
combination of the motor speed and directional controls to control all four
motors at once. Each of the custom functions accepts two parameters:
speed (our PWM value) and duration (the amount of time to run the
motor).

WARNING

When you’re ready to upload the sketch, position the robot either by
holding it off your work surface or by propping it up so that its
treads aren’t in contact with a surface. If you don’t do this, then
when the sketch upload completes, the robot will burst into life and
might leap off your desk immediately!

Upload the sketch, remove the USB cable, and connect the battery cable to
the Arduino power socket. Then place the robot on carpet or a clean surface
and let it drive about. Experiment with the movement functions in the
sketch to control your robot; this will help you become familiar with the
time delays and how they relate to distance traveled.

Connecting Extra Hardware to the Robot
Some motor drive shields for Arduino may not have stacking header
sockets to enable you to put another shield on top, and they might not allow
easy connection of wires from sensors, etc. In this case, you should use a
terminal shield for Arduino, an example of which is shown in Figure 14-21.

Figure 14-21: A terminal shield for Arduino

Terminal shields allow for easy wiring of hardware or sensors to the
Arduino’s input and output pins without any soldering, and they can also be
used to build your own circuitry for more permanent uses later.

Sensing Collisions
Now that our robot can move, we can start to add sensors. These will tell
the robot when it has bumped into something, or they will measure the
distance between the robot and an object in its path so that it can avoid a
crash. We’ll use three methods of collision avoidance: microswitches,
infrared, and ultrasonic.

Project #40: Detecting Robot Vehicle
Collisions with a Microswitch
A microswitch can act like the simple push button we used in Chapter 4, but
the microswitch component is physically larger and includes a large metal
bar that serves as the actuator (see Figure 14-22).

Figure 14-22: A microswitch

When using a microswitch, you connect one wire to the bottom contact and
the other to the contact labeled NO (normally open) to ensure that current
flows only when the bar is pressed. We’ll mount the microswitch on the
front of our robot so that when the robot hits an object, the bar will be
pressed, causing current to flow and making the robot reverse direction or
take another action.

The Schematic
The microswitch hardware is wired like a single push button, as shown in
Figure 14-23.

Figure 14-23: Schematic for Project 40

The Sketch
We connect the microswitch to an interrupt port (digital pin 2). Although
you might think we should have a function called by the interrupt to make
the robot reverse for a few moments, that’s not possible, because the
delay() function doesn’t operate inside functions called by interrupts. We
must think a little differently in this case.

Instead, the function goForward() will turn on the motors if two conditions
are met for the variables crash and the Boolean move. If crash is true, the

motors will reverse at a slower speed for 2 seconds to back away from a
collision situation.

We can’t use delay() because of the interrupt, so we measure the amount
of time that the motors run by reading millis() at the start and comparing
that against the current value of millis(). When the difference is greater
than or equal to the required duration, move is set to false and the motors
stop.

Enter and upload the following sketch:

// Project 40 – Detecting Robot Vehicle Collisions with a
Microswitch

#include <AFMotor.h>

AF_DCMotor motor1(1); // set up instances of each motor

AF_DCMotor motor2(2);

AF_DCMotor motor3(3);

AF_DCMotor motor4(4);

boolean crash = false;

void goBackward(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(BACKWARD);

 motor2.run(BACKWARD);

 motor3.run(BACKWARD);

 motor4.run(BACKWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

1 void backOut()

{

 crash = true;

}

void goForward(int duration, int speed)

{

 long a, b;

 boolean move = true;

2 a = millis();

 do

 {

 if (crash == false)

 {

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(FORWARD);

 motor2.run(FORWARD);

 motor3.run(FORWARD);

 motor4.run(FORWARD);

 }

 if (crash == true)

 {

3 goBackward(200, 2000);

 crash = false;

 }

4 b = millis() - a;

 if (b >= duration)

 {

 move = false;

 }

 }

 while (move != false);

 // stop motors

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void setup()

{

 attachInterrupt(0, backOut, RISING);

 delay(5000);

}

void loop()

{

 goForward(5000, 127);

 delay(2000);

}

This sketch uses an advanced method of moving forward, in that two
variables are used to monitor movement while the robot is in motion. The
first is the Boolean variable crash. If the robot bumps into something and
activates the microswitch, then an interrupt is called, which runs the
function backOut() at 1. It is here that the variable crash is changed from
false to true. The second variable that is monitored is the Boolean
variable move. In the function goForward(), we use millis() at 2 to
calculate constantly whether the robot has finished moving for the required
period of time (set by the parameter duration).

At 4, the function calculates whether the elapsed time is less than the
required time, and if so, the variable move is set to true. Therefore, the
robot is allowed to move forward only if it has not crashed and not run out
of time. If a crash has been detected, the function goBackward() at 3 is
called, at which point the robot will reverse slowly for 2 seconds and then
resume as normal.

NOTE

You can add the other movement functions from Project 39 to
expand or modify this example.

Infrared Distance Sensors
Our next method of collision avoidance uses an infrared (IR) distance
sensor. This sensor bounces an infrared light signal off a surface in front of
it and returns a voltage that is relative to the distance between the sensor
and the surface. Infrared sensors are useful for collision detection because
they are inexpensive, but they’re not ideal for exact distance measuring.
We’ll use the Sharp GP2Y0A21YK0F analog sensor, shown in Figure 14-
24, for our project.

Figure 14-24: The Sharp IR sensor

Wiring It Up
To wire the sensor, connect the red and black wires on the sensor to 5 V and
GND, respectively, with the white wire connecting to an analog input pin
on your Arduino. We’ll use analogRead() to measure the voltage returned
from the sensor. The graph in Figure 14-25 shows the relationship between
the distance measured and the output voltage.

Figure 14-25: Graph of IR sensor distance versus output voltage

Testing the IR Distance Sensor
Because the relationship between distance and output is not easily
represented with an equation, we’ll categorize the readings into 5 cm stages.
To demonstrate this, we’ll use a simple example. Connect your infrared
sensor’s white lead to analog pin 0, the red lead to 5 V, and the black lead to
GND. Then enter and upload the sketch shown in Listing 14-3.

// Listing 14-3

float sensor = 0;

int cm = 0;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

1 sensor = analogRead(0);

2 if (sensor<=90)

 {

 Serial.println("Infinite distance!");

 } else if (sensor<100) // 80 cm

 {

 cm = 80;

 } else if (sensor<110) // 70 cm

 {

 cm = 70;

 } else if (sensor<118) // 60 cm

 {

 cm = 60;

 } else if (sensor<147) // 50 cm

 {

 cm = 50;

 } else if (sensor<188) // 40 cm

 {

 cm = 40;

 } else if (sensor<230) // 30 cm

 {

 cm = 30;

 } else if (sensor<302) // 25 cm

 {

 cm = 25;

 } else if (sensor<360) // 20 cm

 {

 cm = 20;

 } else if (sensor<505) // 15 cm

 {

 cm = 15;

 } else if (sensor<510) // 10 cm

 {

 cm = 10;

 } else if (sensor>=510) // too close!

 {

 Serial.println("Too close!");

 }

 Serial.print("Distance: ");

 Serial.print(cm);

 Serial.println(" cm");

 delay(250);

}

Listing 14-3: IR sensor demonstration sketch

The sketch reads the voltage from the IR sensor at 1 and then uses a series
of if statements at 2 to choose which approximate distance is being
returned. We determine the distance from the voltage returned by the sensor
using two parameters. The first is the voltage-to-distance relationship, as
displayed in Figure 14-25. Then, using the knowledge (from Project 6 in
Chapter 4) that analogRead() returns a value between 0 and 1,023 relative
to a voltage between 0 V and around 5 V, we can calculate the approximate
distance returned by the sensor.

After uploading the sketch, open the Serial Monitor and experiment by
moving your hand or a piece of paper at various distances from the sensor.
The Serial Monitor should return the approximate distance, as shown in
Figure 14-26.

Figure 14-26: Results of Listing 14-3

Project #41: Detecting Robot Vehicle
Collisions with an IR Distance Sensor

Now let’s use the IR sensor with our robot vehicle instead of the
microswitch. We’ll use a slightly modified version of Project 40. Instead of
using an interrupt, we’ll create the function checkDistance(), which
changes the variable crash to true if the distance measured by the IR
sensor is around 20 cm or less. We’ll use this in the goForward() forward
motion do-while loop.

The Sketch
Connect the IR sensor to your robot and then enter and upload this sketch:

// Project 41 - Detecting Robot Vehicle Collisions with an IR
Distance Sensor

#include <AFMotor.h>

AF_DCMotor motor1(1); // set up instances of each motor

AF_DCMotor motor2(2);

AF_DCMotor motor3(3);

AF_DCMotor motor4(4);

boolean crash = false;

void goBackward(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(BACKWARD);

 motor2.run(BACKWARD);

 motor3.run(BACKWARD);

 motor4.run(BACKWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void checkDistance()

{

1 if (analogRead(0) > 460)

 {

 crash = true;

 }

}

void goForward(int duration, int speed)

{

 long a, b;

 boolean move = true;

 a = millis();

 do

 {

 checkDistance();

 if (crash == false)

 {

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(FORWARD);

 motor2.run(FORWARD);

 motor3.run(FORWARD);

 motor4.run(FORWARD);

 }

 if (crash == true)

 {

 goBackward(200, 2000);

 crash = false;

 }

 b = millis() - a;

 if (b >= duration)

 {

 move = false;

 }

 }

 while (move != false);

 // stop motors

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void setup()

{

 delay(5000);

}

void loop()

{

 goForward(5000, 255);

 delay(2000);

}

This sketch operates using the same methods used in Project 40, except this
version constantly takes distance measurements at 1 and sets the crash
variable to true if the distance between the IR sensor and an object is less
than about 20 cm.

Modifying the Sketch: Adding More Sensors
After running the robot and using this sensor, you should see the benefits of
using a non-contact collision sensor. It’s simple to add more sensors to the
same robot, such as sensors at the front and rear or at each corner. You
should be able to add code to check each sensor in turn and make a decision
based on the returned distance value.

Ultrasonic Distance Sensors
Our final method of collision avoidance uses an ultrasonic distance sensor.
This sensor bounces a sound wave of an ultra-high frequency (that cannot
be heard by the human ear) off a surface and measures the amount of time it
takes for the sound to return to the sensor. We’ll use the common HC-SR04-
type ultrasonic distance sensor, shown in Figure 14-27, for this project,
because it’s inexpensive and accurate to around 2 cm.

Figure 14-27: The HC-SR04 ultrasonic distance sensor

An ultrasonic sensor’s accuracy and range mean it can measure distances
between about 2 and 450 cm. However, because the sound wave needs to be
reflected back to the sensor, the sensor must be angled less than 15 degrees
away from the direction of travel.

Connecting the Ultrasonic Sensor
To connect the sensor, attach the Vcc (5 V) and GND leads to their
connectors on the motor drive shield, attach the Trig pin to digital pin D2,
and attach the Echo pin to digital pin D13. We use D2 and D13 as they are
not used by the motor drive shield. However, if you’re just testing or
experimenting with the sensor without the robot, you can connect the wires
directly to your Arduino board.

To simplify operation of the sensor, download the Arduino library from
https://github.com/Martinsos/arduino-lib-hc-sr04/archive/master.zip and
install it as explained in Chapter 7. Once the library is installed, you can run
the test sketch in Listing 14-4 to see how the sensor works.

// Listing 14-4

#include <HCSR04.h>

https://github.com/Martinsos/arduino-lib-hc-sr04/archive/master.zip

1 UltraSonicDistanceSensor HCSR04(2, 13); // trig - D2, echo -
D13

2 float distance;

void setup ()

{

 Serial.begin(9600);

}

void loop ()

{

3 distance = HCSR04.measureDistanceCm();

 Serial.print("Distance: ");

 Serial.print(distance);

 Serial.println(" cm");

 delay(500);

}

Listing 14-4: Ultrasonic sensor demonstration sketch

Retrieving the distance from the sensor is quite simple thanks to the library.
At 1, we create an instance and declare which digital pins are connected to
the sensor. Then at 2, we have a floating-point variable used to store the
distance returned from the sensor’s library function. Finally, the distance is
generated at 3 for display in the Serial Monitor.

Testing the Ultrasonic Sensor
After uploading the sketch, open the Serial Monitor and move an object
toward and away from the sensor. The distance to the object should be
returned in centimeters. See how it works in Figure 14-28.

Figure 14-28: Results from Listing 14-4

Project #42: Detecting Collisions with an
Ultrasonic Distance Sensor
Now that you understand how the sensor works, let’s use it with our robot.

The Sketch
In the following sketch, we check for distances between the robot and an
object of 5 cm or less, which will give the robot a reason to back up. Enter
and upload the following sketch to see for yourself:

// Project 42 - Detecting Collisions with an Ultrasonic
Distance Sensor

#include <AFMotor.h>

#include <HCSR04.h>

// set up instances of each motor

AF_DCMotor motor1(1);

AF_DCMotor motor2(2);

AF_DCMotor motor3(3);

AF_DCMotor motor4(4);

// set up ultrasonic sensor

UltraSonicDistanceSensor HCSR04(2, 13); // trig - D2, echo -
D13

boolean crash=false;

void checkDistance()

{

 float distance;

 distance = HCSR04.measureDistanceCm();

1 if (distance < 5) // crash distance is 5 cm or less

 {

 crash = true;

 }

}

void goBackward(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(BACKWARD);

 motor2.run(BACKWARD);

 motor3.run(BACKWARD);

 motor4.run(BACKWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void goForward(int duration, int speed)

{

 long a, b;

 boolean move = true;

 a = millis();

 do

 {

 checkDistance();

 if (crash == false)

 {

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(FORWARD);

 motor2.run(FORWARD);

 motor3.run(FORWARD);

 motor4.run(FORWARD);

 }

 if (crash == true)

 {

 goBackward(200, 2000);

 crash = false;

 }

 b = millis() - a;

 if (b >= duration)

 {

 move = false;

 }

 }

 while (move != false);

 // stop motors

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void setup()

{

 delay(5000);

}

void loop()

{

 goForward(1000, 255);

}

The operation of this sketch should be quite familiar by now. Once again,
we constantly measure the distance at 1 and then change the variable crash
to true if the distance between the ultrasonic sensor and an object in its
path is less than 5 cm. Watching the robot magically avoid colliding with
things or having a battle of wits with a pet can be quite amazing.

Looking Ahead
In this chapter, you learned how to introduce your Arduino-based projects
to the world of movement. Using simple motors, or pairs of motors, with a
motor shield, you can create projects that can move on their own and even
avoid obstacles. We used three types of sensors to demonstrate a range of

accuracies and sensor costs, so you can now make decisions based on your
requirements and project budget.

By now, I hope you are experiencing and enjoying the ability to design and
construct such things. But it doesn’t stop here. In the next chapter, we move
outdoors and harness the power of satellite navigation.

15

USING GPS WITH YOUR ARDUINO

In this chapter, you will
Learn how to connect a GPS shield

Create a simple GPS coordinates display

Show the actual position of GPS coordinates on a map

Build an accurate clock

Record the position of a moving object over time

You’ll learn how to use an inexpensive GPS shield to determine location,
create an accurate clock, and make a logging device that records the
position of your gadget over time onto a microSD card, which can then be
plotted over a map to display movement history.

What Is GPS?
The Global Positioning System (GPS) is a satellite-based navigation system
that sends data from satellites orbiting Earth to GPS receivers on the ground
that can use that data to determine the current position and time anywhere
on Earth. You are probably already familiar with GPS navigation devices
used in cars or on your smartphone.

Although we can’t create detailed map navigation systems with our
Arduinos, you can use a GPS module to determine your position, time, and
approximate speed (if you’re in motion). When shopping around for a GPS
module, you will generally find two types available. The first is an

independent, inexpensive GPS receiver on a module with an external aerial,
as shown in Figure 15-1.

Figure 15-1: A GPS receiver module

The second type you will come across is a GPS shield for Arduino, as
shown in Figure 15-2. These shields are convenient, since all the wiring is
done for you; they also include a microSD card socket that is ideal for
logging data, as demonstrated later in this chapter.

Ensure your GPS shield allows connection of the GPS receiver’s TX and
RX lines to Arduino digital pins D2 and D3, or has jumpers to allow
manually setting these (like the shield in Figure 15-2). Check with the
supplier for more details. You can use either type of device in this chapter.
However, I highly recommend the shield, especially as you can effortlessly
connect an LCD shield on top of the GPS shield as a display.

Figure 15-2: A GPS shield for Arduino

USING A SOFTWARE SERIAL PORT

To make use of our GPS modules, whose data is sent to the Arduino via a serial port,
we need to use a “software serial port.” Along with the normal serial port on your
Arduino, found on digital pins D0 and D1, you can also allocate two other digital pins to
be another serial port. This is emulated in software thanks to the SoftwareSerial
Arduino library. This arrangement allows you to use two devices that require a serial
connection at once without causing problems.
Creating a software serial port is simple: you first include the library and then create
another port:

#include <SoftwareSerial.h>

SoftwareSerial Serial2(x, y);

where x is the digital pin for transmit (TX) and y is the digital pin for receive (RX).

You can then easily use the software serial port just like the hardware serial port. For
example, to initialize it, use the following line in void setup():

 Serial2.begin(9600);

You will see the software serial port demonstrated throughout the sketches in this
chapter.

Testing the GPS Shield
After you buy a GPS kit, it’s a good idea to make sure that it’s working and
that you can receive GPS signals. GPS receivers require a line of sight to
the sky, but their signals can pass through windows. So, while it’s usually
best to perform this test outdoors, your GPS receiver will probably work
just fine through an unobstructed window or skylight. To test reception,
you’ll set up the shield or module and run a basic sketch that displays the
raw received data.

If you are using a GPS shield, ensure that the GPS TX pin is jumpered to
Arduino digital pin D2 and the RX pin is jumpered to Arduino digital pin
D3. If you are using a GPS module, as shown in Figure 15-1, connect the
Vcc and GND to Arduino 5 V and GND, respectively; then connect TX to
Arduino digital pin D2 and RX to Arduino digital pin D3.

To perform the test, enter and upload the sketch in Listing 15-1.

// Listing 15-1

#include <SoftwareSerial.h>

// GPS TX to D2, RX to D3

SoftwareSerial Serial2(2, 3);

byte gpsData;

void setup()

{

// Open the Arduino Serial Monitor

 Serial.begin(9600);

// Open the GPS

1 Serial2.begin(9600);

}

void loop()

{

2 while (Serial2.available() > 0)

 {

 // get the byte data from the GPS

 gpsData = Serial2.read();

3 Serial.write(gpsData);

 }

}

Listing 15-1: Basic GPS test sketch

This sketch listens to the software serial port at 2, and when a byte of data is
received from the GPS module or shield, it is sent to the Serial Monitor at 3.
(Notice that we start the software serial port at 9,600 bps at 1 to match the
data speed of the GPS receiver.)

Once you’ve uploaded the sketch, you may need to wait around 30 seconds;
this is to allow the GPS receiver time to start receiving signals from one or
more GPS satellites. The GPS shield or module will have an onboard LED,
which will start flashing once the receiver has started finding GPS signals.
After the LED starts blinking, open the Serial Monitor window in the IDE
and set the data speed to 9,600 baud. You should see a constant stream of
data similar to the output shown in Figure 15-3.

Figure 15-3: Raw data from GPS satellites

The data is sent from the GPS receiver to the Arduino one character at a
time, and then it is sent to the Serial Monitor. But this raw data (called GPS
sentences) is not very useful as it is, so we need to use a new library that
extracts information from the raw data and converts it to a usable form. To
do this, download and install the TinyGPS library from
http://www.arduiniana.org/libraries/tinygps/ using the method described in
Chapter 7.

Project #43: Creating a Simple GPS Receiver
We’ll start by creating a simple GPS receiver. Because you’ll usually use
your GPS outdoors—and to make things a little easier—we’ll add an LCD
module to display the data, similar to the one shown in Figure 15-4.

Figure 15-4: The Freetronics LCD & Keypad Shield

http://www.arduiniana.org/libraries/tinygps/

NOTE

Our examples are based on using the Freetronics LCD & Keypad
Shield. For more information on this shield, see
http://www.freetronics.com.au/collections/display/products/lcd-
keypad-shield/. If you choose to use a different display module, be
sure to substitute the correct values into the LiquidCrystal()
function in your sketches.

The result will be a very basic portable GPS that can be powered by a 9 V
battery and connector, which will display the coordinates of your current
position on the LCD.

The Hardware
The required hardware is minimal:

Arduino and USB cable

LCD module or Freetronics LCD & Keypad Shield

One 9 V battery–to–DC socket cable

GPS module and screw shield for Arduino or GPS shield for Arduino

The Sketch
Enter and upload the following sketch:

// Project 43 - Creating a Simple GPS Receiver

1 #include <LiquidCrystal.h>

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

#include <TinyGPS.h>

#include <SoftwareSerial.h>

// GPS TX to D2, RX to D3

SoftwareSerial Serial2(2, 3);

TinyGPS gps;

void getgps(TinyGPS &gps);

http://www.freetronics.com.au/collections/display/products/lcd-keypad-shield/

byte gpsData;

2 void getgps(TinyGPS &gps)

// The getgps function will display the required data on the
LCD

{

 float latitude, longitude;

 // decode and display position data

3 gps.f_get_position(&latitude, &longitude);

 lcd.setCursor(0, 0);

 lcd.print("Lat:");

 lcd.print(latitude, 5);

 lcd.print(" ");

 lcd.setCursor(0, 1);

 lcd.print("Long:");

 lcd.print(longitude, 5);

 lcd.print(" ");

 delay(3000); // wait for 3 seconds

 lcd.clear();

}

void setup()

{

 Serial2.begin(9600);

}

void loop()

{

 while (Serial2.available() > 0)

 {

 // get the byte data from the GPS

 gpsData = Serial2.read();

 if (gps.encode(gpsData))

 {

4 getgps(gps);

 }

 }

}

From 1 to 2, the sketch introduces the required libraries for the LCD and
GPS. In void loop(), we send the characters received from the GPS
receiver to the function getgps() at 4. The data is obtained by using
gps.f_get_position() at 3 to insert the position values in the byte
variables &latitude and &longitude, which we display on the LCD.

Running the Sketch
After the sketch has been uploaded and the GPS starts receiving data, your
current position in decimal latitude and longitude should be displayed on
your LCD, as shown in Figure 15-5.

Figure 15-5: Latitude and longitude display from Project 43

But where on Earth is this? We can determine exactly where it is by using
Google Maps (http://maps.google.com/). On the website, enter the latitude
and longitude, separated by a comma and a space, into the search field, and
Google Maps will return the location. For example, using the coordinates
returned in Figure 15-5 produces a map like the one shown in Figure 15-6.

http://maps.google.com/

Figure 15-6: The GPS coordinates displayed in Figure 15-5 place us on Alcatraz Island.

Project #44: Creating an Accurate GPS-
Based Clock
There is more to using a GPS than finding a location; the system also
transmits time data that can be used to make a very accurate clock.

The Hardware
For this project, we’ll use the same hardware as in Project 43.

The Sketch
Enter and upload the following sketch to build a GPS clock:

// Project 44 - Creating an Accurate GPS-Based Clock

#include <LiquidCrystal.h>

#include <TinyGPS.h>

#include <SoftwareSerial.h>

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// GPS RX to D3, GPS TX to D2

SoftwareSerial Serial2(2, 3);

TinyGPS gps;

void getgps(TinyGPS &gps);

byte gpsData;

void getgps(TinyGPS &gps)

{

 byte month, day, hour, minute, second, hundredths;

1
gps.crack_datetime(&year,&month,&day,&hour,&minute,&second,&h
undredths);

2 hour=hour+10; // change the offset so it is correct for your
time zone

 if (hour>23)

 {

 hour=hour-24;

 }

 lcd.setCursor(0,0); // print the date and time

3 lcd.print("Current time: ");

 lcd.setCursor(4,1);

 if (hour<10)

 {

 lcd.print("0");

 }

 lcd.print(hour, DEC);

 lcd.print(":");

 if (minute<10)

 {

 lcd.print("0");

 }

 lcd.print(minute, DEC);

 lcd.print(":");

 if (second<10)

 {

 lcd.print("0");

 }

 lcd.print(second, DEC);

}

void setup()

{

 Serial2.begin(9600);

}

void loop()

{

 while (Serial2.available() > 0)

 {

 // get the byte data from the GPS

 gpsData = Serial2.read();

 if (gps.encode(gpsData))

 {

 getgps(gps);

 }

 }

}

This example works in a similar way to the sketch in Project 43, except that
instead of extracting the position data, it extracts the time (always at
Greenwich Mean Time, more commonly known as UTC) at 1. At 2, you
can either add or subtract a number of hours to bring the clock into line with
your current time zone. The time should then be formatted clearly and
displayed on the LCD at 3. Figure 15-7 shows an example of the clock.

Figure 15-7: Project 44 at work

Project #45: Recording the Position of a
Moving Object over Time

Now that we know how to receive GPS coordinates and convert them into
normal variables, we can use this information with a microSD or SD card,
introduced in Chapter 7, to build a GPS logger. Our logger will record our
position over time by logging the GPS data over time. The addition of the
memory card will allow you to record the movement of a car, truck, boat, or
any other moving object that allows GPS signal reception; later, you can
review the information on a computer.

The Hardware
If you have a GPS shield for Arduino, as recommended earlier in this
chapter, the required hardware is the same as that used for the previous
examples, except that you can remove the LCD shield. If you’re using a
GPS receiver module, you will need the screw shield to allow connection of
the GPS and the SD card module. No matter which method you use, you
will need external power for this project. In our example, we’ll record the
time, position information, and estimated speed of travel.

The Sketch
After assembling your hardware, enter and upload the following sketch:

// Project 45 - Recording the Position of a Moving Object
over Time

#include <TinyGPS.h>

#include <SoftwareSerial.h>

#include <SD.h>

// GPS TX to D2, RX to D3

SoftwareSerial Serial2(2, 3);

TinyGPS gps;

void getgps(TinyGPS &gps);

byte gpsData;

void getgps(TinyGPS &gps)

{

 float latitude, longitude;

 int year;

 byte month, day, hour, minute, second, hundredths;

 // create/open the file for writing

 File dataFile = SD.open("DATA.TXT", FILE_WRITE);

 // if the file is ready, write to it:

1 if (dataFile)

 {

2 gps.f_get_position(&latitude, &longitude);

 dataFile.print("Lat: ");

 dataFile.print(latitude, 5);

 dataFile.print(" ");

 dataFile.print("Long: ");

 dataFile.print(longitude, 5);

 dataFile.print(" ");

 // decode and display time data

 gps.crack_datetime(&year, &month, &day, &hour, &minute,
&second,

 &hundredths);

 // correct for your time zone as in Project 44

 hour = hour + 10;

 if (hour > 23)

 {

 hour = hour - 24;

 }

 if (hour < 10)

 {

 dataFile.print("0");

 }

 dataFile.print(hour, DEC);

 dataFile.print(":");

 if (minute < 10)

 {

 dataFile.print("0");

 }

 dataFile.print(minute, DEC);

 dataFile.print(":");

 if (second < 10)

 {

 dataFile.print("0");

 }

 dataFile.print(second, DEC);

 dataFile.print(" ");

 dataFile.print(gps.f_speed_kmph());

3 dataFile.println("km/h");

 dataFile.close();

4 delay(15000); // record a measurement around every 15

seconds

 }

 // if the file isn't ready, show an error:

 else

 {

 Serial.println("error opening DATA.TXT");

 }

}

void setup()

{

 Serial.begin(9600);

 Serial2.begin(9600);

 Serial.println("Initializing SD card...");

 pinMode(10, OUTPUT);

 // check that the memory card exists and is usable

 if (!SD.begin(10))

 {

 Serial.println("Card failed, or not present");

 // stop sketch

 return;

 }

 Serial.println("memory card is ready");

}

void loop()

{

 while (Serial2.available() > 0)

 {

 // get the byte data from the GPS

 gpsData = Serial2.read();

 if (gps.encode(gpsData))

 {

5 getgps(gps);

 }

 }

}

This sketch uses the same code used in Projects 43 and 44 in void loop()
to receive data from the GPS receiver and pass it on to other functions. At
5, the data from the GPS receiver is passed into the TinyGPS library to
decode it into useful variables. At 1, the memory card is checked to
determine whether data can be written to it, and from 2 to 3, the relevant
GPS data is written to the text file on the microSD card. Because the file is
closed after every write, you can remove the power source from the

Arduino without warning the sketch, and you should do so before inserting
or removing the microSD card. Finally, you can set the interval between
data recordings at 4 by changing the value in the delay() function.

Running the Sketch
After operating your GPS logger, the resulting text file should look similar
to Figure 15-8.

Figure 15-8: Results from Project 45

Once you have this data, you can enter it into Google Maps manually and
review the path taken by the GPS logger, point by point. But a more
interesting method is to display the entire route taken on one map. To do
this, open the text file as a spreadsheet, separate the position data, and add a
header row, as shown in Figure 15-9. Then save it as a .csv file.

Figure 15-9: Captured position data

Now visit the GPS Visualizer website (http://www.gpsvisualizer.com/). In
the Get Started Now box, click Choose File and select your data file.
Choose Google Maps as the output format and then click Map It. The
movement of your GPS logger should be shown on a map similar to the one
in Figure 15-10, which you can then adjust and explore.

http://www.gpsvisualizer.com/

Figure 15-10: Mapped GPS logger data

Looking Ahead
As you can see, something that you might have thought too complex, such
as working with GPS receivers, can be made simple with your Arduino.
Continuing with that theme, in the next chapter you’ll learn how to create
your own wireless data links and direct things via remote control.

16

WIRELESS DATA

In this chapter, you’ll learn how to send and receive
instructions and data using various types of wireless
transmission hardware. Specifically, you’ll learn how
to
Send digital output signals using low-cost wireless modules

Create a simple and inexpensive wireless remote control system

Use LoRa wireless data receivers and transceivers

Create a remote control temperature sensor

Using Low-Cost Wireless Modules
It’s easy to send text information in one direction using a wireless link
between two Arduino-controlled systems that have inexpensive radio
frequency (RF) data modules, such as the transmitter and receiver modules
shown in Figure 16-1. These modules are usually sold in pairs and are
known as RF Link modules or kits. Good examples are part 44910433 from
PMD Way or parts WRL-10534 and WRL-10532 from SparkFun. We’ll use
the most common module types that run on the 433 MHz radio frequency in
our projects.

The connections shown at the bottom of the transmitter in Figure 16-2 are,
from left to right, data in, 5 V, and GND. A connection for an external
antenna is at the top-right corner of the board. The antenna can be a single

length of wire, or it can be omitted entirely for short transmission distances.
(Each brand of module can vary slightly, so check the connections on your
particular device before moving forward.)

Figure 16-1: RF Link transmitter and receiver set

Figure 16-2: Transmitter RF Link module

Figure 16-3 shows the receiver module, which is slightly larger than the
transmitter module.

Figure 16-3: Receiver RF Link module

The connections on the receiver are straightforward: the V+ and V− pins
connect to 5 V and GND, respectively, and DATA connects to the Arduino
pin allocated to receive the data. These pins are usually labeled on the other
side of the module. If they’re not labeled or you’re not sure, look for the
module’s data sheet or contact the supplier.

Before you can use these modules, you also need to download and install
the latest version of the VirtualWire library from
http://www.airspayce.com/mikem/arduino/VirtualWire/ using the method
described in Chapter 7. This library is also included with the sketch
download file for this book, which is available at
https://nostarch.com/arduino-workshop-2nd-edition/. After you’ve installed
the library, you’ll be ready to move on to the next section.

http://www.airspayce.com/mikem/arduino/VirtualWire/
https://nostarch.com/arduino-workshop-2nd-edition/

NOTE

The RF Link modules are inexpensive and easy to use, but they have
no error-checking capability to ensure that the data being sent is
received correctly. Therefore, I recommend that you use them only
for simple tasks such as this basic remote control project. If your
project calls for more accurate and reliable data transmission, use
something like the LoRa modules instead, which are discussed later
in this chapter.

Project #46: Creating a Wireless Remote
Control
We’ll remotely control two digital outputs: you’ll press buttons connected
to one Arduino board to control matching digital output pins on another
Arduino located some distance away. This project will show you how to use
the RF Link modules. You’ll also learn how to determine how far away you
can be and remotely control the Arduino. It’s important to know this before
you commit to using the modules for more complex tasks. (In open air, the
distance you can achieve is generally about 100 meters, but the distance
will be less when you are indoors or when the modules are separated by
obstacles.)

The Transmitter Circuit Hardware
The following hardware is required for the transmitter circuit:

Arduino and USB cable

AA battery holder and wiring (as used in Chapter 14)

One 433 MHz RF Link transmitter module

Two 10 kΩ resistors (R1 and R2)

Two 100 nF capacitors (C1 and C2)

Two push buttons

One breadboard

The Transmitter Schematic
The transmitter circuit consists of two push buttons with debounce circuitry
connected to digital pins 2 and 3, as well as the transmitter module wired as
described earlier (Figure 16-4).

Figure 16-4: Transmitter schematic for Project 46

The Receiver Circuit Hardware
The following hardware is required for the receiver circuit:

Arduino and USB cable

AA battery holder and wiring (as used in Chapter 14)

One 433 MHz RF Link receiver module

One breadboard

Two LEDs of your choice

Two 560 Ω resistors (R1 and R2)

The Receiver Schematic
The receiver circuit consists of two LEDs on digital pins 6 and 7 and the
data pin from the RF Link receiver module connected to digital pin 8, as
shown in Figure 16-5.

Figure 16-5: Receiver schematic for Project 46

You can substitute the breadboard, LEDs, resistors, and receiver module
with a Freetronics 433 MHz receiver shield, shown in Figure 16-6.

Figure 16-6: A Freetronics 433 MHz receiver shield

The Transmitter Sketch
Now let’s examine the sketch for the transmitter. Enter and upload the
following sketch to the Arduino with the transmitter circuit: // Project 46
- Creating a Wireless Remote Control, Transmitter Sketch
1
#include <VirtualWire.h> uint8_t buf[VW_MAX_MESSAGE_LEN];
uint8_t buflen = VW_MAX_MESSAGE_LEN;
2 const char *on2 = "a";
const char *off2 = "b"; const char *on3 = "c"; const char *off3
= "d"; void setup()
{
3 vw_set_ptt_inverted(true); // Required for
RF Link modules vw_setup(300); // set data speed 4
vw_set_tx_pin(8); pinMode(2, INPUT);
pinMode(3, INPUT);
}
void
loop()
{
5 if (digitalRead(2)==HIGH)
{ vw_send((uint8_t *)on2,
strlen(on2)); // send data out to the world
vw_wait_tx(); //
wait a moment delay(200);
}
if (digitalRead(2)==LOW)
{
6

vw_send((uint8_t *)off2, strlen(off2)); vw_wait_tx();
delay(200);
}
if (digitalRead(3)==HIGH)
{
vw_send((uint8_t
*)on3, strlen(on3)); vw_wait_tx(); delay(200);
} if
(digitalRead(3)==LOW)
{
vw_send((uint8_t *)off3, strlen(off3));
vw_wait_tx(); delay(200);
}
}

We include the VirtualWire library at 1 and use its functions at 3 to set up
the RF Link transmitter module and set the data speed. At 4, we set digital
pin 8, which is used to connect the Arduino to the data pin of the transmitter
module and to control the speed of the data transmission. (You can use any
other digital pins if necessary, except 0 and 1, which would interfere with
the serial line.) The transmitter sketch reads the status of the two buttons
connected to digital pins 2 and 3 and sends a single text character to the RF
Link module that matches the state of the buttons. For example, when the
button on digital pin 2 is HIGH, the Arduino sends the character a, and when
the button is LOW, it sends the character b. When the button on digital pin 3
is HIGH, the Arduino sends the character c, and when the button is LOW, it
sends the character d. The four states are declared starting at 2.

The transmission of the text character is handled using one of the four
sections’ if statements, starting at 5—for example, the contents of the if-
then statement at 6. The variable transmitted is used twice, as shown here
with on2, for example: vw_send((uint8_t *)on2, strlen(on2));

The function vw_send() sends the contents of the variable on2, but it needs
to know the length of the variable in characters, so we use strlen() to
accomplish this.

The Receiver Sketch
Now let’s add the receiver sketch. Enter and upload the following sketch to
the Arduino with the receiver circuit: // Project 46 - Creating a
Wireless Remote Control, Receiver Sketch
#include
<VirtualWire.h> uint8_t buf[VW_MAX_MESSAGE_LEN]; uint8_t buflen
= VW_MAX_MESSAGE_LEN;
void setup()
{
1 vw_set_ptt_inverted(true);
// Required for RF Link modules vw_setup(300); 2 vw_set_rx_pin(8);
vw_rx_start(); pinMode(6, OUTPUT); pinMode(7, OUTPUT);
}
void
loop()
{
3 if (vw_get_message(buf, &buflen)) {
4 switch(buf[0]) {
case 'a':
digitalWrite(6, HIGH);
break;
case 'b':

digitalWrite(6, LOW);
break;
case 'c': digitalWrite(7, HIGH);
break;
case 'd': digitalWrite(7, LOW);
break;
}
}
}

As with the transmitter circuit, we use the VirtualWire functions at 1 to set
up the RF Link receiver module and set the data speed. At 2 we set the
Arduino digital pin to which the link’s data output pin is connected (pin 8).

When the sketch is running, the characters sent from the transmitter circuit
are received by the RF Link module and sent to the Arduino. The function
vw_get_message() at 3 takes the characters received by the Arduino, which
are interpreted by the switch case statement at 4. For example, pressing
button S1 on the transmitter circuit will send the character a. This character
is received by the transmitter, which sets digital pin 6 to HIGH, turning on
the LED.

You can use this simple pair of demonstration circuits to create more
complex controls for Arduino systems by sending codes as basic characters
to be interpreted by a receiver circuit.

Using LoRa Wireless Data Modules for
Greater Range and Faster Speed
When you need a wireless data link with greater range and a faster data
speed than what the basic wireless modules used earlier can provide, LoRa
data modules may be the right choice. LoRa is short for “long range,” and
these modules work at long range with low power consumption. The
modules are transceivers, which are devices that can both transmit and
receive data, so you don’t need a separate transmitter and receiver. A further
benefit of using LoRa modules is that different types of modules can
communicate, allowing you, the designer, to create control and data
networks that range from the simple to the complex. In this chapter, you
will create several basic modules that can be built upon for various
purposes.

Figure 16-7: A LoRa shield for Arduino

For convenience, we’ll be using two LoRa shields for Arduino, such as
PMD Way part number 14290433, shown in Figure 16-7.

When purchasing your LoRa shields, you will need to select an operating
frequency. The correct frequency will vary depending on your country of
use. This is to ensure that your data transmissions don’t interfere with other
devices in your area. LoRa products are available in three operating
frequency bands:

433 MHz Used in United States and Canada

868 MHz Used in United Kingdom and Europe

915 MHz Used in Australia and New Zealand

You can find a full list of countries and the frequency ranges you need to
use in each at https://www.thethingsnetwork.org/docs/lorawan/frequencies-
by-country.html.

Finally, you need to download and install the Arduino library, which can be
found at https://github.com/sandeepmistry/arduino-
LoRa/archive/master.zip.

Project #47: Remote Control over LoRa
Wireless

https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html
https://github.com/sandeepmistry/arduino-LoRa/archive/master.zip

This project will demonstrate simple data transmission from one LoRA-
equipped Arduino to another to allow remote control of a digital output pin.
Our transmitter has two buttons to turn the receiver circuit’s output pin on
and off.

The Transmitter Circuit Hardware
The following hardware is required for the transmitter circuit:

Arduino and USB cable

LoRa shield for Arduino

Two 10 kΩ resistors (R1 and R2)

Two 100 nF capacitors (C1 and C2)

Two push buttons

AA battery holder and wiring (as used in Chapter 14)

The Transmitter Schematic
The transmitter circuit, as shown in Figure 16-8, consists of two push
buttons with debounce circuitry connected to digital pins 2 and 3. The LoRa
shield is placed on the Arduino Uno. Once the sketch has been uploaded,
power is provided by the AA battery holder and wiring.

Figure 16-8: Transmitter schematic for Project 47

Before using your LoRa shield, there are three header jumpers, shown in
Figure 16-9, that need to be removed from the shield. If you don’t remove
them, they will interfere with other digital pins. You can remove them
completely or just connect the headers to one of the two pins.

Figure 16-9: Header jumpers to remove from the LoRa shield

The Receiver Circuit Hardware
The following hardware is required for the receiver circuit:

Arduino and USB cable

LoRa shield for Arduino

One LED

One 560 Ω resistor (R1)

The Receiver Schematic
The receiver circuit, shown in Figure 16-10, consists of one LED and a
current-limiting resistor connected between digital pin 7 and GND. We
leave this connected to the PC via USB, so no external power is required.

Figure 16-10: Receiver schematic for Project 47

The Transmitter Sketch
Now let’s examine the sketch for the transmitter. Enter and upload the
following sketch to the Arduino with the transmitter circuit: // Project 47
- Remote Control over LoRa Wireless, Transmitter Sketch
1 #define
LORAFREQ (915000000L)
2 #include <LoRa.h>
#include <SPI.h>
3 void
loraSend(int controlCode)
{
4 LoRa.beginPacket(); // start sending

data
LoRa.print("ABC"); // "ABC" is our three-character code
for receiver
LoRa.print(controlCode); // send our instructions
(controlCode codes)
5 LoRa.endPacket(); // finished sending data
5
LoRa.receive(); // start listening
}
void setup()
{
pinMode(4,
INPUT); // on button
pinMode(3, INPUT); // off button
6
LoRa.begin(LORAFREQ); // start up LoRa at specified frequency
}
void loop()
{
// check for button presses to control receiver
if (digitalRead(4) == HIGH)
{
loraSend(1); // '1' is code for
turn receiver digital pin 5 HIGH
delay(500); // allow time to
send
}
if (digitalRead(3) == HIGH)
{
loraSend(0); // '0' is
code for turn receiver digital pin 5 LOW
delay(500); // allow
time to send
}
}

The operating frequency is selected at 1. Our example is using 915 MHz, so
you may need to change this to either 433000000L or 868000000L
depending on your country and shield. We include the Arduino LoRa
library at 2, and it’s activated at 4. The SPI library is also included, as the
LoRa shield uses the SPI bus to communicate with the Arduino. At 6, the
LoRa transceiver is activated at the appropriate frequency, after the digital
pins are prepared to be inputs for the buttons.

At 3, we have the custom function loraSend(int controlCode). This is
called when a button is pressed. It first sends a three-character code—in this
case ABC—out on the LoRa airwaves, followed by a control code. The
character code allows you to direct the control to a particular receiver
circuit. Otherwise, if you’re using two or more receivers, there would be
confusion as to which one would be controlled by the transmitter. You will
see that the receiver will act only if ABC is sent. The control codes in our
example are 1 and 0 (to turn the receiver’s digital output on or off,
respectively).

At 4, the LoRa module is switched to transmit mode, and then the character
and control codes are sent over the airwaves. At 5, the LoRa module is told
to stop transmitting and gets switched back to receiving data. Once you
have uploaded the transmitter sketch, the transmitter hardware can be
disconnected from the computer and powered using the battery pack.

The Receiver Sketch

Now let’s examine the receiver sketch. Enter and upload the following
sketch to the Arduino with the receiver circuit: // Project 47 - Remote
Control over LoRa Wireless, Receiver Sketch
1 #define LORAFREQ
(915000000L)
2 #include <LoRa.h>
#include <SPI.h>
void
takeAction(int packetSize)
// things to do when data received
over LoRa wireless
{
3 char incoming[4] = "";
int k;
for (int i =
0; i < packetSize; i++)
{
k = i;
if (k > 6)
{
k = 6; // make
sure we don't write past end of string
}
incoming[k] =
(char)LoRa.read();
4 }
// check the three-character code sent from
transmitter is correct
5 if (incoming[0] != 'A')
{
return; // if
not 'A', stop function and go back to void loop()
}
5 if
(incoming[1] != 'B')
{
return; // if not 'B', stop function and
go back to void loop()
}
5 if (incoming[2] != 'C')
{
return; // if
not 'C', stop function and go back to void loop()
}
// If made
it this far, correct code has been received from transmitter.
// Now to do something...
if (incoming[3] == '1')
{
digitalWrite(7, HIGH);
}
if (incoming[3] == '0')
{
digitalWrite(7, LOW);
}
}
void setup()
{
pinMode(7, OUTPUT);
6
LoRa.begin(LORAFREQ); // start up LoRa at specified frequency
7
LoRa.onReceive(takeAction); // call function "takeAction" when
data received 8 LoRa.receive(); // start receiving
}
void loop()
{
}

Once again we include the Arduino LoRa library at 2, and it’s activated at
6. The operating frequency is also selected at 1. Our example is using 915
MHz, so you may need to change this to either 433000000L or 868000000L
depending on your country and shield. The SPI library is also included, as
the LoRa shield uses the SPI bus to communicate with the Arduino. At 7,
we tell the sketch to run a certain function—in this case void
takeAction()—when data is received over the airwaves. Then at 8, the
LoRa module is switched to receive mode.

When operating, the receiver simply waits for data to be received by the
LoRa module. At that point, the function takeAction() is called. This takes
each character of data from the transmitter and places it into an array of
characters called incoming[4] between 3 and 4. Next, the receiver checks
each character of the code (in our case ABC) at 5 to ensure the transmission
is for this particular receiver. Finally, if this is successful, the control

character is checked. If it’s a 1, digital pin 7 is set to HIGH, and if it’s a 0,
digital pin 7 is set to LOW.

Now you have the basic framework for a longer-distance remote control.
Furthermore, by assigning different character codes to multiple receivers,
you can expand your system to control more than one receiver unit from
one transmitter.

However, for serious applications, you may want confirmation that an
instruction from the transmitter has been successfully completed by the
receiver, so we’ll add a confirmation function in the next project.

Project #48: Remote Control over LoRa
Wireless with Confirmation
This project adds a confirmation system to the receiver-transmitter setup
created in Project 47, creating a two-way data system. An LED on the
transmitter circuit will turn on when the receiver output is set to HIGH and
turn off when the receiver output is set to LOW.

The Transmitter Circuit Hardware
The following hardware is required for the transmitter circuit:

Arduino and USB cable

LoRa Shield for Arduino

Two 10 kΩ resistors (R1 and R2)

One 560 Ω resistor (R3)

One LED

Two 100 nF capacitors (C1 and C2)

Two push buttons

AA battery holder and wiring (as used in Chapter 14)

The Transmitter Schematic

The transmitter circuit, shown in Figure 16-11, consists of two push buttons
with debounce circuitry connected to digital pins 3 and 4, and an LED and
current-limiting resistor on digital pin 6. The LoRa shield is placed on the
Arduino Uno. Once the sketch has been uploaded, power is provided by the
AA battery holder and wiring.

Figure 16-11: Transmitter schematic for Project 48

The receiver circuit and schematic for this project are identical to those
used for Project 47.

The Transmitter Sketch
Now let’s examine the sketch for the transmitter. Enter and upload the
following sketch to the Arduino with the transmitter circuit: // Project 48
- Remote Control over LoRa Wireless with Confirmation, //
Transmitter Sketch
#define LORAFREQ (915000000L)
#include
<SPI.h>
#include <LoRa.h>
void loraSend(int controlCode)
{
LoRa.beginPacket(); // start sending data
LoRa.print("DEF"); //
"DEF" is our three-character code for the receiver. // Needs to
be matched on RX.
LoRa.print(controlCode); // send our
instructions (controlCode codes)
LoRa.endPacket(); // finished
sending data
LoRa.receive(); // start listening
}
1 void
takeAction(int packetSize)
// things to do when data received
over LoRa wireless
{
char incoming[4] = "";
int k;
for (int i =
0; i < packetSize; i++)
{
k = i;
if (k > 6)
{
k = 18; // make
sure we don't write past end of string
}
incoming[k] =
(char)LoRa.read();
}
// check the three-character code sent
from receiver is correct
if (incoming[0] != 'D')
{
return; //
if not 'D', stop function and go back to void loop()
}
if
(incoming[1] != 'E')
{
return; // if not 'E', stop function and
go back to void loop()
}
if (incoming[2] != 'F')
{
return; //
if not 'F', stop function and go back to void loop()
}
// If
made it this far, correct code has been received from receiver.
// Now to do something...
2 if (incoming[3] == '1')
{
digitalWrite(6, HIGH);
// receiver has turned output on and has
sent a signal confirming this
}
2 if (incoming[3] == '0')
{
digitalWrite(6, LOW);
// receiver has turned output off and has
sent a signal confirming this
}
}
void setup()
{
pinMode(4,
INPUT); // on button
pinMode(3, INPUT); // off button
pinMode(6, OUTPUT); // status LED
LoRa.begin(LORAFREQ); //
start up LoRa at specified frequency
LoRa.onReceive(takeAction); // call function "takeAction" when
data received
// over LoRa wireless
}
void loop()
{
// check
for button presses to control receiver
if (digitalRead(4) ==
HIGH)
{
loraSend(1); // '1' is code for turn receiver digital
pin 7 HIGH
delay(500); // button debounce
}
if (digitalRead(3)

== HIGH)
{
loraSend(0); // '0' is code for turn receiver
digital pin 7 LOW
delay(500); // button debounce
}
}

Our transmitter circuit operates in the same way as in Project 47, by first
sending a character code for identification and then a control code to turn
the receiver’s output on or off. In this project, however, the transmitter
listens for a signal from the receiver, and once the receiver has completed
the control instruction from the transmitter, the receiver sends a character
code and control code back to the transmitter.

So at 1, we have a new function, takeAction(), that checks for the
character code DEF from the receiver circuit. The receiver then sends a 1 if it
has turned on its output pin or a 0 if the output has been turned off. Our
transmitter circuit can then display this status by controlling the LED on
digital pin 6 via the code at 2.

The Receiver Sketch
Finally, let’s examine the sketch for the receiver. Enter and upload the
following sketch to the Arduino with the receiver circuit: // Project 48 -
Remote Control over LoRa Wireless with Confirmation, Receiver
// Sketch
#define LORAFREQ (915000000L)
#include <SPI.h>
#include <LoRa.h>
void loraSend(int controlCode)
{
LoRa.beginPacket(); // start sending data
LoRa.print("DEF"); //
"DEF" is our three-character code for the
// transmitter
LoRa.print(controlCode); // send our instructions (controlCode
codes)
LoRa.endPacket(); // finished sending data
LoRa.receive(); // start listening
}
void takeAction(int
packetSize)
// things to do when data received over LoRa
wireless
{
char incoming[4] = "";
int k;
for (int i = 0; i <
packetSize; i++)
{
k = i;
if (k > 6)
{
k = 18; // make sure we
don't write past end of string
}
incoming[k] =
(char)LoRa.read();
}
// check the three-character code sent
from transmitter is correct
if (incoming[0] != 'A')
{
return;
// if not 'A', stop function and go back to void loop()
}
if
(incoming[1] != 'B')
{
return; // if not 'B', stop function and
go back to void loop()
}
if (incoming[2] != 'C')
{
return; //
if not 'C', stop function and go back to void loop()
}
// If

made it this far, correct code has been received from
transmitter. // Now to do something...
if (incoming[3] == '1')
{
digitalWrite(7, HIGH);
1 loraSend(1); // tell the transmitter
that the output has been turned on
}
if (incoming[3] == '0')
{
digitalWrite(7, LOW);
1 loraSend(0); // tell the transmitter that
the output has been turned off
}
}
void setup()
{
pinMode(7,
OUTPUT);
LoRa.begin(LORAFREQ); // start up LoRa at specified
frequency
LoRa.onReceive(takeAction); // call function
"takeAction" when data received
// over LoRa wireless

LoRa.receive(); // start receiving
}
void loop()
{
}

Our receiver operates in the same manner as the one for Project 47, except
in this case, the receiver sends back the character code DEF to the
transmitter, followed by a 1 or a 0 to indicate that the output pin has been
turned on or off. This is done at 1 using the loraSend() function.

At this point, you have two example projects that show how you can not
only control digital output pins wirelessly across a greater distance than
with the earlier projects but also confirm that the actions have taken place.
You can now expand on these examples to create your own remote-control
projects. But next, we’ll experiment with sending sensor data over a LoRa
wireless link with Project 49.

Project #49: Sending Remote Sensor Data
Using LoRa Wireless
This project builds on our previous efforts by using your computer to
request temperature data from a remote sensor.

The Transmitter Circuit Hardware
The following hardware is required for the transmitter circuit:

Arduino and USB cable

LoRa shield for Arduino

This project uses the Serial Monitor on your PC for control, so the
transmitter circuit is simply the Arduino and LoRa shield connected to the

PC via the USB cable.

The Receiver Circuit Hardware
The following hardware is required for the receiver circuit:

Arduino and USB cable

LoRa shield for Arduino

TMP36 temperature sensor

Solderless breadboard

External power for Arduino

Male-to-male jumper wires

The Receiver Schematic
Our circuit is simply the TMP36 temperature sensor connected to analog
pin A0, along with the LoRa shield placed on the Arduino, as shown in
Figure 16-12.

Figure 16-12: Receiver schematic for Project 49

The receiver circuit may be some distance from the computer, so you can
harness a USB power supply or the battery solution used in earlier projects.

The Transmitter Sketch
Now let’s examine the sketch for the transmitter. Enter and upload the
following sketch to the Arduino with the transmitter circuit: // Project 49
- Sending Remote Sensor Data Using LoRa Wireless, Transmitter
// Sketch
#define LORAFREQ (915000000L)
#include <SPI.h>
#include <LoRa.h>
char command;
void loraSend(int controlCode)

{
LoRa.beginPacket(); // start sending data
1 LoRa.print("ABC");
// "ABC" is our three-character code for the
// transmitter
LoRa.print(controlCode); // send our instructions (controlCode
codes)
LoRa.endPacket(); // finished sending data
LoRa.receive(); // start listening
}
void takeAction(int
packetSize)
// send text received from sensor Arduino via LoRa
to Serial Monitor
{
char incoming[31] = "";
int k;
for (int i =
0; i < packetSize; i++)
{
k = i;
if (k > 31)
{
k = 31; // make
sure we don't write past end of string
}
incoming[k] =
(char)LoRa.read();
Serial.print(incoming[k]); // display temp
information from sensor board
}
Serial.println();
}
void
setup()
{
2 LoRa.begin(LORAFREQ); // start up LoRa at specified
frequency
LoRa.onReceive(takeAction); // call function
"takeAction" when data received
// over LoRa wireless
LoRa.receive(); // start receiving
Serial.begin(9600);
}
void
loop()
{
3 Serial.print("Enter 1 for Celsius or 2 for Fahrenheit
then Enter: ");
Serial.flush(); // clear any "junk" out of the
serial buffer before waiting
4 while (Serial.available() == 0)
{
// do nothing until something enters the serial buffer
}
while
(Serial.available() > 0)
{
command = Serial.read() - '0';
//
read the number in the serial buffer,
// remove the ASCII text
offset for zero: '0'
}
Serial.println();
5 loraSend(command);
delay(2000);
}

As with the earlier projects in this chapter, we initialize the LoRa hardware
and the Serial Monitor at 2. However, instead of hardware buttons, we use
the Serial Monitor to accept commands from the user and send those to the
receiver hardware. In this project, the user is prompted to enter 1 or 2 in the
Serial Monitor’s input box to retrieve the temperature from the receiver
hardware in Celsius or Fahrenheit, respectively. This happens at 3. The
computer waits for user input at 4, then sends out either command to the
receiver hardware via loraSend() at 5. Again, we use a three-character
code to keep the transmission exclusively for the receiver board at 1.

The Receiver Sketch
Now let’s examine the sketch for the receiver. Enter and upload the
following sketch to the Arduino with the receiver circuit: // Project 49 -

Sending Remote Sensor Data Using LoRa Wireless, Receiver
//
Sketch
#define LORAFREQ (915000000L)
#include <SPI.h>
#include
<LoRa.h>
float sensor = 0;
float voltage = 0;
float celsius =
0;
float fahrenheit = 0;
void loraSendC()
{
LoRa.beginPacket();
// start sending data
sensor = analogRead(0);
voltage =
((sensor * 5000) / 1024);
voltage = voltage - 500;
celsius =
voltage / 10;
fahrenheit = ((celsius * 1.8) + 32);
1
LoRa.print("Temperature: ");
LoRa.print(celsius, 2);
LoRa.print(" degrees C");
2 LoRa.endPacket(); // finished sending
data
LoRa.receive(); // start listening
}
void loraSendF()
//
send temperature in Fahrenheit
{
LoRa.beginPacket(); // start
sending data
sensor = analogRead(0);
voltage = ((sensor * 5000)
/ 1024);
voltage = voltage - 500;
celsius = voltage / 10;
fahrenheit = ((celsius * 1.8) + 32);
1 LoRa.print("Temperature:
");
LoRa.print(fahrenheit, 2);
LoRa.print(" degrees F");
2
LoRa.endPacket(); // finished sending data
LoRa.receive(); //
start listening
}
void takeAction(int packetSize)
// things to
do when data received over LoRa wireless
{
char incoming[6] =
"";
int k;
for (int i = 0; i < packetSize; i++)
{
k = i;
if (k
> 6)
{
k = 6; // make sure we don't write past end of string
}
incoming[k] = (char)LoRa.read();
}
3 // check the three-character
code sent from transmitter is correct
if (incoming[0] != 'A')
{
return; // if not 'A', stop function and go back to void loop()
}
if (incoming[1] != 'B')
{
return; // if not 'B', stop
function and go back to void loop()
}
if (incoming[2] != 'C')
{
return; // if not 'C', stop function and go back to void loop()
}
// If made it this far, correct code has been received from
transmitter if (incoming[3] == '1')
{
4 loraSendC();
}
if
(incoming[3] == '2')
{
5 loraSendF();
}
}
void setup()
{
LoRa.begin(LORAFREQ); // start up LoRa at specified frequency
LoRa.onReceive(takeAction); // call function "takeAction" when
data received LoRa.receive(); // start receiving
}
void loop()
{
}

Using the same method as in Project 48, our receiver hardware decodes the
transmission from the transmitter to ensure the data is meant for it by
checking the character code sent at 3. If this is correct, the receiver board

calls one of either loraSendC() or loraSendF() at 4 or 5, respectively.
Those two functions calculate the temperature from the TMP36 sensor and,
between 1 and 2, send a string of text back to the transmitter board
containing the temperature and measurement type.

Once you have assembled the hardware for both circuits and uploaded both
sketches, place the powered receiver circuit (with the sensor) where you’d
like to measure temperature from your computer. Ensure the transmitter
circuit is connected to the computer. Open the Serial Monitor in the IDE
and follow the instructions to check the temperature. An example is shown
in Figure 16-13.

Figure 16-13: Example output for Project 49

Looking Ahead
This chapter showed how simple it is to control multi-Arduino systems
remotely. For example, you can control digital outputs by sending
characters from one Arduino to another, and you can use LoRa wireless
technology to create more complex, multi-Arduino control systems that
include data return. With the knowledge you’ve gained so far, many
creative options are available to you.

But there’s still much more to investigate in terms of wireless data
transmission, so keep reading and working along with the examples as you
learn to use simple television remote controls with the Arduino in the next
chapter.

17

INFRARED REMOTE CONTROL

In this chapter you will
Create and test a simple infrared receiver

Remotely control Arduino digital output pins

Add a remote control system to the robot vehicle we created in Chapter 14

As you’ll see, with the addition of an inexpensive receiver module, your
Arduino can receive the signals from an infrared remote and act upon them.

What Is Infrared?
Many people use infrared remote controls in a variety of daily actions, and
most don’t know how they work. Infrared (IR) signals are beams of light at
a wavelength that cannot be seen by the naked eye. So when you look at the
little LED poking out of a remote control and press a button, you won’t see
the LED light up.

That’s because IR remote controls contain one or more special infrared
light–generating LEDs that transmit the IR signals. When you press a
button on the remote, the LED turns on and off repeatedly in a pattern that
is unique for each button pressed. This signal is received by a special IR
receiver on the device being controlled and converted to pulses of electrical
current that are read as data by the receiver’s electronics. If you are curious
about these patterns, you can view them by looking at the IR LED on a
remote through the viewfinder of a phone camera or digital camera.

Setting Up for Infrared
Before moving forward, we need to install the Arduino IRremote library, so
visit https://github.com/z3t0/Arduino-IRremote/archive/master.zip to
download the required files and install them using the method described in
Chapter 7.

The IR Receiver
The next step is to set up the IR receiver and test that it is working. You can
choose either an independent IR receiver (shown in Figure 17-1) or a
prewired module (shown in Figure 17-2), whichever is easier for you.

Figure 17-1: An IR receiver

Figure 17-2: A prewired IR receiver module

https://github.com/z3t0/Arduino-IRremote/archive/master.zip

The independent IR receiver shown in Figure 17-1 is a Vishay TSOP4138.
The bottom leg of the receiver (as shown in the figure) connects to an
Arduino digital pin, the center leg to GND, and the top leg to 5 V.

Figure 17-2 shows a prewired IR module. Prewired receiver modules are
available from PMD Way and other retailers. The benefit of using these
modules is that they include connection wires and are labeled for easy
reference.

Regardless of your choice of module, in all of the following examples,
you’ll connect D (the data line) to Arduino digital pin 2, VCC to 5 V, and
GND to GND.

The Remote Control
Finally, you will need a remote control. I’ve used a surplus Sony TV remote
like the one shown in Figure 17-3. If you don’t have access to a Sony
remote, any inexpensive universal remote control can be used after you
reset it to Sony codes. See the instructions included with your remote
control to do this.

Figure 17-3: A typical Sony remote control

A Test Sketch
Now let’s make sure that everything works. After connecting your IR
receiver to the Arduino, enter and upload the sketch in Listing 17-1.

// Listing 17-1

1 #include <IRremote.h> // use the library

2 IRrecv irrecv(receiverpin); // create instance of irrecv

3 decode_results results;

int receiverpin = 2; // pin 1 of IR receiver to
Arduino digital pin 2

void setup()

{

 Serial.begin(9600);

 irrecv.enableIRIn(); // start the IR receiver

}

void loop()

{

4 if (irrecv.decode(&results)) // have we received an
IR signal?

 {

5 Serial.print(results.value, HEX); // display IR code in
the Serial Monitor

 Serial.print(" ");

 irrecv.resume(); // receive the next
value

 }

}

Listing 17-1: IR receiver test

This sketch is relatively simple, because most of the work is done in the
background by the IR library. At 4, we check whether a signal has been
received from the remote control. If so, it is displayed in the Serial Monitor
in hexadecimal at 5. The lines at 1, 2, and 3 activate the IR library and
create an instance of the infrared library function to refer to in the rest of the
sketch.

Testing the Setup
Once you’ve uploaded the sketch, open the Serial Monitor, aim the remote
at the receiver, and start pressing buttons. You should see codes for the

buttons displayed in the Serial Monitor after each button press. For
example, Figure 17-4 shows the results of pressing 1, 2, and 3, once each.

Figure 17-4: Results of pressing buttons after running the code in Listing 17-1

Table 17-1 lists the codes from a basic Sony remote control that we’ll use in
upcoming sketches. However, when running Listing 17-1, notice that each
code number repeats three times. This is an idiosyncrasy of Sony IR
systems, which send the code three times for each button press. You can
ignore these repeats with some clever coding, but for now, let’s skip to
remote controlling with the next project.

Table 17-1: Example Sony IR codes

Button Code Button Code
Power A90 7 610
Mute 290 8 E10
1 10 9 110
2 810 0 910
3 410 Volume up 490
4 C10 Volume down C90
5 210 Channel up 90
6 A10 Channel down 890

Project #50: Creating an IR Remote Control
Arduino
This project will demonstrate how to control digital output pins using an IR
remote control. You’ll control digital pins 3 through 7 with the matching
numerical buttons 3 through 7 on a Sony remote control. When you press a
button on the remote control, the matching digital output pin will change

state to HIGH for 1 second and then return to LOW. You’ll be able to use this
project as a base or guide to add remote control capabilities to your other
projects.

The Hardware
The following hardware is required for this project:

Arduino and USB cable

Five LEDs

Five 560 Ω resistors

Infrared receiver or module

Solderless breadboard

Various jumper wires

The Schematic
The circuit consists of the infrared receiver with the output connected to
digital pin 2 and five LEDs with current-limiting resistors connected to
digital pins 3 to 7 inclusive, as shown in Figure 17-5.

Figure 17-5: Schematic for Project 50

The Sketch
Enter and upload the following sketch:

// Project 50 – Creating an IR Remote Control Arduino

#include <IRremote.h>

IRrecv irrecv(receiverpin); // create instance of irrecv

decode_results results;

int receiverpin = 2; // pin 1 of IR receiver to
Arduino digital pin 2

void setup()

{

 irrecv.enableIRIn(); // start the receiver

 for (int z = 3 ; z < 8 ; z++) // set up digital pins

 {

 pinMode(z, OUTPUT);

 }

}

1 void translateIR()

// takes action based on IR code received

// uses Sony IR codes

{

 switch(results.value)

 {

2 case 0x410: pinOn(3); break; // 3

 case 0xC10: pinOn(4); break; // 4

 case 0x210: pinOn(5); break; // 5

 case 0xA10: pinOn(6); break; // 6

 case 0x610: pinOn(7); break; // 7

 }

}

3 void pinOn(int pin) // turns on digital pin "pin" for 1 second

{

 digitalWrite(pin, HIGH);

 delay(1000);

 digitalWrite(pin, LOW);

}

void loop()

{

4 if (irrecv.decode(&results)) // have we received an IR
signal?

 {

 translateIR();

5 for (int z = 0 ; z < 2 ; z++) // ignore the 2nd and 3rd
repeated codes

 {

 irrecv.resume(); // receive the next value

 }

 }

}

This sketch has three major parts. First, it waits for a signal from the remote
at 4. When a signal is received, the signal is tested in the function

translateIR() at 1 to determine which button was pressed and what action
to take.

Notice at 2 that we compare the hexadecimal codes returned by the IR
library. These are the codes returned by the test conducted in Listing 17-1.
When the codes for buttons 3 through 7 are received, the function pinOn()
at 3 is called, which turns on the matching digital pin for 1 second.

As mentioned, Sony remotes send the code three times for each button
press, so we use a small loop at 5 to ignore the second and third codes.
Finally, note the addition of 0x in front of the hexadecimal numbers used in
the case statements at 2.

NOTE

Hexadecimal numbers are base 16 and use the digits 0 through 9
and then A through F, before moving on to the next column. For
example, decimal 10 in hexadecimal is A, decimal 15 in
hexadecimal is F, decimal 16 is 10 in hexadecimal, and so on. When
using a hexadecimal number in a sketch, preface it with 0x.

Modifying the Sketch
You can expand the options or controls available for controlling your
receiving device by testing more buttons. To do so, use Listing 17-1 to
determine which button creates which code and then add each new code to
the switch case statement.

Project #51: Creating an IR Remote Control
Robot Vehicle
To show you how to integrate an IR remote control into an existing project,
we’ll add IR to the robot described in Project 39 in Chapter 14. In this
project, instead of presetting the robot’s direction and distances, the sketch
will show you how to control these actions with a simple Sony TV remote.

The Hardware
The required hardware is the same as that required for the robot you built
for Project 39, with the addition of the IR receiver module described earlier
in this chapter. In the following sketch, the robot will respond to the buttons
that you press on the remote control as follows: press 2 for forward, 8 for
backward, 4 for rotate left, and 6 for rotate right.

The Sketch
After reassembling your vehicle and adding the IR receiver, enter and
upload the following sketch:

// Project 51 - Creating an IR Remote Control Robot Vehicle

int receiverpin = 2; // pin 1 of IR receiver to Arduino
digital pin 11

#include <IRremote.h>

IRrecv irrecv(receiverpin); // create instance of irrecv

decode_results results;

#include <AFMotor.h>

AF_DCMotor motor1(1); // set up instances of each motor

AF_DCMotor motor2(2);

AF_DCMotor motor3(3);

AF_DCMotor motor4(4);

void goForward(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(FORWARD);

 motor2.run(FORWARD);

 motor3.run(FORWARD);

 motor4.run(FORWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void goBackward(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(BACKWARD);

 motor2.run(BACKWARD);

 motor3.run(BACKWARD);

 motor4.run(BACKWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void rotateLeft(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(FORWARD);

 motor2.run(BACKWARD);

 motor3.run(BACKWARD);

 motor4.run(FORWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

void rotateRight(int speed, int duration)

{

 motor1.setSpeed(speed);

 motor2.setSpeed(speed);

 motor3.setSpeed(speed);

 motor4.setSpeed(speed);

 motor1.run(BACKWARD);

 motor2.run(FORWARD);

 motor3.run(FORWARD);

 motor4.run(BACKWARD);

 delay(duration);

 motor1.run(RELEASE);

 motor2.run(RELEASE);

 motor3.run(RELEASE);

 motor4.run(RELEASE);

}

// translateIR takes action based on IR code received, uses
Sony IR codes

void translateIR()

{

 switch (results.value)

 {

 case 0x810:

 goForward(255, 250);

 break; // 2

 case 0xC10:

 rotateLeft(255, 250);

 break; // 4

 case 0xA10:

 rotateRight(255, 250);

 break; // 6

 case 0xE10:

 goBackward(255, 250);

 break; // 8

 }

}

void setup()

{

 delay(5000);

 irrecv.enableIRIn(); // start IR receiver

}

void loop()

{

 if (irrecv.decode(&results)) // have we received an IR
signal?

 {

 translateIR();

 for (int z = 0 ; z < 2 ; z++) // ignore the repeated
codes

 {

 irrecv.resume(); // receive the next value

 }

 }

}

This sketch should look somewhat familiar to you. Basically, instead of
lighting up LEDs on digital pins, it calls the motor control functions that
were used in the robot vehicle from Chapter 14.

Looking Ahead
Having worked through the projects in this chapter, you should understand
how to send commands to your Arduino via an infrared remote control
device. Using these skills and your knowledge from previous chapters, you
now can replace physical forms of input such as buttons with a remote
control.

But the fun doesn’t stop here. In the next chapter, we’ll use an Arduino to
harness something that, to the untrained eye, is fascinating and futuristic:
radio frequency identification systems.

18

READING RFID TAGS

In this chapter you will
Learn how to implement RFID readers with your Arduino

See how to save variables in the Arduino EEPROM

Design the framework for an Arduino-based RFID access system

Radio-frequency identification (RFID) is a wireless system that uses
electromagnetic fields to transfer data from one object to another, without
the two objects touching. You can build an Arduino that reads common
RFID tags and cards to create access systems and to control digital outputs.
You may have used an RFID card before, such as an access card that you
use to unlock a door or a public transport card that you hold in front of a
reader on the bus. Figure 18-1 shows some examples of RFID tags and
cards.

Figure 18-1: Example RFID devices

Inside RFID Devices
Inside an RFID tag is a tiny integrated circuit with memory that can be
accessed by a specialized reader. Most tags don’t have a battery inside;
instead, a wire coil antenna in the RFID reader broadcasts a jolt of
electromagnetic energy to the tags. They absorb this energy and use it to
power their own circuitry, which broadcasts a response back to the RFID
reader. Figure 18-2 shows the antenna coil of the RFID reader that we’ll use
in this chapter.

Figure 18-2: Our RFID reader

The card reader we’ll use in this chapter is from PMD Way (part number
113990014). It’s cheap and easy to use, and it operates at 125 kHz; be sure
to purchase two or more RFID tags that match that frequency, such as those
found at https://pmdway.com/collections/rfid-tags/.

Testing the Hardware
In this section, you’ll connect the RFID reader to the Arduino. Then you’ll
test that it’s working with a simple sketch that reads RFID cards and sends
the data to the Serial Monitor. To avoid conflict with the serial port between
the PC and Arduino, the RFID will be connected to other digital pins and
use SoftwareSerial, as we did in Chapter 15 with the GPS receiver module.

The Schematic
Figure 18-3 shows a diagram of the RFID module connections, looking at
the top side of the module.

https://pmdway.com/collections/rfid-tags/

Figure 18-3: RFID module connections

Testing the Schematic
To make the connections between the RFID reader and the Arduino, follow
these steps, using female-to-male jumper wires:

. Connect the included coil plug to the antenna pins at the bottom left of the
RFID reader board. They are not polarized and can connect either way.

. Connect the reader’s GND (pin 2) to Arduino GND.

. Connect the reader’s 5 V (pin 1) to Arduino 5 V.

. Connect the reader’s RX (pin 4) to Arduino pin D3.

. Connect the reader’s TX (pin 5) to Arduino pin D2.

The Test Sketch
Enter and upload Listing 18-1.

// Listing 18-1

#include <SoftwareSerial.h>

SoftwareSerial Serial2(2, 3);

int data1 = 0;

void setup()

{

 Serial.begin(9600);

 Serial2.begin(9600);

}

void loop()

{

 if (Serial2.available() > 0) {

 data1 = Serial2.read();

 // display incoming number

 Serial.print(" ");

 Serial.print(data1, DEC);

 }

Listing 18-1: RFID test sketch

Displaying the RFID Tag ID Number
Open the Serial Monitor window and wave an RFID tag over the coil. The
results should look similar to Figure 18-4.

Figure 18-4: Example output from Listing 18-1

Notice that 14 numbers are displayed in the Serial Monitor window.
Collectively, these are the RFID tag’s unique ID number, which we’ll use in
future sketches to identify the tag being read. Scan all your RFID tags and
record their ID numbers, because you’ll need them for the next few
projects.

Project #52: Creating a Simple RFID Control
System
Now let’s put the RFID system to use. In this project, you’ll learn how to
trigger an Arduino event when one of two correct RFID tags is read. The
sketch stores two RFID tag numbers; when a card whose ID matches one of
those numbers is read by the reader, it will display Accepted in the Serial
Monitor. If a card whose ID does not match one of the stored IDs is
presented, then the Serial Monitor will display Rejected. We’ll use this as a
base to add RFID controls to existing projects.

The Sketch

Enter and upload the following sketch. However, at 1 and 2, replace the x’s
in the array with the set of numbers you noted for two of your RFID tags in
the previous section. (We discussed arrays in Chapter 6.) // Project 52 –
Creating a Simple RFID Control System
#include
<SoftwareSerial.h>
SoftwareSerial Serial2(2, 3);
int data1 = 0;
int ok = -1;
// use Listing 18-1 to find your tags' numbers
1 int
tag1[14] = {x, x, x, x, x, x, x, x, x, x, x, x, x, x};
2 int
tag2[14] = {x, x, x, x, x, x, x, x, x, x, x, x, x, x};
int
newtag[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
//
used for read comparisons
3 boolean comparetag(int aa[14], int
bb[14])
{
boolean ff = false;
int fg = 0;
for (int cc = 0 ; cc
< 14 ; cc++)
{
if (aa[cc] == bb[cc])
{
fg++;
}
}
if (fg == 14)
{
ff = true;
}
return ff;
}
4 void checkmytags() // compares each
tag against the tag just read
{
ok = 0; // This variable
supports decision making.
// If it is 1, we have a match; 0 is
a read but no match,
// -1 is no read attempt made.
if
(comparetag(newtag, tag1) == true)
{
5 ok++;
}
if
(comparetag(newtag, tag2) == true)
{
6 ok++;
}
}
void setup()
{
Serial.begin(9600);
Serial2.begin(9600);
Serial2.flush(); //
need to flush serial buffer
// otherwise first read may not be
correct
}
void loop()
{
ok = -1;
if (Serial2.available() > 0)
// if a read has been attempted
{
// read the incoming number
on serial RX
delay(100); // needed to allow time for the data
// to come in from the serial buffer
7 for (int z = 0 ; z < 14 ;
z++) // read the rest of the tag
{
data1 = Serial2.read();
newtag[z] = data1;
}
Serial2.flush(); // stops multiple reads
// now to match tags up
8 checkmytags();
}
9 // now do something
based on tag type
if (ok > 0) // if we had a match
{
Serial.println("Accepted");
ok = -1;
}
else if (ok == 0) // if
we didn't have a match
{
Serial.println("Rejected");
ok = -1;
}
}

Understanding the Sketch
When a tag is presented to the RFID reader, it sends the tag’s numbers,
which collectively are its ID number, through the serial port. We capture all
14 of these numbers and place them in the array newtag[] at 7. Next, the

tag ID is compared against the two tag ID numbers stored at 1 and 2 using
the function checkmytags() at 4 and 8, with the actual comparisons of the
tag arrays performed by the function comparetag() at 3.

The comparetag() function accepts the two number arrays as parameters
and returns (in Boolean) whether the arrays are identical (true) or different
(false). If a match is made, the variable ok is set to 1 at 5 and 6. Finally, at
9, we have the actions to take once the tag read succeeds.

After uploading the sketch, open the Serial Monitor window and present
some tags to the reader. The results should be similar to those in Figure 18-
5.

Figure 18-5: Results of Project 52

Storing Data in the Arduino’s Built-in
EEPROM
When you define and use a variable in your Arduino sketches, the stored
data lasts only until the Arduino is reset or the power is turned off. But what
if you want to keep the values for future use, as in the case of the user-
changeable secret code for the numeric keypad in Chapter 11? That’s where
the EEPROM (electrically erasable read-only memory) comes in. The
EEPROM stores variables in memory inside an ATmega328
microcontroller, and the values aren’t lost when the power is turned off.

The EEPROM in the Arduino can store 1,024-byte variables in positions
numbered from 0 to 1,023. Recall that a byte can store an integer with a
value between 0 and 255, and you begin to see why it’s perfect for storing
RFID tag numbers. To use the EEPROM in our sketches, we first call the

EEPROM library (included with the Arduino IDE) using the following:
#include <EEPROM.h>

Then, to write a value to the EEPROM, we simply use this:

EEPROM.write(a, b);

Here, a is the position in the EEPROM memory where the information will
be stored, and b is the variable holding the information we want to store in
the EEPROM at position a.

To retrieve data from the EEPROM, we use this function:

value = EEPROM.read(position);

This takes the data stored in EEPROM position number position and
stores it in the variable value.

NOTE

The EEPROM has a finite life, and it can eventually wear out!
According to the manufacturer, Atmel, it can sustain 100,000
write/erase cycles for each position. Reads are unlimited.

Reading and Writing to the EEPROM
Here’s an example of how to read and write to the EEPROM. Enter and
upload Listing 18-2.

// Listing 18-2

#include <EEPROM.h>

int zz;

void setup()

{

 Serial.begin(9600);

 randomSeed(analogRead(0));

}

void loop()

{

 Serial.println("Writing random numbers...");

 for (int i = 0; i < 1024; i++)

 {

 zz = random(255);

1 EEPROM.write(i, zz);

 }

 Serial.println();

 for (int a = 0; a < 1024; a++)

 {

2 zz = EEPROM.read(a);

 Serial.print("EEPROM position: ");

 Serial.print(a);

 Serial.print(" contains ");

3 Serial.println(zz);

 delay(25);

 }

}

Listing 18-2: EEPROM demonstration sketch In the loop at 1, a random
number between 0 and 255 is stored in each EEPROM position. The
stored values are retrieved in the second loop at 2, to be displayed in the
Serial Monitor at 3.

Once the sketch has been uploaded, open the Serial Monitor. You should
see something like Figure 18-6.

Figure 18-6: Example output from Listing 18-2

Now you’re ready to create a project using the EEPROM.

Project #53: Creating an RFID Control with
“Last Action” Memory
Although Project 52 showed how to use RFID to control something, such as
a light or electric door lock, we had to assume that nothing would be
remembered if the system were reset or the power went out. For example, if
a light was on and the power went out, then the light would be off when the
power returned. However, you may prefer the Arduino to remember what
was happening before the power went out and return to that state. Let’s
solve that problem now.

In this project, the last action will be stored in the EEPROM (for example,
“locked” or “unlocked”). When the sketch restarts after a power failure or
an Arduino reset, the system will revert to the previous state stored in the
EEPROM.

The Sketch
Enter and upload the following sketch. As you did for Project 52, replace
each x in the arrays at 1 and 2 with the numbers for two of your RFID tags.

// Project 53 – Creating an RFID Control with "Last Action"
Memory

#include <SoftwareSerial.h>

SoftwareSerial Serial2(2, 3);

#include <EEPROM.h>

int data1 = 0;

int ok = -1;

int lockStatus = 0;

// use Listing 18-1 to find your tags' numbers

1 int tag1[14] = {

 x, x, x, x, x, x, x, x, x, x, x, x, x, x

};

2 int tag2[14] = {

 x, x, x, x, x, x, x, x, x, x, x, x, x, x

};

int newtag[14] = {

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

}; // used for read comparisons

// comparetag compares two arrays and returns true if
identical

// this is good for comparing tags

boolean comparetag(int aa[14], int bb[14])

{

 boolean ff = false;

 int fg = 0;

 for (int cc = 0; cc < 14; cc++)

 {

 if (aa[cc] == bb[cc])

 {

 fg++;

 }

 }

 if (fg == 14)

 {

 ff = true;

 }

 return ff;

}

void checkmytags()

// compares each tag against the tag just read

{

 ok = 0;

 if (comparetag(newtag, tag1) == true)

 {

 ok++;

 }

 if (comparetag(newtag, tag2) == true)

 {

 ok++;

 }

}

3 void checkLock()

{

 Serial.print("System Status after restart ");

 lockStatus = EEPROM.read(0);

 if (lockStatus == 1)

 {

 Serial.println("- locked");

 digitalWrite(13, HIGH);

 }

 if (lockStatus == 0)

 {

 Serial.println("- unlocked");

 digitalWrite(13, LOW);

 }

 if ((lockStatus != 1) && (lockStatus != 0))

 {

 Serial.println("EEPROM fault - Replace Arduino
hardware");

 }

}

void setup()

{

 Serial.begin(9600);

 Serial2.begin(9600);

 Serial2.flush(); // need to flush serial buffer

 pinMode(13, OUTPUT);

4 checkLock();

}

void loop()

{

 ok = -1;

 if (Serial2.available() > 0) // if a read has been
attempted

 {

 // read the incoming number on serial RX

 delay(100);

 for (int z = 0; z < 14; z++) // read the rest of the tag

 {

 data1 = Serial2.read();

 newtag[z] = data1;

 }

 Serial2.flush(); // prevents multiple reads

 // now to match tags up

 checkmytags();

 }

5 if (ok > 0) // if we had a match

 {

 lockStatus = EEPROM.read(0);

 if (lockStatus == 1) // if locked, unlock it

 {

6 Serial.println("Status - unlocked");

 digitalWrite(13, LOW);

 EEPROM.write(0, 0);

 }

 if (lockStatus == 0)

 {

7 Serial.println("Status - locked");

 digitalWrite(13, HIGH);

 EEPROM.write(0, 1);

 }

 if ((lockStatus != 1) && (lockStatus != 0))

 {

8 Serial.println("EEPROM fault - Replace Arduino
hardware");

 }

 }

 else if (ok == 0) // if we didn't have a match

 {

 Serial.println("Incorrect tag");

 ok = -1;

 }

 delay(500);

}

Understanding the Sketch
This sketch is a modification of Project 52. We use the onboard LED to
simulate the status of something that we want to turn on or off every time
an acceptable RFID ID tag is read. After a tag has been read and matched,
the status of the lock is changed at 5. We store the status of the lock in the
first position of the EEPROM. The status is represented by a number: 0 is
unlocked and 1 is locked. This status will change (from locked to unlocked
and back to locked) after every successful tag read at 6 or 7.

We’ve also introduced a fail-safe in case the EEPROM has worn out. If the
value returned from reading the EEPROM is not 0 or 1, we should be
notified at 8. Furthermore, the status is checked when the sketch restarts
after a reset using the function checkLock() at 1, 2, 3, and 4, which reads
the EEPROM value, determines the last status, and then sets the lock to that
status (locked or unlocked).

Looking Ahead
Once again, we have used an Arduino board to re-create simply what could
be a very complex project. You now have a base to add RFID control to
your projects that will allow you to create professional-quality access
systems and control digital outputs with the swipe of an RFID card. We’ll
demonstrate this again when we revisit RFID in Chapter 20.

19

DATA BUSES

In this chapter you will
Learn about the I2C bus

See how to use an EEPROM and a port expander on the I2C bus

Learn about the SPI bus

Find out how to use a digital rheostat on the SPI bus

An Arduino communicates with other devices via a data bus, a system of
connections that allows two or more devices to exchange data in an orderly
manner. A data bus can provide a connection between the Arduino and
various sensors, I/O expansion devices, and other components.

The two major buses of most importance to the Arduino are the Serial
Peripheral Interface (SPI) bus and the Inter-Integrated Circuit (I2C) bus.
Many useful sensors and external devices communicate using these buses.

The I2C Bus
The I2C bus, also known as the Two-Wire Interface (TWI) bus, is a simple
and easy-to-use data bus. Data is transferred between devices and the
Arduino through two wires, known as SDA and SCL (the data line and clock
line, respectively). In the case of the Arduino Uno, the SDA pin is A4 and
the SCL pin is A5, as shown in Figure 19-1.

Some newer R3 boards also have dedicated I2C pins at the upper-left corner
for convenient access, as shown in Figure 19-2. If you use these two pins,

you cannot use the A4 and A5 pins for other purposes.

Figure 19-1: The I 2C bus connectors on the Arduino Uno

Figure 19-2: Additional dedicated I 2C pins

As the six pins used for reprogramming the USB interface microcontroller
take up the space normally used for pin labeling, you can see the labels on
the rear of the Arduino, as shown in Figure 19-3.

Figure 19-3: Labels for additional dedicated I 2C pins

On the I2C bus, the Arduino is the main device, and each IC out on the bus
is a secondary. Each secondary has its own address, a hexadecimal number
that allows the Arduino to address and communicate with each device. Each
device usually has a range of 7-bit I2C bus addresses to choose from, which
is detailed in the manufacturer’s data sheet. The particular addresses
available are determined by wiring the IC pins a certain way.

NOTE

Because the Arduino runs on 5 V, your I2C device must also operate
on 5 V or at least be able to tolerate it. Always confirm this by
contacting the seller or manufacturer before use.

To use the I2C bus, you’ll need to use the Wire library (included with the
Arduino IDE):

#include <Wire.h>

Next, in void setup(), activate the bus with this:

Wire.begin();

Data is transmitted along the bus 1 byte at a time. To send a byte of data
from the Arduino to a device on the bus, three functions are required:

. The first function initiates communication with the following line of code
(where address is the secondary device’s bus address in hexadecimal—for
example 0x50):

Wire.beginTransmission(address);

. The second function sends 1 byte of data from the Arduino to the device
addressed by the previous function (where data is a variable containing 1
byte of data; you can send more than 1 byte, but you’ll need to use one
Wire.write() call for each byte):

Wire.write(data);

. Finally, once you have finished sending data to a particular device, use this
to end the transmission:

Wire.endTransmission();

To request that data from an I2C device be sent to the Arduino, start with
Wire.beginTransmission(address), followed by the this code (where x is
the number of bytes of data to request):

Wire.requestFrom(address,x);

Next, use the following function to store each incoming byte into a variable:

incoming = Wire.read(); // incoming is the variable receiving
the byte of data

Then finalize the transaction with Wire.endTransmission(). We’ll put
these functions to use in the next project.

Project #54: Using an External EEPROM
In Chapter 18, we used the Arduino’s internal EEPROM to prevent the
erasure of variable data caused by a board reset or power failure. The

Arduino’s internal EEPROM stores only 1,024 bytes of data. To store more
data, you can use external EEPROMs, as you’ll see in this project.

Figure 19-4: Microchip Technology’s 24LC512 EEPROM

For our external EEPROM, we’ll use the Microchip Technology 24LC512
EEPROM, which can store 64KB (65,536 bytes) of data (Figure 19-4). It’s
available from retailers such as Digi-Key (part number 24LC512-I/P-ND)
and PMD Way (part number 24LC512A).

The Hardware
Here’s what you’ll need to create this project:

Arduino and USB cable

One Microchip Technology 24LC512 EEPROM

One breadboard

Two 4.7 kΩ resistors

One 100 nF ceramic capacitor

Various connecting wires

The Schematic
For the circuit, connect one 4.7 kΩ resistor between 5 V and SCL and the
other between 5 V and SDA, as shown in Figure 19-5.

Figure 19-5: Schematic for Project 54

The bus address for the 24LC512 EEPROM IC is partially determined by
the way it is wired into the circuit. The last 3 bits of the bus address are
determined by the status of pins A2, A1, and A0. When these pins are
connected to GND, their values are 0; when they are connected to 5 V, their
values are 1.

The first 4 bits are preset as 1010. Therefore, in our circuit, since A0, A1,
and A2 are connected directly to GND, the bus address is represented as

1010000 in binary, which is 0x50 in hexadecimal. This means that we can
use 0x50 as the bus address in the sketch.

The Sketch
Although our external EEPROM can store up to 64KB of data, our sketch is
intended to demonstrate just a bit of its use, so we’ll store and retrieve bytes
only in the EEPROM’s first 20 memory positions.

Enter and upload the following sketch:

// Project 54 - Using an External EEPROM

1 #include <Wire.h>

#define chip1 0x50

byte d=0;

void setup()

{

2 Serial.begin(9600);

 Wire.begin();

}

void writeData(int device, unsigned int address, byte data)

// writes a byte of data 'data' to the EEPROM at I2C address
'device'

// in memory location 'address'

{

3 Wire.beginTransmission(device);

 Wire.write((byte)(address >> 8)); // left part of pointer
address

 Wire.write((byte)(address & 0xFF)); // and the right

 Wire.write(data);

 Wire.endTransmission();

 delay(10);

}

4 byte readData(int device, unsigned int address)

// reads a byte of data from memory location 'address'

// in chip at I2C address 'device'

{

 byte result; // returned value

 Wire.beginTransmission(device);

 Wire.write((byte)(address >> 8)); // left part of pointer

address

 Wire.write((byte)(address & 0xFF)); // and the right

 Wire.endTransmission();

5 Wire.requestFrom(device,1);

 result = Wire.read();

 return result; // and return it as a result of the function
readData

}

void loop()

{

 Serial.println("Writing data...");

 for (int a=0; a<20; a++)

 {

 writeData(chip1,a,a);

 }

 Serial.println("Reading data...");

 for (int a=0; a<20; a++)

 {

 Serial.print("EEPROM position ");

 Serial.print(a);

 Serial.print(" holds ");

 d=readData(chip1,a);

 Serial.println(d, DEC);

 }

}

Let’s walk through the sketch. At 1, we activate the library and define the
I2C bus address for the EEPROM as chip1. At 2, we start the Serial
Monitor and then the I2C bus. The two custom functions writeData() and
readData() are included to save you time and give you some reusable code
for future work with this EEPROM IC. We’ll use them to write and read
data, respectively, from the EEPROM.

The function writeData() at 3 initiates transmission with the EEPROM,
sends the address of where to store the byte of data in the EEPROM using
the next two Wire.write() function calls, sends a byte of data to be
written, and then ends transmission.

The function readData() at 4 operates the I2C bus in the same manner as
writeData(). First, however, it sets the address to read from, and then
instead of sending a byte of data to the EEPROM, it uses
Wire.requestFrom() to read the data at 5. Finally, the byte of data sent

from the EEPROM is received into the variable result and becomes the
return value for the function.

Running the Sketch
In void loop(), the sketch loops 20 times and writes a value to the
EEPROM each time. Then it loops again, retrieving the values and
displaying them in the Serial Monitor, as shown in Figure 19-6.

Figure 19-6: Results of Project 54

Project #55: Using a Port Expander IC
A port expander is another useful IC that is controlled via I2C. It’s designed
to offer more digital output pins. In this project, we’ll use the Microchip
Technology MCP23017 16-bit port expander IC (Figure 19-7), which has
16 digital outputs to add to your Arduino. It is available from retailers such
as Digi-Key (part number MCP23017-E/SP-ND) and PMD Way (part
number MCP23017A).

Figure 19-7: Microchip Technology’s MCP23017 port expander IC

In this project, we’ll connect the MCP23017 to an Arduino and demonstrate
how to control the 16 port expander outputs with the Arduino. Each of the
port expander’s outputs can be treated like a regular Arduino digital output.

The Hardware
Here’s what you’ll need to create this project:

Arduino and USB cable

One breadboard

Various connecting wires

One Microchip Technology MCP20317 port expander IC

Two 4.7 kΩ resistors

(Optional) An equal number of 560 Ω resistors and LEDs

The Schematic
Figure 19-8 shows the basic schematic for an MCP23017. As with the
EEPROM from Project 54, we can set the I2C bus address by using a
specific wiring order. With the MCP23017, we connected pins 15 through
17 to GND to set the address to 0x20.

When you’re working with the MCP23017, it helps to have the pinout
diagram from the IC’s data sheet, as shown in Figure 19-9. Note that the 16
outputs are divided into two banks: GPA7 through GPA0 on the right and
GPB0 through GPB7 on the left. We’ll connect LEDs via 560 Ω resistors

from some or all of the outputs to demonstrate when the outputs are being
activated.

Figure 19-8: Schematic for Project 55

Figure 19-9: Pinout diagram for MCP23017

The Sketch
Enter and upload the following sketch:

// Project 55 - Using a Port Expander IC

#include "Wire.h"

#define mcp23017 0x20

void setup()

{

1 Wire.begin(); // activate I2C bus

 // set up MCP23017

 // set I/O pins to outputs

 Wire.beginTransmission(mcp23017);

 Wire.write(0x00); // IODIRA register

 Wire.write(0x00); // set all of bank A to outputs

 Wire.write(0x00); // set all of bank B to outputs

2 Wire.endTransmission();

}

void loop()

{

 Wire.beginTransmission(mcp23017);

 Wire.write(0x12);

3 Wire.write(255); // bank A

4 Wire.write(255); // bank B

 Wire.endTransmission();

 delay(1000);

 Wire.beginTransmission(mcp23017);

 Wire.write(0x12);

 Wire.write(0); // bank A

 Wire.write(0); // bank B

 Wire.endTransmission();

 delay(1000);

}

To use the MCP23017, we need the lines listed in void setup() from 1
through 2. To turn on and off the outputs on each bank, we send 1 byte
representing each bank in order; that is, we send a value for bank GPA0
through GPA7 and then a value for GPB0 through GPB7.

When setting individual pins, you can think of each bank as a binary
number (as explained in “A Quick Course in Binary” in Chapter 6 on page
104). Thus, to turn on pins 1 through 4, you would send the number
11110000 in binary (240 in decimal), inserted into the Wire.write()
function shown at 3 for bank GPA0 through GPA7 or 4 for bank GPB0
through GPB7.

Hundreds of devices use the I2C bus for communication. Now that you
know the basics of how to use this bus, you can use any of these devices
with an Arduino board.

The SPI Bus
The SPI bus differs from the I2C bus in that it can be used to send data to
and receive data from a device simultaneously and at different speeds,
depending on the microcontroller used. Communication, however, is also

main/secondary: the Arduino acts as the main and determines which
secondary device it will communicate with at any one time.

Pin Connections
Each SPI device uses four pins to communicate with a main: MOSI (main
out, secondary in), MISO (main in, secondary out), SCK (serial clock), and
SS or CS (secondary select or chip select). These SPI pins are connected to
the Arduino as shown in Figure 19-10.

Figure 19-10: SPI pins on an Arduino Uno

A typical single Arduino-to-SPI device connection is shown in Figure 19-
11. Arduino pins D11 through D13 are reserved for SPI, but the SS pin can
use any other digital pin (often D10 is used because it’s next to the SPI
pins).

Figure 19-11: Typical Arduino-to-SPI device connection

NOTE

As with I2C devices, your SPI device must either operate on 5 V or
tolerate it since the Arduino runs on 5 V. Be sure to check this out
with the seller or manufacturer before use.

Implementing the SPI
Now let’s examine how to implement the SPI bus in a sketch. Before doing
this, however, we’ll run through the functions used. First, include the SPI
library (included with the Arduino IDE software):

#include "SPI.h"

Next, you need to choose a pin to be used for SS and set it as a digital
output in void setup(). Because we’re using only one SPI device in our
example, we’ll use D10 and set it to HIGH first, because most SPI devices
have an “active low” SS pin (this means the pin is connected to GND to be
set to HIGH, and vice versa):

pinMode(10, OUTPUT);

digitalWrite(10, HIGH);

Here is the function to activate the SPI bus:

SPI.begin();

Finally, we need to tell the sketch which way to send and receive data.
Some SPI devices require that their data be sent with the most significant
bit first, and some want the MSB last. (Again, see “A Quick Course in
Binary” in Chapter 6 for more on MSB.) Therefore, in void setup(), we
use the following function after SPI.begin():

SPI.setBitOrder(order);

Here, order is either MSBFIRST or MSBLAST.

Sending Data to an SPI Device
To send data to an SPI device, we first set the SS pin to LOW, which tells the
SPI device that the main (the Arduino) wants to communicate with it. Next,
we send bytes of data to the device with the following line, as often as
necessary—that is, you use this once for each byte you are sending:

SPI.transfer(byte);

After you’ve finished communicating with the device, set the SS pin to
HIGH to tell the device that the Arduino has finished communicating with it.

Each SPI device requires a separate SS pin. For example, if you had two
SPI devices, the second SPI device’s SS pin could be D9 and connected to
the Arduino as shown in Figure 19-12.

Figure 19-12: Two SPI devices connected to one Arduino

When communicating with secondary device #2, you would use the D9
(instead of the D10) SS pin before and after communication.

Project 56 demonstrates using the SPI bus with a digital rheostat.

Project #56: Using a Digital Rheostat
In simple terms, a rheostat device is similar to the potentiometers we
examined in Chapter 4, except the rheostat has two pins: one for the wiper
and one for the return current. In this project, you’ll use a digital rheostat to
set the resistance in the sketch instead of physically turning a potentiometer
knob or shaft yourself. Rheostats are often the basis of volume controls in
audio equipment that use buttons rather than dials, such as a car stereo. The

tolerance of a rheostat is much larger than that of a normal fixed-value
resistor—in some cases, around 20 percent larger.

Figure 19-13: Microchip Technology’s MCP4162 digital rheostat

For Project 56, we will use the Microchip Technology MCP4162 shown in
Figure 19-13. The MCP4162 is available in various resistance values; this
example uses the 10 kΩ version. It is available from retailers such as Digi-
Key (part number MCP4162-103E/P-ND) and element14 (part number
1840698). The resistance can be adjusted in 257 steps; each step has a
resistance of around 40 Ω. To select a particular step, we send 2 bytes of
data to a command byte (which is 0) and the value byte (which is between 0
and 256). The MCP4162 uses nonvolatile memory, so when the power is
disconnected and then reconnected, the last value selected is still in effect.

We’ll control the brightness of an LED using the rheostat.

The Hardware
Here’s what you’ll need to create this project:

Arduino and USB cable

One breadboard

Various connecting wires

One Microchip Technology MCP4162 digital rheostat

One 560 Ω resistor

One LED

The Schematic

Figure 19-14 shows the schematic. The pin numbering on the MCP4162
starts at the top left of the package. Pin 1 is indicated by the indented dot to
the left of the Microchip logo on the IC (see Figure 19-13).

Figure 19-14: Schematic for Project 56

The Sketch
Enter and upload the following sketch:

// Project 56 - Using a Digital Rheostat

1 #include "SPI.h" // necessary library

int ss=10; // using digital pin 10 for SPI secondary
select

int del=200; // used for delaying the steps between LED
brightness values

void setup()

{

2 SPI.begin();

 pinMode(ss, OUTPUT); // we use this for the SS pin

 digitalWrite(ss, HIGH); // the SS pin is active low, so set
it up high first

3 SPI.setBitOrder(MSBFIRST);

 // our MCP4162 requires data to be sent MSB (most
significant byte) first

}

4 void setValue(int value)

{

 digitalWrite(ss, LOW);

 SPI.transfer(0); // send the command byte

 SPI.transfer(value); // send the value (0 to 255)

 digitalWrite(ss, HIGH);

}

void loop()

{

5 for (int a=0; a<256; a++)

 {

 setValue(a);

 delay(del);

 }

6 for (int a=255; a>=0; a--)

 {

 setValue(a);

 delay(del);

 }

}

Let’s walk through the code. First, we set up the SPI bus at 1 and 2. At 3,
we set the byte direction to suit the MPC4162. To make setting the
resistance easier, we use the custom function at 4, which accepts the
resistance step (0 through 255) and passes it to the MCP4162. Finally, the
sketch uses two loops to move the rheostat through all the stages, from 0 to
the maximum at 5 and then back to 0 at 6. This last piece should make the
LED increase and decrease in brightness, fading up and down for as long as
the sketch is running.

Looking Ahead
In this chapter, you learned about and experimented with two important
Arduino communication methods. Now you’re ready to interface your
Arduino with a huge variety of sensors, more advanced components, and
other items as they become available on the market. One of the most
popular components today is a real-time clock IC that allows your projects
to keep and work with time—and that’s the topic of Chapter 20. So let’s go!

<code>// Project 57 - Adding and Displaying Time and Date with an RTC

1
#include "Wire.h"

#define DS3231_I2C_ADDRESS 0x68

// Convert normal decimal numbers to binary coded decimal 2 byte
decToBcd(byte val) {

return((val/10*16) + (val%10)); }

// Convert binary coded decimal to normal decimal numbers byte
bcdToDec(byte val)

{

return((val/16*10) + (val%16)); }

3
void setDS3231time(byte second, byte minute, byte hour, byte dayOfWeek,
byte dayOfMonth, byte month, byte year)

{

// sets time and date data in the DS3231

Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); // set
next input to start at the seconds register Wire.write(decToBcd(second)); //

set seconds Wire.write(decToBcd(minute)); // set minutes
Wire.write(decToBcd(hour)); // set hours
Wire.write(decToBcd(dayOfWeek)); // set day of week (1=Sunday,
7=Saturday) Wire.write(decToBcd(dayOfMonth)); // set date (1 to 31)
Wire.write(decToBcd(month)); // set month Wire.write(decToBcd(year)); //
set year (0 to 99) Wire.endTransmission();

}

4
void readDS3231time(byte *second, byte *minute,

byte *hour,

byte *dayOfWeek,

byte *dayOfMonth,

byte *month,

byte *year)

{

Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); // set
DS3231 register pointer to 00h Wire.endTransmission();

Wire.requestFrom(DS3231_I2C_ADDRESS, 7);

// request seven bytes of data from DS3231 starting from register 00h
*second = bcdToDec(Wire.read() & 0x7f); *minute =
bcdToDec(Wire.read()); <span epub:type="pagebreak" title="354"
id="Page_354"/> *hour = bcdToDec(Wire.read() & 0x3f); *dayOfWeek =
bcdToDec(Wire.read()); *dayOfMonth = bcdToDec(Wire.read()); *month =
bcdToDec(Wire.read()); *year = bcdToDec(Wire.read()); }

void displayTime()

{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

// retrieve data from DS3231

5
readDS3231time(&second, &minute, &hour, &dayOfWeek, &dayOfMonth,
&month, &year);

// send it to the Serial Monitor Serial.print(hour, DEC);

// convert the byte variable to a decimal number when displayed
Serial.print(":");

if (minute<10)

{

Serial.print("0");

}

Serial.print(minute, DEC); Serial.print(":");

if (second<10)

{

Serial.print("0");

}

Serial.print(second, DEC); Serial.print(" ");

Serial.print(dayOfMonth, DEC); Serial.print("/");

Serial.print(month, DEC); Serial.print("/");

Serial.print(year, DEC);

Serial.print(" Day of week: "); switch(dayOfWeek){

case 1:

Serial.println("Sunday"); break;

case 2:

Serial.println("Monday"); break;

case 3:

Serial.println("Tuesday"); break;

case 4:

Serial.println("Wednesday"); break;

case 5:

Serial.println("Thursday"); break;

case 6:

Serial.println("Friday"); break;

case 7:

Serial.println("Saturday"); break;

}

}

void setup()

{

Wire.begin();

Serial.begin(9600);

// set the initial time here: // DS3231 seconds, minutes, hours, day, date,
month, year <span class="CodeAnnotationHang" aria-
label="annotation6">6 setDS3231time(0, 56, 23, 6, 30, 10, 21);

}

void loop()

{

displayTime(); // display the real-time clock data in the Serial Monitor,
delay(1000); // every second }</code>

<code>setDS3231time(<var>second</var>, <var>minute</var>,
<var>hour</var>, <var>dayOfWeek</var>, <var>dayOfMonth</var>,
<var>month</var>, <var>year</var>)</code>

<code>// Project 58 - Creating a Simple Digital Clock

#include "Wire.h"

1
#include <LiquidCrystal.h> #define DS3231_I2C_ADDRESS 0x68

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// Convert normal decimal numbers to binary coded decimal byte
decToBcd(byte val)

{

return((val/10*16) + (val%10)); }

// Convert binary coded decimal to normal decimal numbers byte
bcdToDec(byte val)

{

return((val/16*10) + (val%16)); }

void setDS3231time(byte second, byte minute, byte hour, byte dayOfWeek,
byte dayOfMonth, byte month, byte year) {

// sets time and date data in the DS3231

Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); // set
next input to start at the seconds register Wire.write(decToBcd(second)); //
set seconds Wire.write(decToBcd(minute)); // set minutes
Wire.write(decToBcd(hour)); // set hours
Wire.write(decToBcd(dayOfWeek)); // set day of week (1=Sunday,
7=Saturday) Wire.write(decToBcd(dayOfMonth)); // set date (1 to 31)
Wire.write(decToBcd(month)); // set month Wire.write(decToBcd(year)); //
set year (0 to 99) Wire.endTransmission();

}

void readDS3231time(byte *second,

byte *minute,

byte *hour,

byte *dayOfWeek,

byte *dayOfMonth,

byte *month,

byte *year)

{

Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); // set
DS3231 register pointer to 00h Wire.endTransmission();

Wire.requestFrom(DS3231_I2C_ADDRESS, 7);

// request seven bytes of data from DS3231 starting from register 00h
*second = bcdToDec(Wire.read() & 0x7f); *minute =
bcdToDec(Wire.read()); *hour = bcdToDec(Wire.read() & 0x3f);
*dayOfWeek = bcdToDec(Wire.read()); *dayOfMonth =
bcdToDec(Wire.read()); *month = bcdToDec(Wire.read()); *year =
bcdToDec(Wire.read()); }

void displayTime()

{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

// retrieve data from DS3231

readDS3231time(&second, &minute, &hour, &dayOfWeek,
&dayOfMonth, &month, &year);

// send the data to the LCD shield lcd.clear();

lcd.setCursor(4,0);

lcd.print(hour, DEC);

lcd.print(":");

if (minute<10)

{

lcd.print("0");

}

lcd.print(minute, DEC);

lcd.print(":");

if (second<10)

{

lcd.print("0");

}

lcd.print(second, DEC);

lcd.setCursor(0,1);

switch(dayOfWeek){

case 1:

lcd.print("Sun");

break;

case 2:

lcd.print("Mon");

break;

case 3:

lcd.print("Tue");

break;

case 4:

lcd.print("Wed");

break;

case 5:

lcd.print("Thu");

break;

case 6:

 lcd.print("Fri");
break;

case 7:

lcd.print("Sat");

break;

}

lcd.print(" ");

lcd.print(dayOfMonth, DEC); lcd.print("/");

lcd.print(month, DEC);

lcd.print("/");

lcd.print(year, DEC);

}

void setup()

{

Wire.begin();

2
lcd.begin(16, 2); // set the initial time here: // DS3231 seconds, minutes,
hours, day, date, month, year <span class="CodeAnnotationHang" aria-
label="annotation3">3 // setDS3231time(0, 27, 0, 5, 15, 11, 20); }

void loop()

{

displayTime(); // display the real-time clock time on the LCD,
delay(1000); // every second }</code>

<code>// Project 59 - Creating an RFID Time-Clock System

1
#include "Wire.h" // for RTC

2
#include "SD.h" // for SD card

#include <LiquidCrystal.h>

#define DS3231_I2C_ADDRESS 0x68

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

int data1 = 0;

3 //
Use Listing 18-1 to find your tag numbers int Mary[14] = {

2, 52, 48, 48, 48, 56, 54, 67, 54, 54, 66, 54, 66, 3}; int John[14] = {

2, 52, 48, 48, 48, 56, 54, 66, 49, 52, 70, 51, 56, 3}; int newtag[14] = {

0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // used for read comparisons

// Convert normal decimal numbers to binary coded decimal byte
decToBcd(byte val)

{

return((val/10*16) + (val%10)); }

// Convert binary coded decimal to normal decimal numbers byte
bcdToDec(byte val)

{

return((val/16*10) + (val%16)); }

void setDS3231time(byte second, byte minute, byte hour, byte dayOfWeek,
byte dayOfMonth, byte month, byte year) {

// Sets time and date data in the DS3231

Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); // set
next input to start at the seconds register Wire.write(decToBcd(second)); //
set seconds Wire.write(decToBcd(minute)); // set minutes
Wire.write(decToBcd(hour)); // set hours
Wire.write(decToBcd(dayOfWeek)); // set day of week (1=Sunday,
7=Saturday) Wire.write(decToBcd(dayOfMonth)); // set date (1 to 31)
Wire.write(decToBcd(month)); // set month Wire.write(decToBcd(year)); //
set year (0 to 99) Wire.endTransmission();

}

void readDS3231time(byte *second,

byte *minute,
byte *hour,

byte *dayOfWeek,

byte *dayOfMonth,

byte *month,

byte *year)

{

Wire.beginTransmission(DS3231_I2C_ADDRESS); Wire.write(0); // set
DS3231 register pointer to 00h Wire.endTransmission();

Wire.requestFrom(DS3231_I2C_ADDRESS, 7);

// Request seven bytes of data from DS3231 starting from register 00h
*second = bcdToDec(Wire.read() & 0x7f); *minute =
bcdToDec(Wire.read()); *hour = bcdToDec(Wire.read() & 0x3f);
*dayOfWeek = bcdToDec(Wire.read()); *dayOfMonth =
bcdToDec(Wire.read()); *month = bcdToDec(Wire.read()); *year =
bcdToDec(Wire.read()); }

// Compares two arrays and returns true if identical.

// This is good for comparing tags.

boolean comparetag(int aa[14], int bb[14])

{

boolean ff=false;

int fg=0;

for (int cc=0; cc<14; cc++) {

if (aa[cc]==bb[cc])

{

fg++;

}

}

if (fg==14)

{

ff=true; // all 14 elements in the array match each other }

return ff;

}

void wipeNewTag()

{

for (int i=0; i<=14; i++) {

newtag[i]=0;

}

}

void setup()

{

Serial.flush(); // need to flush serial buffer Serial.begin(9600);

 Wire.begin();
lcd.begin(16, 2);

// set the initial time here: // DS3231 seconds, minutes, hours, day, date,
month, year // setDS3231time(0, 27, 0, 5, 15, 11, 12); // Check that the
microSD card exists and can be used <span class="CodeAnnotationHang"
aria-label="annotation4">4 if (!SD.begin(8)) {

lcd.print("uSD card failure"); // stop the sketch

return;

}

lcd.print("uSD card OK"); delay(1000);

lcd.clear();

}

}

void loop()

{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

if (Serial.available() > 0) // if a read has been attempted {

// read the incoming number on serial RX

delay(100); // allow time for the data to come in from the serial buffer for
(int z=0; z<14; z++) // read the rest of the tag {

data1=Serial.read();

newtag[z]=data1;

}

Serial.flush(); // stops multiple reads // retrieve data from DS3231

readDS3231time(&second, &minute, &hour, &dayOfWeek,
&dayOfMonth, &month, &year);

}

// now do something based on the tag type 5 if
(comparetag(newtag, Mary) == true) {

lcd.print("Hello Mary "); File dataFile = SD.open("DATA.TXT",
FILE_WRITE); if (dataFile)

{

dataFile.print("Mary ");

dataFile.print(hour);

dataFile.print(":");

if (minute<10) { dataFile.print("0"); }

dataFile.print(minute);

dataFile.print(":");

if (second<10) { dataFile.print("0"); }

dataFile.print(second);

dataFile.print(" ");

dataFile.print(dayOfMonth); <span epub:type="pagebreak" title="364"
id="Page_364"/> dataFile.print("/"); dataFile.print(month);

dataFile.print("/");

dataFile.print(year);

dataFile.println();

dataFile.close();

}

delay(1000);

lcd.clear();

wipeNewTag();

}

if (comparetag(newtag, John)==true) {

lcd.print("Hello John "); File dataFile = SD.open("DATA.TXT",
FILE_WRITE); if (dataFile)

{

dataFile.print("John ");

dataFile.print(hour);

dataFile.print(":");

if (minute<10) { dataFile.print("0"); }

dataFile.print(minute);

dataFile.print(":");

if (second<10) { dataFile.print("0"); }

dataFile.print(second);

dataFile.print(" ");

dataFile.print(dayOfMonth); dataFile.print("/");

dataFile.print(month);

dataFile.print("/");

dataFile.print(year);

dataFile.println();

dataFile.close();

}

delay(1000);

lcd.clear();

wipeNewTag();

}

}</code>

Understanding the Sketch

In this sketch, the system first waits for an RFID card to be presented to the
reader. If the RFID card is recognized, then the card owner’s name, the
time, and the date are appended to a text file stored on the microSD card.

At 1 are the functions required for the I2C bus and the real-time clock, and
at 2 is the line required to set up the microSD card shield. At 4, we check
and report on the status of the microSD card. At 5, the card just read is
compared against the stored card numbers for two people—in this case,
John and Mary. If there is a match, the data is written to the microSD card.
With some modification, you could add more cards to the system simply by
adding the cards’ serial numbers below the existing numbers at 3 and then
adding other comparison functions like those at 5.

When the time comes to review the logged data, copy the file data.txt from
the microSD card. Then view the data with a text editor or import it into a

spreadsheet for further analysis. The data is laid out so that it’s easy to read,
as shown in Figure 20-5.

Figure 20-5: Example data generated by Project 59

Looking Ahead

In this chapter, you learned how to work with time and date data via the
RTC IC. The RFID system described in Project 59 gives you the framework
you need to create your own access systems or even track when, for
example, your children arrive home. In the final two chapters, we’ll create
projects that will use the Arduino to communicate over the internet and a
cellular phone network.

21

THE INTERNET

In this chapter you will
Build a web server to display data on a web page

Use your Arduino to send tweets on Twitter

Remotely control Arduino digital outputs from a web browser

This chapter will show you how to connect your Arduino to the outside
world via the internet. This allows you to broadcast data from your Arduino
and remotely control your Arduino from a web browser.

What You’ll Need
To build these internet-related projects, you will need some common
hardware, a cable, and some information.

Let’s start with the hardware. You’ll need an Ethernet shield with the
W5100 controller chip. You have two options to consider: you can use the
genuine Arduino-brand Ethernet shield, as shown in Figure 21-1, or you
can use an Arduino Uno–compatible board with integrated Ethernet
hardware, such PMD Way part 328497, as shown in Figure 21-2. The latter
is a good choice for new projects or when you want to save physical space
and money. As you can see, the integrated board has the connectors for
Arduino shields, a USB port, an Ethernet socket, and a microSD card
socket.

Figure 21-1: An Arduino Ethernet shield

Figure 21-2: An Arduino Uno–compatible board with integrated Ethernet

Regardless of your choice of hardware, you’ll also need a standard 10/100
CAT5, CAT5E, or CAT6 network cable to connect your Ethernet shield to
your network router or internet modem.

In addition, you’ll need the IP address of your network’s router gateway or
modem, which should look something like this: 192.168.0.1. You’ll also
need your computer’s IP address in the same format as your router’s IP
address.

Finally, if you want to communicate with your Arduino from outside your
home or local area network, you’ll need a static, public IP address. A static
IP address is a fixed address assigned to your physical internet connection
by your internet service provider (ISP). Your internet connection may not

have a static IP address by default; contact your ISP to have this activated if
necessary. If your ISP cannot offer a static IP or if it costs too much, you
can get an automated redirection service that offers a hostname that can
divert to your connection’s IP address through a third-party company, such
as No-IP (http://www.noip.com/) or Dyn (https://account.dyn.com/). Now
let’s put our hardware to the test with a simple project.

Project #60: Building a Remote Monitoring
Station
In projects in previous chapters, we gathered data from sensors to measure
temperature and light. In this project, you’ll learn how to display those
values on a simple web page that you can access from almost any web-
enabled device. This project will display the values of the analog input pins
and the status of digital inputs 0 to 9 on a simple web page, functionality
that will serve as the basis for a remote monitoring station.

Using this framework, you can add sensors with analog and digital outputs,
such as temperature, light, and switch sensors, and then display the sensors’
status on a web page.

The Hardware
Here’s what you’ll need to create this project:

One USB cable

One network cable

One Arduino Uno and Ethernet shield, or one Arduino Uno–compatible
board with integrated Ethernet

The Sketch
Enter the following sketch, but don’t upload it yet:

/* Project 60 – Building a Remote Monitoring Station

 created 18 Dec 2009 by David A. Mellis, modified 9 Apr 2012
by Tom Igoe

 modified August 2020 by John Boxall

http://www.noip.com/
https://account.dyn.com/

 */

#include <SPI.h>

#include <Ethernet.h>

1 IPAddress ip(xxx,xxx,xxx,xxx); // Replace this with your
project's IP address

2 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

EthernetServer server(80);

void setup()

{

 // Start the Ethernet connection and server

 Ethernet.begin(mac, ip);

 server.begin();

 for (int z=0; z<10; z++)

 {

 pinMode(z, INPUT); // set digital pins 0 to 9 to
inputs

 }

}

void loop()

{

 // listen for incoming clients (incoming web page request
connections)

 EthernetClient client = server.available();

 if (client) {

 // an HTTP request ends with a blank line

 boolean currentLineIsBlank = true;

 while (client.connected()) {

 if (client.available()) {

 char c = client.read();

 if (c == '\n') && currentLineIsBlank) {

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println("Connection: close");

 client.println();

 client.println("<!DOCTYPE HTML>");

 client.println("<html>");

 // add a meta refresh tag, so the browser pulls
again every 5 sec:

3 client.println("<meta http-equiv=\"refresh\"
content=\"5\">");

 // output the value of each analog input pin onto
the web page

 for (int analogChannel = 0; analogChannel < 6;

analogChannel++) {

 int sensorReading = analogRead(analogChannel);

4 client.print("analog input ");

 client.print(analogChannel);

 client.print(" is ");

 client.print(sensorReading);

 client.println("
");

 }

 // output the value of digital pins 0 to 9 onto the
web page

 for (int digitalChannel = 0; digitalChannel < 10;
digitalChannel++)

 {

 boolean pinStatus = digitalRead(digitalChannel);

 client.print("digital pin ");

 client.print(digitalChannel);

 client.print(" is ");

 client.print(pinStatus);

 client.println("
");

 }

 client.println("</html>");

 break;

 }

 if (c == '\n') {

 // you're starting a new line

 currentLineIsBlank = true;

 }

 else if (c != '\r') {

 // you've gotten a character on the current line

 currentLineIsBlank = false;

 }

 }

 }

 // give the web browser time to receive the data

 delay(1);

 // close the connection:

 client.stop();

 }

}

We’ll discuss this sketch in more detail a bit later. First, before uploading
the sketch, you’ll need to enter an IP address for your Ethernet shield so
that it can be found on your local network or modem. You can determine
the first three parts of the address by checking your router’s IP address. For
example, if your router’s address is 192.168.0.1, change the last digit to

something random and different from that of other devices on your network,
using a number between 2 and 254 that isn’t already in use on your
network. Enter the altered IP address at 1 in the sketch, like so:

IPAddress ip(192, 168, 0, 69); // Ethernet shield's IP
address

Figure 21-3: Values of the pins monitored by our station, viewable as a web page on any
web-connected device with a web browser

Once you’ve made that change, save and upload your sketch. Next, insert
the Ethernet shield into your Arduino if required, connect the network cable
to your router or modem and the Ethernet connector, and power on your
Arduino board.

Wait about 20 seconds. Then, using a web browser on any device or
computer on your network, enter the IP address from 1. If you see
something like Figure 21-3, the framework of your monitoring station is
working correctly.

Troubleshooting

If this project doesn’t work for you, try the following:

Check that the IP address is set correctly in the sketch at 1.

Check that the sketch is correct and uploaded to your Arduino.

Double-check the local network. You might check whether a connected
computer can access the internet. If so, check that the Arduino board has
power and is connected to the router or modem.

If you’re accessing the project web page from a smartphone, make sure
your smartphone is accessing your local Wi-Fi network and not the cell
phone company’s cellular network.

If none of the Ethernet shield’s LEDs are blinking when the Arduino has
power and the Ethernet cable is connected to the shield and router or
modem, try another patch lead.

Understanding the Sketch
Once your monitoring station is working, you can return to the most
important parts of the sketch. The code from the beginning until 3 is
required because it loads the necessary libraries and starts the Ethernet
hardware in void setup(). Prior to 3, the client.print() statements are
where the sketch sets up the web page to allow it to be read by the web
browser. From 3 on, you can use the functions client.print() and
client.println() to display information on the web page as you would
with the Serial Monitor. For example, the following code is used to display
the first six lines of the web page shown in Figure 19-3:

client.print("analog input ");

client.print(analogChannel);

client.print(" is ");

client.print(sensorReading);

At 4, you see an example of writing text and the contents of a variable to
the web page. Here you can use HTML to control the look of your
displayed web page, as long as you don’t overtax your Arduino’s memory.
In other words, you can use as much HTML code as you like until you
reach the maximum sketch size, which is dictated by the amount of memory

in your Arduino board. (The sizes for each board type are described in
Table 13-2 on page 234.)

One thing to notice is the MAC address that networks can use to detect
individual pieces of hardware connected to the network. Each piece of
hardware on a network has a unique MAC address, which can be changed
by altering one of the hexadecimal values at 2. If two or more Arduino-
based projects are using one network, you must enter a different MAC
address for each device at 2. If your shield has a MAC address included
with it, use that value.

Finally, if you want to view your web page from a device that is not
connected to your local network, such as a tablet or phone using a cellular
connection, then you’ll need to use a technique called port forwarding in
your network router or modem, provided by an organization such as the
previously mentioned No-IP or Dyn. Port forwarding is often unique to the
make and model of your router, so do an internet search for “router port
forwarding” or visit a tutorial site such as http://www.wikihow.com/Port-
Forward for more information.

Now that you know how to display text and variables on a web page, let’s
use the Arduino to tweet.

Project #61: Creating an Arduino Tweeter
In this project, you’ll learn how to make your Arduino send tweets through
Twitter. You can receive all sorts of information that can be generated by a
sketch from any device that can access Twitter. If, for example, you want
hourly temperature updates from home while you’re abroad or even
notifications when the kids come home, this can offer an inexpensive
solution.

Your Arduino will need its own Twitter account, so do the following:

. Visit http://twitter.com/ and create your Arduino’s Twitter account. Make
note of the username and password.

. Get a token from the third-party website http://arduino-tweet.appspot.com/.
A token creates a bridge between your Arduino and the Twitter service.

http://www.wikihow.com/Port-Forward
http://twitter.com/
http://arduino-tweet.appspot.com/

You’ll need to follow only step 1 on this site.

. Copy and paste the token, along with your Arduino’s new Twitter account
details, into a text file on your computer.

. Download and install the Twitter Arduino library from
https://github.com/NeoCat/Arduno-Twitter-library/archive/master.zip.

The Hardware
Here’s what you’ll need to create this project:

One USB cable

One network cable

One Arduino Uno and Ethernet shield, or one Arduino Uno–compatible
board with integrated Ethernet

The Sketch
Enter the following sketch, but don’t upload it yet:

// Project 61 - Creating an Arduino Tweeter

#include <SPI.h>

#include <Ethernet.h>

#include <Twitter.h>

// Ethernet shield settings

1 IPAddress ip(192,168,0,1); // Replace this with your project's
IP address

2 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

3 Twitter twitter("insertyourtokenhere");

// Message to post

4 char msg[] = "I'm alive!";

void setup()

{

 delay(1000);

 Ethernet.begin(mac, ip);

 // or you can use DHCP for automatic IP address
configuration

 // Ethernet.begin(mac);

 Serial.begin(9600);

https://github.com/NeoCat/Arduno-Twitter-library/archive/master.zip

 Serial.println("connecting ...");

}

void loop()

{

5 if (twitter.post(msg)) {

 int status = twitter.wait(&Serial);

 if (status == 200) {

 Serial.println("OK.");

 } else {

 Serial.print("failed : code ");

 Serial.println(status);

 }

 } else {

 Serial.println("connection failed.");

 }

 while (1);

}

Figure 21-4: Your Arduino’s tweet

As with Project 60, insert your IP address at 1 and modify the MAC address
if necessary at 2. Then insert the Twitter token between the double quotes at
3. Finally, insert the text that you want to tweet at 4. Now upload the sketch
and connect your hardware to the network. (Don’t forget to follow your
Arduino’s Twitter account with your own account!) After a minute or so,
visit your Twitter page or load the app on a device, and the message should
be displayed, as shown in Figure 21-4.

When you’re creating your Arduino tweeter, keep in mind that you can send
no more than one tweet per minute and that each message must be unique.
(These are Twitter’s rules.) When sending tweets, Twitter also replies with a
status code. The sketch will receive and display this in the Serial Monitor
using the code at 5. Figure 21-5 shows an example.

Figure 21-5: Example error message from Twitter due to a duplicate post attempt

If you receive a 403 message like this, either your token is incorrect or
you’re sending tweets too quickly. (For a complete list of Twitter error
codes, see https://finderrorcode.com/twitter-error-codes.html.)

Controlling Your Arduino from the Web
You can control your Arduino from a web browser in several ways. After
doing some research, I’ve found a method that is reliable, secure, and free:
Teleduino.

Teleduino is a free service created by New Zealand Arduino enthusiast
Nathan Kennedy. It’s a simple yet powerful tool for interacting with an
Arduino over the internet. It doesn’t require any special or customized
Arduino sketches; instead, you simply enter a special URL into a web
browser to control the Arduino. You can use Teleduino to control digital
output pins and servos or to send I2C commands, and more features are
being added all the time. In Project 62, you’ll learn how to configure
Teleduino and remotely control digital outputs from a web-enabled device.

https://finderrorcode.com/twitter-error-codes.html

Project #62: Setting Up a Remote Control for
Your Arduino
Before starting your first Teleduino project, you must register with the
Teleduino service and obtain a unique key to identify your Arduino. To do
so, visit https://www.teleduino.org/tools/request-key/ and enter the required
information. You should receive an email with your key, which will look
something like this: 187654321Z9AEFF952ABCDEF8534B2BBF.

Next, convert your key into an array variable by visiting
https://www.teleduino.org/tools/arduino-sketch-key/. Enter your key, and the
page should return an array similar to that shown in Figure 21-6.

Figure 21-6: A Teleduino key as an array

Each key is unique to a single Arduino, but you can get more keys if you
want to run more than one Teleduino project at a time.

The Hardware
Here’s what you’ll need to create this project:

One USB cable

One network cable

One Arduino Uno and Ethernet shield, or one Arduino Uno–compatible
board with integrated Ethernet

One 560 Ω resistor (R1)

One breadboard

One LED of any color

Assemble your hardware and connect an LED to digital pin 8, as shown in
Figure 21-7.

https://www.teleduino.org/tools/request-key/
https://www.teleduino.org/tools/arduino-sketch-key/

Figure 21-7: Schematic for Project 62

The Sketch
Projects in Teleduino use only one sketch, which is included with the
Teleduino library. Here’s how to access the sketch:

. Download and install the Teleduino library from
https://www.teleduino.org/downloads/.

. Restart the Arduino IDE and select
File▶Examples▶Teleduino328▶TeleduinoEthernetClientProxy.

https://www.teleduino.org/downloads/

. You should now see the Teleduino sketch. Before uploading it to your
Arduino, replace the default key with your key array. The variable you need
to replace should be on line 36 of the sketch. Once you’ve replaced it, save
the sketch, and then upload it to your Arduino.

Now connect your hardware to the network and watch the LED. After a
minute or so, it should blink a few times and then rest. The number of
blinks represents the status of the Teleduino service, as shown in Table 21-
1.

Table 21-1: Teleduino Status Blink Codes

Number of blinks Message
1 Initializing
2 Starting network connection
3 Connecting to the Teleduino server
4 Authentication successful
5 Session already exists
6 Invalid or unauthorized key
10 Connection dropped

If you see five blinks, then another Arduino is already programmed with
your key and connected to the Teleduino server. At 10 blinks, you should
check your hardware and internet connections. Once the Arduino has
connected, it should blink once every 5 seconds or so. Because the status
LED is controlled by digital pin 8, you can’t use that pin for any other
purpose while you’re using Teleduino.

Controlling Your Arduino Remotely
To control your Teleduino remotely, you can use any device with a web
browser. However, you first need to set the mode for each digital pin you
wish to control. The command to control the Arduino is sent by entering a
URL that you create:

http://us01.proxy.teleduino.org/api/1.0/328.php?k=
{YOURKEY}&r=definePinMode&pin=<X>&mode=<Y>

You’ll need to change three parameters in the URL. First, replace
{YOURKEY} with the long alphanumeric key you received from the Teleduino
site. Next, replace <X> with the digital pin number you want to control.
Third, change the <Y> to 1 to set up the digital pin as an output.

Now you can control the digital pin remotely. The command to do this is:

http://us01.proxy.teleduino.org/api/1.0/328.php?k={YOURKEY}

&r=setDigitalOutput&pin=<X>&output=<S>

Again, you’ll need to change three parameters in the URL. First, replace
{YOURKEY} with the long alphanumeric key you received from the Teleduino
site. Next, replace <X> with the digital pin number you want to control.
Third, change the <S> to 0 for low or 1 for high to alter the digital output.
For example, to turn digital pin 7 to high, you would enter:

http://us01.proxy.teleduino.org/api/1.0/328.php?k=
{YOURKEY}&r=setDigitalOutput&pin=7&output=1

After the command succeeds, you should see something like the following
in your web browser:

{"status":200,"message":"OK","response"

{"result":0,"time":0.22814512252808,"values":[]}}

If the command fails, you should see an error message like this:

{"status":403,"message":"Key is offline or
invalid.","response":[]}

You can send commands to change the digital pins to high or low by
modifying the URL.

If a digital pin is capable of pulse-width modulation (PWM), as described in
Chapter 3, you can also control the PWM output from a pin using:

http://us01.proxy.teleduino.org/api/1.0/328.php?k=
{YOURKEY}&r=setPwmOutput&pin=<X>&output=<Y>

where <X> is the digital output pin and <Y> is the PWM level, between 0
and 255.

After you have created the URLs for your project, bookmark them in your
browser or create a local web page with the required links as buttons. For
example, you might have a URL bookmarked to set digital pin 7 to high and
another bookmarked to set it back to low.

In some situations, the status of your Arduino outputs could be critical. As a
fail-safe in case your Arduino resets itself due to a power outage or other
interruption, set the default state for the digital pins. With your project
connected to the Teleduino service, visit
https://www.teleduino.org/tools/manage-presets/. After entering your
unique key, you should see a screen of options that allows you to select the
mode and value for the digital pins, as shown in Figure 21-8.

Figure 21-8: Default pin status setup page

Looking Ahead

https://www.teleduino.org/tools/manage-presets/

Along with easily monitoring your Arduino over the internet and having it
send tweets on Twitter, you can control your Arduino projects over the
internet without creating any complex sketches, having much networking
knowledge, or incurring monthly expenses. This enables you to control the
Arduino from almost anywhere and extend the reach of its ability to send
data. The three projects in this chapter provide a framework that you can
build upon to design your own remote control projects.

The next chapter, which is the last one in the book, shows you how to make
your Arduino send and receive commands over a cellular network
connection.

22

CELLULAR COMMUNICATIONS

In this chapter you will
Have your Arduino dial a telephone number when an event occurs

Send a text message to a cell phone using the Arduino

Control devices connected to an Arduino via text message from a cell
phone

You can connect your Arduino projects to a cell phone network to allow
simple communication between your Arduino and a cellular or landline
phone. With a little imagination, you can come up with many uses for this
type of communication, including some of the projects included in this
chapter.

Be sure to review this chapter before you purchase any hardware, because
the success of the projects will depend on your cellular network. Your
network must be able to do the following:

Operate at UMTS (3G) 850 MHz, 900 MHz, 1900 MHz, or 2100 MHz.

Allow the use of devices not supplied by the network provider.

To make use of these projects, you might consider selecting either a prepaid
calling plan or a plan that offers a lot of included text messages, in case an
error in your sketch causes the project to send out several SMS (Short
Message Service) text messages. Also, make sure the requirement to enter a
PIN to use the SIM card is turned off. (You should be able to do this easily
by inserting the SIM card in a regular cell phone and changing the setting in
the security menu.)

The Hardware
All the projects use a common hardware configuration, so we’ll set that up
first. You’ll need specific hardware to complete the projects in this chapter,
starting with a SIM5320-type 3G GSM shield and antenna, shown in Figure
22-1. This shield is available from TinySine (https://www.tinyosshop.com/)
and its distributors. There are two types of SIM5320 shield: the SIM5320A
and SIM5320E.

The -E version uses the UMTS/HSDPA 900/2100 MHz frequency bands
(mainly for European users), and the -A version uses the UMTS/HSDPA
850/1900 MHz frequency band (mainly for US-based users and Australians
using the Telstra network).

Figure 22-1: 3G shield with antenna attached

You’ll also need a power supply. In some situations, the 3G shield can draw
up to 2 A of current (more than is available from the Arduino) and will

https://www.tinyosshop.com/

damage your Arduino if it’s used without external power. Therefore, you
will need an external power supply. This can be a DC plug pack or wall
wart power supply brick (or a large 7.2 V rechargeable battery, solar
panel/battery source, 12 V battery, or similar, as long as it doesn’t exceed 12
V DC) that can offer up to 2 A of current.

Hardware Configuration and Testing
Now let’s configure and test the hardware by making sure that the 3G shield
can communicate with the cellular network and the Arduino. We first need
to set up the serial communication jumpers, since the 3G shield
communicates with the Arduino via a serial port in the same manner as the
GPS modules used in Chapter 15. We can set which digital pins the shield
will use to communicate with the Arduino using jumpers on the top right of
the shield. All our projects will use digital pin 2 for shield transmit and
digital pin 3 for shield receive. To configure this, connect jumpers over the
TX2 and RX3 pins, as shown in Figure 22-2.

Figure 22-2: Shield serial configuration jumpers

Next, turn the shield over and insert your SIM card into the holder, as
shown in Figure 22-3.

Figure 22-3: SIM card in place

Next, gently insert the 3G shield into the Arduino. Connect the external
power and the USB cable between the Arduino and the PC. Finally, just as
with a cellular phone, you need to turn the SIM module on (and off) using
the power button on the top-left corner of the shield, as shown in Figure 22-
4. Press the button for 2 seconds and let go. After a moment, the P (for
power) and S (for status) LEDs will come on, and the blue LED will start
blinking once the 3G shield has registered with the cellular network.

For future reference, the shield’s power button is connected to digital pin 8,
so you can control the power from your sketch instead of manually turning
the button on or off.

Figure 22-4: 3G shield power button and status LEDs

Now enter and upload the sketch shown in Listing 22-1.

// Listing 22-1

1 #include <SoftwareSerial.h> // Virtual serial port

2 SoftwareSerial cell(2,3);

char incoming_char = 0;

void setup()

{

 // Initialize serial ports for communication

 Serial.begin(9600);

3 cell.begin(4800);

 Serial.println("Starting SIM5320 communication...");

}

void loop()

{

 // If a character comes in from 3G shield

 if(cell.available() > 0)

 {

 // Get the character from the cellular serial port

 incoming_char = cell.read();

 // Print the incoming character to the Serial Monitor

 Serial.print(incoming_char);

 }

 // If a character is coming from the terminal to the
Arduino...

 if(Serial.available() > 0)

 {

 incoming_char = Serial.read(); // Get the character from
the terminal

 cell.print(incoming_char); // Send the character to the
cellular module

 }

}

Listing 22-1: 3G shield test sketch

This sketch simply relays all the information coming from the 3G shield to
the Serial Monitor. The 3G shield has a software serial connection between
it and Arduino digital pins 2 and 3 so that it won’t interfere with the normal
serial connection between the Arduino and the PC, which is on digital pins
0 and 1. We set up a virtual serial port for the 3G shield at 1, 2, and 3. By
default, the 3G shield communicates over serial at 4,800 bps, and this is
fine for our projects.

Once you’ve uploaded the sketch, open the Serial Monitor window and wait
about 10 seconds. Then, using a different telephone, call the number for
your 3G shield. You should see data similar to that shown in Figure 22-5.

Figure 22-5: Example output from Listing 22-1

The RING notifications come from the shield when you are calling it, and the
missed call notification shows up when you end the call to the shield. If
your cellular network supports caller ID, the originating phone number is
shown after the time. (The number has been blacked out in Figure 22-5 for
the sake of privacy.) Now that the 3G shield is operating, we can make use
of various functions for our projects.

Project #63: Building an Arduino Dialer
By the end of this project, your Arduino will dial a telephone number when
an event occurs, as determined by your Arduino sketch. For example, if the
temperature in your storage freezer rises above a certain level or your
burglar alarm system activates, you could have the Arduino call you from a
preset number, wait for 20 seconds, and then hang up. Your phone’s caller
ID will identify the phone number as the Arduino.

The Hardware
This project uses the hardware described at the beginning of the chapter as
well as any extra circuitry you choose for your application. For
demonstration purposes, we’ll use a button to trigger the call.

In addition to the hardware already discussed, here’s what you’ll need to
create this project:

One push button

One 10 kΩ resistor

One 100 nF capacitor

Various connecting wires

One breadboard

The Schematic
Connect the external circuitry, as shown in Figure 22-6.

Figure 22-6: Schematic for Project 63

The Sketch
Enter but don’t upload the following sketch:

// Project 63 - Building an Arduino Dialer

#include <SoftwareSerial.h> // Virtual serial port

SoftwareSerial cell(2,3);

char incoming_char = 0;

void setup()

{

 pinMode(7, INPUT); // for button

 pinMode(8, OUTPUT); // shield power control

 // initialize serial ports for communication

 Serial.begin(9600);

 cell.begin(4800);

}

void callSomeone()

{

 // turn shield on

1 Serial.println("Turning shield power on...");

 digitalWrite(8, HIGH);

 delay(2000);

 digitalWrite(8, LOW);

 delay(10000);

2 cell.println("ATDxxxxxxxxxx"); // dial the phone number
xxxxxxxxxx

 // change xxxxxxxxxx to your desired phone number (with
area code)

 Serial.println("Calling ...");

 delay(20000); // wait 20 seconds

3 cell.println("ATH"); // end call

 Serial.println("Ending call, shield power off.");

 // turn shield off to conserve power

4 digitalWrite(8, HIGH);

 delay(2000);

 digitalWrite(8, LOW);

}

void loop()

{

5 if (digitalRead(7) == HIGH)

 {

6 callSomeone();

 }

}

Understanding the Sketch

After setting up the software serial and regular serial ports, the sketch waits
for a press of the button connected to digital pin 7 at 5. Once it’s pressed,
the function callSomeone() is run at 6. At 1, digital pin 8 is toggled HIGH
for 2 seconds, turning the shield on, and waits 10 seconds to give the shield
time to register with the cellular network. Next, at 2, the sketch sends the
command to dial a telephone number. Finally, after the call has been ended
at 3, the shield is turned off to conserve power at 4.

You’ll replace xxxxxxxxxx with the number you want your Arduino to call.
Use the same dialing method that you’d use from your mobile phone. For
example, if you wanted the Arduino to call 212.555.1212, you’d add this:

cell.println("ATD2125551212");

After you have entered the phone number, you can upload the sketch, wait a
minute to allow time for the 3G module to connect to the network, and then
test it by pressing the button. It’s very easy to integrate the dialing function
into an existing sketch, because it’s simply called when required at 2. From
here, it’s up to you to find a reason—possibly triggered by a temperature
sensor, a light sensor, or any other input reaching a certain level—for your
Arduino to dial a phone number.

Now let’s drag your Arduino into the 21st century by sending a text
message.

Project #64: Building an Arduino Texter
In this project, the Arduino will send a text message to another cell phone
when an event occurs. To simplify the code, we’ll use the SerialGSM
Arduino library, available from
https://github.com/meirm/SerialGSM/archive/master.zip. After you’ve
installed the library, restart the Arduino IDE.

The hardware you’ll need for this project is identical to that for Project 63.

The Sketch
Enter the following sketch into the Arduino IDE, but don’t upload it yet:

https://github.com/meirm/SerialGSM/archive/master.zip

// Project 64 - Building an Arduino Texter

#include <SerialGSM.h>

#include <SoftwareSerial.h> // Virtual serial port

1 SerialGSM cell(2, 3);

void sendSMS()

{

2 cell.Message("The button has been pressed!");

 cell.SendSMS();

}

void setup()

{

 pinMode(7, INPUT); // for button

 pinMode(8, OUTPUT); // shield power control

 // turn shield on

 Serial.println("Turning shield power on...");

 digitalWrite(8, HIGH);

 delay(2000);

 digitalWrite(8, LOW);

 // initialize serial ports for communication

 Serial.begin(9600);

 cell.begin(4800);

 cell.Verbose(true);

 cell.Boot();

 cell.FwdSMS2Serial();

3 cell.Rcpt("xxxxxxxxxxx");

 delay(10000);

}

void loop()

{

4 if (digitalRead(7) == HIGH)

 {

 sendSMS();

 }

}

Understanding the Sketch
The 3G shield is set up as normal at 1 and in void setup(). Button presses
are detected at 4, and the function sendSMS() is called. This simple function
sends a text message to the cell phone number stored at 3.

Before uploading the sketch, replace xxxxxxxxxxx with the recipient’s cell
phone number; enter the area code plus number, without any spaces or
brackets. For example, to send a text to 212.555.1212 in the United States,
you would store 2125551212.

Figure 22-7: A sample text message being received

The text message to be sent is stored at 2. (Note that the maximum length
for a message is 160 characters.)

After you have stored a sample text message and a destination number,
upload the sketch, wait 30 seconds, and then press the button. In a moment,
the message should arrive on the destination phone, as shown in Figure 22-
7.

Project 64 can be integrated quite easily into other sketches, and various
text messages could be sent by comparing data against a parameter with a
switch case statement.

NOTE

Remember that the cost of text messages can add up quickly, so
when you’re experimenting, be sure that you’re using an unlimited
or prepaid calling plan.

Project #65: Setting Up an SMS Remote
Control
In this project, you’ll control the digital output pins on your Arduino by
sending a text message from your cell phone. You should be able to use
your existing knowledge to add various devices to control. We’ll allow for
four separate digital outputs, but you can control more or fewer as required.

To turn on or off four digital outputs (pins 10 through 13 in this example),
you’d send a text message to your Arduino in the following format:
#axbxcxdx, replacing x with either a 0 for off or a 1 for on. For example, to
turn on all four outputs, you’d send #a1b1c1d1.

The Hardware
This project uses the hardware described at the start of the chapter, plus any
extra circuitry you choose. We’ll use four LEDs to indicate the status of the
digital outputs being controlled. Therefore, the following extra hardware is
required for this example:

Four LEDs

Four 560 Ω resistors

Various connecting wires

One breadboard

The Schematic
Connect the external circuitry as shown in Figure 22-8.

Figure 22-8: Schematic for Project 65

The Sketch
For this project, the 3G shield library is not used. Instead, we rely on the
raw commands to control the module. Furthermore, we don’t turn the shield
on or off during the sketch, as we need it to be on in order to listen for
incoming text messages. Enter and upload the following sketch:

// Project 65 - Setting Up an SMS Remote Control

#include <SoftwareSerial.h>

SoftwareSerial cell(2,3);

char inchar;

void setup()

{

 // set up digital output pins to control

 pinMode(10, OUTPUT);

 pinMode(11, OUTPUT);

 pinMode(12, OUTPUT);

 pinMode(13, OUTPUT);

 digitalWrite(10, LOW); // default state for I/O pins at
power-up or reset,

 digitalWrite(11, LOW); // change as you wish

 digitalWrite(12, LOW);

 digitalWrite(13, LOW);

 // initialize the 3G shield serial port for communication

 cell.begin(4800);

 delay(30000);

1 cell.println("AT+CMGF=1");

 delay(200);

2 cell.println("AT+CNMI=3,3,0,0");

 delay(200);

}

void loop()

{

 // if a character comes in from the cellular module...

3 if(cell.available() > 0)

 {

 inchar = cell.read();

4 if (inchar == '#') // the start of our command

 {

 delay(10);

 inchar = cell.read();

5 if (inchar == 'a')

 {

 delay(10);

 inchar = cell.read();

 if (inchar == '0')

 {

 digitalWrite(10, LOW);

 }

 else if (inchar == '1')

 {

 digitalWrite(10, HIGH);

 }

 delay(10);

 inchar = cell.read();

 if (inchar == 'b')

 {

 inchar = cell.read();

 if (inchar == '0')

 {

 digitalWrite(11, LOW);

 }

 else if (inchar == '1')

 {

 digitalWrite(11, HIGH);

 }

 delay(10);

 inchar = cell.read();

 if (inchar == 'c')

 {

 inchar = cell.read();

 if (inchar == '0')

 {

 digitalWrite(12, LOW);

 }

 else if (inchar == '1')

 {

 digitalWrite(12, HIGH);

 }

 delay(10);

 inchar = cell.read();

 if (inchar == 'd')

 {

 delay(10);

 inchar = cell.read();

 if (inchar == '0')

 {

 digitalWrite(13, LOW);

 }

 else if (inchar == '1')

 {

 digitalWrite(13, HIGH);

 }

 delay(10);

 }

 }

 cell.println("AT+CMGD=1,4"); // delete all SMS

 }

 }

 }

 }

}

Understanding the Sketch

In this project, the Arduino monitors every text character sent from the 3G
shield. Thus, at 1, we tell the shield to convert incoming SMS messages to
text and send the contents to the virtual serial port at 2. Next, the Arduino
waits for a text message to come from the shield at 3.

Because the commands sent from the cell phone and passed by the 3G
module to control pins on the Arduino start with a #, the sketch waits for a
hash mark (#) to appear in the text message at 4. At 5, the first output
parameter a is checked—if it is followed by a 0 or 1, the pin is turned off or
on, respectively. The process repeats for the next three outputs controlled by
b, c, and d.

Fire up your imagination to think of how easy it would be to use this project
to create a remote control for all manner of things—lights, pumps, alarms,
and more.

Looking Ahead
With the three projects in this chapter, you’ve created a great framework on
which to build your own projects that can communicate over a cell network.
You’re limited only by your imagination—for example, you could receive a
text message if your basement floods or turn on your air conditioner from
your cell phone. Once again, remember to take heed of network charges
before setting your projects free.

At this point, after having read about (and hopefully built) the 65 projects in
this book, you should have the understanding, knowledge, and confidence
you need to create your own Arduino-based projects. You know the basic
building blocks used to create many projects, and I’m sure you will be able
to apply the technology to solve all sorts of problems and have fun at the
same time.

I’m always happy to receive feedback about this book, which can be left via
the contact details at the book’s web page: https://nostarch.com/arduino-
workshop-2nd-edition/.

But remember—this is only the beginning. You can find many more forms
of hardware to work with, and with some thought and planning, you can
work with them all. You’ll find a huge community of Arduino users on the

https://nostarch.com/arduino-workshop-2nd-edition/

internet (in such places as the Arduino forum at http://forum.arduino.cc/),
and even at a local hackerspace or club.

So don’t just sit there—make something!

http://forum.arduino.cc/

Index

Please note that index links to approximate location of each term.

Symbols
; (semicolon), 18

// (comment), 17

|| (or) operator, 63

/* */ (comment), 17

== (equal) operator, 61

> (greater than) operator, 73

>= (greater than or equal to) operator, 73

< (less than) operator, 73

<= (less than or equal to) operator, 73

= (make equal to) operator, 61

!= (not equal) operator, 61

! (not) operator, 62

~ (tilde) pins, 12, 38

&& (and) operator, 62–63

µF (microfarads), 51

Ω (ohms), 26–27

A

A (amperes), 25

AC (alternating current), 25

Adafruit Industries

ordering from, 5, 227, 229

Pro Trinket, 236

touchscreens, 211–212

Adafruit Motor Shield library

installing, 259

in sketches, 259–261, 264–266, 270–271, 273–275

Adding and Displaying Time and Date with an RTC (project), 352–356

Addressing Areas on the Touchscreen (project), 213–215

algorithms, 24

alternating current (AC), 25

amperes or amps (A), 25

Analog Devices, TMP36 temperature sensor, 79

analog inputs, 12, 70

analog signals, 69–70

analog thermometer building project, 244–246

analogRead() function, 70, 74

analogReference() function, 75

analogWrite() function, 38

and (&&) operator, 62–63

anodes, 29

Arduino

about, 9–10

community, 1–4, 393

suppliers, 4–5

Arduino boards and alternatives. See also Arduino Uno; Creating Your
Own Breadboard Arduino (project), 233–239

Arduino IDE (integrated development environment). See also Serial
Monitor window board type selection, 233

error messages, 20

installation and configuration, 5–7

libraries, 133, 134–135, 193–194

screen layout, 14–16, 20, 90

Arduino Store USA, 5

Arduino Uno

about, 2, 235

analog inputs, 70

AREF pin, 74–75

connecting to, 17

hardware, 10–14

I2C bus pins, 338

interrupt monitoring, 149–150

pulse-width modulation (~) pins, 38

remote control of, 375–379

in schematic diagrams, 46–47

serial buffer, 94

SPI pins, 346

AREF (analog reference) pin, 74–75

arithmetic operations, 73

array elements, 113

arrays, 112–114

ASCII chart, 165

Atmel ATmega328 microcontroller IC

EEPROM memory, 331–332

pins, 229–230

in schematic, 226–227

uploading sketches to, 231–232

attachInterrupt() function, 150

audio amplifier circuits, 75–76

Autoscroll box, 90

B
B (base) pins, 40, 48

backing sheets, 246

batteries, 227–228, 248

battery holders, 248–249, 256

battery snaps, 227–228, 256

battery testing project, 70–72

baud, 90

BC548 transistor, 39–40

BCD (binary coded decimal) conversion, 355

binary numbers

display project, 107–109

for pixel presentation, 172

quiz game project, 110–112

working with, 104–106, 355

bits, 104

blinkLED() custom function, 84, 85–86, 88–89

Board menu item, 233

boards. See also Arduino Uno; breadboards; ProtoShields

Arduino Uno alternatives, 234–239

choosing, 233–234

IDE type selection, 233

boolean variable, 62

Boolean variables, 62, 68

bootloaders, 227

bounce phenomenon, 54

breadboards. See also ProtoShields, 31–32

breakout boards, 212

Building an Analog Thermometer (project), 244–246

Building an Arduino Dialer (project), 385–388

Building an Arduino Texter (project), 388–389

Building a Remote Monitoring Station (project), 369–373

Building and Controlling a Robot Vehicle (project), 254–261

buttons. See push buttons

buzzers, 77–78

byte variables, 105–106

bytes, 104

C
C (collector) pins, 40, 48

capacitors

ceramic, 51

electrolytic, 52

using, 50–51, 75

card readers. See memory card modules; RFID readers

cathodes, 29

cellular communications

project hardware, 382–385

projects, 385–388, 388–389, 390–393

using, 381–382

ceramic capacitors, 51

CHANGE interrupt mode, 150

char statement, 175

character displays

with LED Matrix modules, 160–166

with LedControl library, 157

character LCD modules

defining customer characters, 172–173

demonstration sketch, 169–171

hardware, 167–169

chassis models, 255

CheapStepper library

download, 252

in sketches, 253–254

chip resistors, 27

circuit diagrams. See schematic diagrams

circuits

building with schematics, 56–59

graph paper layouts, 130–131

higher-voltage, 41–42

properties, 24–25

with sketch example, 33–35

classes in sketches, 188

clock pin, 108

clock projects. See also real-time clock projects

GPS-based, 284–286

CNC plotter project (Michalis Vasilakis), 3–4

code systems

capacitor values, 51

resistance values, 26–27

schematic diagrams, 46–50

Sony infrared signals, 316, 318

Teleduino status, 377

coil schematic symbol, 48

collector (C) pins, 40, 48

collision sensing techniques, 262–266

colour tables, 175

COM (common) schematic symbol, 48

comments in sketches, 17

common-cathode modules, 115

comparison operators, 61, 62–63, 73

conditions in loops, 37

constructors, 188, 189

Controlling the Motor (project), 248–250

Controlling Traffic (project), 64–68

Controlling Two Seven-Segment LED Display Modules (project), 119–
122

.cpp (source) files, 187, 188–189

Creating an Accurate GPS-Based Clock (project), 281–284, 284–286

Creating an Arduino Tweeter (project), 373–375

Creating a Blinking LED Wave (project), 33–35

Creating a Custom Shield (project), 129–133

Creating a Digital Thermometer (project), 122–123

Creating an Electronic Die (project), 101–104

Creating a Function to Repeat an Action (project), 84

Creating a Function to Set the Number of Blinks (project), 85–86

Creating an IR Remote Control Arduino (project), 318–321

Creating an IR Remote Control Robot Vehicle (project), 321–324

Creating a Keypad-Controlled Lock (project), 207–209

Creating an LED Binary Number Display (project), 107–109

Creating a Quick-Read Thermometer (project), 79–82

Creating a Quick-Read Thermometer That Blinks the Temperature
(project), 86–89

Creating an RFID Control with “Last Action” Memory (project), 333–
336

Creating an RFID Time-Clock System (project), 360–365

Creating a Simple Digital Clock (project), 356–359

Creating a Simple RFID Control System (project), 328–331

Creating a Single-Cell Battery Tester (project), 70–72

Creating a Single-Digit Display (project), 117–119

Creating a Stopwatch (project), 146–149

Creating a Temperature History Monitor (project), 181–184

Creating a Temperature-Logging Device (project), 142–144

Creating a Three-Zone Touch Switch (project), 218–221

Creating a Two-Zone On/Off Touch Switch (project), 215–218

Creating a Wireless Remote Control (project), 293–298

Creating Your Own Breadboard Arduino (project), 224–233

crystal oscillators (“crystals”), 225–226

CS (chip select) pin, 346

current

Arduino board limits, 39

with electric motors, 247, 250

in Ohm’s law (I), 30

properties, 24–25

D
Darlington transistors. See also TIP120 Darlington transistor, 247

data

logging and log files, 143–144, 365

serial buffer, 93–95

writing to memory cards, 140–142

data buses. See also I2C (Inter-Integrated Circuit) bus; SPI (Serial
Peripheral Interface) bus, 337

data display projects. See also numeric data displays

LCD graphics, 181–184

web pages, 369–373

data out pin, 108

DC (direct current), 25

DC electric motors. See electric motors

DC socket terminal blocks, 252

debounce circuits, 55

debugging, 92

DEC (decimal) parameter, 141

default: section, 207

#define statement, 187

Defining Custom Characters (project), 172–173

delay() function, 19, 150

Demonstrating a Digital Input (project), 55–61

Demonstrating PWM (project), 38–39

detachInterrupt() function, 150

Detecting Robot Vehicle Collisions (projects)

with infrared distance sensor, 269–271

with microswitch, 262–266

with ultrasonic distance sensor, 273–275

dialer-building project, 385–388

Digi-Key

digital rheostats, 348

EEPROM, 339

port expanders, 343

digital input/output pins

Arduino board, 12, 38, 39

port expanders, 343

timing state change, 145–146

digital inputs

about, 53

demonstration project, 55–61

digital rheostats

connecting, 348–349

testing, 349–350

using, 348

digital signals, 69

Digital Stopwatch (project), 158–160

digital storage oscilloscopes, 54

digitalRead() function, 60, 69

digitalWrite() function, 19, 69

diodes, 40, 250

direct current (DC), 25

Displaying the Temperature in the Serial Monitor (project), 91–92

do-while statements, 93

Due (Arduino) board, 238–239

duty cycles, 37–38

Dyn (redirection service), 369, 373

E
E (emitter) pins, 40, 48

Edit menu, 15

EEPROM (electrically erasable read-only memory)

in comparison chart, 234

external, 339–342

internal, 331–333

in projects, 333–336

EEPROM library sketches, 331, 333–336

electric motors. See also stepper motors

controlling project, 248–250

using, 247–248

electrical isolation, 41

electricity

Arduino board limits, 39

properties, 24–25

wall-power, 43

electrolytic capacitors, 52

electronic components. See also specific components

about, 25

fundamental, 25–30, 39–41

in schematic diagrams, 46–50

else. See if-else statements

emitter (E) pins, 40, 48

equal (==) operator, 61

error messages, 20

Ethernet library sketches, 370, 373–374

Ethernet shields

hardware, 13, 126

in projects, 238, 367–368, 371

F
FALLING interrupt mode, 150

farads, 51

FastLED library installation, 135–135

feature creep, 24

File menu, 15, 17

files

Arduino library requisites, 187–190

logs, 143–144, 286–289

writing to memory cards, 141–142

fixed values, 60

flash memory, 234

float variables, 72, 73, 142

for loops, 36–37

Freetronics

433 MHz receiver shield, 295

Eleven board, 235

EtherMega board, 238

LCD & Keypad Shield, 281

pin labels, 229

frequency bands, 299

Fritzing application, 50

FTDI cables, 232–233

function creation

accepting values, 85–86

example sketch, 84

overview, 83

returning values, 86

function libraries. See libraries

G
GND (ground)

and current, 25

in schematic diagrams, 49

Google Maps, 283–284, 290

GPS (Global Positioning System), 278, 283–284

GPS data

logging positions, 286–288

mapping with, 289–290

receiving, 282–283

sentence conversion, 281

time data, 284–285

GPS receiver modules, 278

GPS receivers

building project, 281–284

using, 278, 280

GPS sentences, 281

GPS shields

connecting, 278

in projects, 282–283, 284–285

testing, 280–281

using, 126, 127, 278, 279

GPS Visualizer, 290

graph paper printing program, 130

graphic LCD modules

background color, 174–175

connecting, 173–174

graphic functions, 177–180

projects, 181–184

text functions, 175–177

greater than (>) operator, 73

greater than or equal to (>=) operator, 73

ground. See GND (ground)

H
.h (header) files, 187–188

hardware suppliers, 4–5, 239

HC-SR04 ultrasonic distance sensor, 271–272

header (.h) files, 187–188

heat sinks, 225

Help menu, 15

hexadecimal numbers, 321

horns, 241–242

I
I (current), 30

I2C (Inter-Integrated Circuit) bus, 337, 338–339, 352

IC (Integrated Circuit) extractors, 230–231

IDE. See Arduino IDE (integrated development environment)

if-else statements, 61

if-then statements, 60–61

#ifndef statement, 187

#include statement, 189, 190

instance creation, 188, 190

int variables, 35–36

interrupt handlers, 149

interrupts

about, 149–150

demonstration project, 151–152

modes and functions, 150

in robot vehicle projects, 264

interrupts() function, 150

IP addresses, 369, 371, 372

IR (infrared) distance sensors

in robot vehicle collision detection project, 269–271

testing, 267–269

uses, 266

wiring, 266–267

IR (infrared) remote controls

building project, 318–321

operations, 315–316

Sony TV remotes, 316–317, 318, 321

test sketch, 317–318

IR receiver modules, 316

IR receivers, 316

IRremote library

download, 316

in sketches, 317, 320–321, 321–324

ISPs (internet service providers) and IP addressing, 369

J
junction dots, 49

justradios.com, 51

K
kΩ (kiloohms), 26

Kennedy, Nathan, 375

Keypad library

download, 204

in sketches, 205–206, 207–209

keys, array conversion, 375

KEYWORDS.TXT definition files, 187, 189–190

kiloohms (kΩ), 26

KIM-1 emulator (Oscar Vermeulen), 3

L
L LED, 12

L293D Motor Drive Shield, 257–258

latch pin, 108, 109

lc.clearDisplay function, 157

lc.setChar() function, 157

lc.setDigit() function, 157

lc.setIntensity() function, 157

lc.shutdown() function, 157

LCDs (liquid crystal displays). See also character LCD modules; graphic
LCD modules; LiquidCrystal library about, 167

number display, 171

text display, 170–171

lcd.begin() function, 170

lcd.clear() function, 170

lcd.createChar() function, 172

lcd.print() function, 171

lcd.setCursor() function, 170

lcd.write() function, 172

least significant bit (LSB), 104

LEDs (light-emitting diodes). See also LED projects; MAX2179 LED
Driver IC; seven-segment LED display modules on Arduino board, 12,
16

brightness control effects, 37–38

connecting, 29–30

and resistors, 25

in schematic diagrams, 48

in sketch example, 18–21

LED matrix modules

connecting, 160–161

using, 162–166

LED projects

with Arduino built-in LED, 84, 85–86

binary number display, 107–109

Blinking LED Wave, 33–35, 36–37, 38–39, 49–50

circuit building demonstration, 55–61

controlling traffic, 64–68

electronic die-throwing, 101–104

LedControl() function, 157

LedControl library

download, 155

sketches, 156–157, 158–159

LEDMatrixDriver library

download, 161

sketches, 162–164

less than (<) operator, 73

less than or equal to (<=) operator, 73

libraries. See also specific libraries

about creating, 185–186

custom demonstrations, 195–197, 197–201

downloading and installing, 134–136

installing custom, 190–194

requisite files, 187–190

using, 133

Library Manager, 136–135

Lilypad, 237

linear variable resistors, 75–76

linear voltage regulators, 224–225

Linux, Arduino IDE installation, 7

liquid crystal displays. See LCDs (liquid crystal displays)

LiquidCrystal library sketches, 169–170, 282–283, 284–285, 357–359,
361–364

lmd.setEnabled() function, 164

lmd.setIntensity() function, 164

logarithmic variable resistors, 75–76

logging and log files, 143–144, 286–289

long variables

defined, 95

using, 95–97

loop() function, 18

LoRa library

download, 299

in sketches, 302–304, 306–309, 310–313

LoRa shields

in projects, 304–305, 309–314

using, 298–299, 300

LOW interrupt mode, 150

LSB (least significant bit), 104

LSBFIRST parameter, 109, 116

M
MAC addresses, 372

macOS

Arduino IDE installation, 6

ZIP file creation, 192–193

Making a Binary Quiz Game (project), 110–112

map() function, 218, 221

main-secondary devices

I2C addressing, 338

SPI device connections, 346

MAX7219 LED driver IC. See also LedControl library

in Digital Stopwatch project, 158–160

and LED numeric display modules, 154–155, 160

package types, 153–154

Maxim DS3231 RTC module, 351–352

Mega 2560 (Arduino) board, 237–238

memory. See also EEPROM

memory card modules. See also SD card library

connecting, 138–139

testing, 139–140

memory cards

about, 137–138

formatting, 137

in GPS coordinates project, 286–288

testing, 139–140

writing data to (projects), 140–142, 142–144, 286–290, 360–365

message window area, 16

Microchip Technology

24LC512 EEPROM, 339, 340

MCP4162 digital rheostat, 348–350

MCP23017 port expanders, 343–345

microcontrollers

Arduino, 11

ATmega328p-PU, 226–227, 229–230

comparison chart, 234

removing and inserting, 230–231

microfarads (µF), 51

micros() function, 145

microSD card shields, 126, 127

microSD cards. See memory cards

microswitches, 262–263

milliamps (mA), 25

millis() function, 145

Mini CNC Plotter (Michalis Vasilakis), 3–4

MISO (main in, secondary out) pin, 346

modulo functions, 120

MOSI (main out, secondary in) pin, 346

most significant bit (MSB), 104

motor shields, 257–258

MSB (most significant bit), 104

MSBFIRST parameter, 109

multimeters, 28

Multiplying a Number by Two (project), 94–95

N
Nano (Arduino) board, 236–237

NC (normally closed) schematic symbol, 48

network cables, 369

New icon, 16

No-IP (redirection service), 369, 373

No Line Ending menu item, 94

NO (normally open) schematic symbol, 48

noInterrupts() function, 150

not (!) operator, 62

not equal (!=) operator, 61

NPN-type transistors, 48

numeric data display. See also MAX7219 LED driver IC; seven-segment
LED display modules on LCD screens, 171

LED binary number project, 107–109

numeric keypads

connecting, 204–205

in keypad-controlled lock project, 207–209

using, 203–204

numeric keypads. See keypads

O
ohms (Ω), 26–27, 47

Ohm’s law, 30

Open icon, 16

open source hardware, 239

or (||) operator, 63

oscilloscopes, 54

output enable pin, 108

P
picofarads (pF), 51

piezoelectric (piezo) elements

about, 77–78

demonstration project, 78–79

pin labels, 229–230

pinMode() function, 18, 60

pinout, 40

pins

Arduino Uno, 12

ATmega328P-PU microcontroller IC, 229

graphic LCD modules, 174

I2C bus connectors, 338

keypads, 205

LCD modules, 168–169

LED matrix modules, 160–161

LED numeric displays, 155

memory card modules, 139

seven-segment display modules, 115–116

shift registers, 107–108

Teleduino digital, 378–379

touchscreens, 212

pixels, 172

PMD Way

card readers, 327

EEPROM, 339

Ethernet shields, 367

IR modules, 316

LoRa shields, 299

ordering from, 5, 227

port expanders, 343

RF Link modules, 291

RTC ICs, 351

PNP-type transistors, 48

polarization, 29

port expanders, 343–345

port forwarding, 373

port type, 17

potentiometers, 75–77

power

defined, 25

resistor ratings, 28

power connector, 11

power sockets, 12

private: section, 196

projects

ideas and examples, 1–4, 10

parts list download, 5

planning, 24

safety, 8, 43

Proto-ScrewShields, 356–357, 360

ProtoShields

about, 125

testing, 133

using, 128, 129–132, 352

public: section, 188

pull-down resistors, 55

pulse-width modulation. See PWM (pulse-width modulation)

push buttons

in controlling traffic project, 64–68

demonstration project, 55–61

using, 53, 54

in wireless remote control project, 293–297

PWM (pulse-width modulation), 37–39, 250

Q
Q (transistor) schematic symbol, 48

R
R (resistance), 30

radio frequency (RF) modules. See RF Link modules

random() function, 100

random numbers

generating, 100–101

in projects, 101–104, 179–181

real-time clock projects, 352–356, 356–359, 360–365

Recording the Position of a Moving Object over Time (project), 286–290

rectifier diodes

about, 40–41

in circuit example, 41–42

in schematic diagrams, 47

reference voltages, 73–75

relays

about, 41

in circuit example, 41–42

in schematic diagrams, 48

Remote Control projects

with infrared, 321–324

over internet, 375–379

over LoRa wireless, 299–304, 304–309

with radio frequency transmitters, 293–298

with text messaging, 390–393

remote monitoring projects, 369–373

Repeating with for Loops (project), 36–37

RESET button, 13

reset power sockets, 12

resistance

measurement and values, 26–28

in Ohm’s law (R), 30

resistors

about, 25–28

pull-down, 55

in schematic diagrams, 47

variable, 75–77

in voltage dividers, 74–75

RF Link modules

using, 291–293

in wireless remote control projects, 293–298

RFID (radio-frequency identification)

devices, 326–328

operations, 325

RFID readers

connecting, 327

in projects, 328–330, 333–336, 360–365

testing, 327–328

using, 326–327

RFID tags, 326, 328

RGB color tables, 175

rheostats. See digital rheostats

RISING interrupt mode, 150

robot vehicle projects building and controlling, 254–261, 321–324

detecting collisions, 262–266, 266–269, 269–271, 271–273, 273–275

rotational range, 242

RTC (real-time clock) IC modules. See also real-time clock projects
connecting, 352

using, 351

RX LED, 12

S
Save as menu item, 17

Save icon, 16

schematic diagrams

building circuits from, 56–59

drawing application, 50

and ProtoShields, 128

using, 46–49

SCK (serial clock) pin, 346

SCL (clock line), 338

screw shields, 282, 286

SD card library sketches, 140–142, 142–144, 286–288, 361–364

SD card modules. See also memory card modules, 138

SD memory cards. See memory cards

SDA (data line), 338

seeds, 100

Seeing the Graphic Functions in Action (project), 179–181

Seeing the Text Functions in Action (project), 176–177

semicolon (;), 18

Sending Remote Sensor Data Using LoRa Wireless (project), 309–314

serial buffer, 93–95

Serial Monitor icon, 16

Serial Monitor window

debugging with, 92

using, 16, 89–90

serial ports

Arduino Uno pins, 12

software, 279

Serial.available() function, 94, 150

Serial.begin() function, 90

Serial.flush() function, 95

Serial.print() function, 90

Serial.println() function, 90

SerialGSM library

download, 388

in sketches, 388–389

Servo library sketches, 243–244

servos

in analog thermometer project, 244–246

connecting, 243

demonstration sketch, 243–244

using, 241–242

Setting Up a Remote Control for Your Arduino (project), 375–379

Setting Up an SMS Remote Control (project), 390–393

setup() function, 18

seven-segment LED display modules

in projects, 117–119, 119–122, 122–123

using, 114–116

74HC595 shift register IC, 106–109

7805 linear voltage regulator, 224–225

Sharp infrared analog sensor, 266

shields. See also specific shields

custom building project, 129–133

stacking, 127, 128

using, 13–14, 125, 126–127

shift registers

in LED binary display sketch, 109

pins, 108

schematic, 107

with seven-segment LED display modules, 115–116, 116–119, 119–
122

using, 106–107

shiftOut() function, 109, 116

signals, digital vs. analog, 69

SIM cards, 382, 383

SIM5320 shield, 382

Sketch menu item, 15

sketches. See also functions; libraries

comments in, 17

debugging, 92

IDE window, 14–16

modifying, 21

uploading and running, 20, 230–233

verifying, 20

writing, 16–19

SMS (short message service) text messaging, 382

software. See Arduino IDE (integrated development environment);
libraries; sketches software serial ports, 279

SoftwareSerial library

using, 279

in sketches, 282–283, 284–285, 286–288, 327–328, 329–330, 384–
385, 387–388, 391–393

soldering, 131–132

solderless breadboards. See breadboards

Sony TV remotes, 316–317, 318, 321

source (.cpp) files, 187, 188–189

SparkFun Electronics

ordering from, 5, 227

RF Link modules, 291

SPI (Serial Peripheral Interface) bus, 337, 346–347

SPI data bus library sketches, 302, 304, 346–347, 349–350

SPI.begin(), 347

SPI.setBitOrder(), 347

SPI.transfer(), 347

spreadsheets, 144

SRAM, 234

SS (secondary select) pin, 346

ST7735 TFT LCD module, 173–174, 181

stacking shields, 126, 127, 128

stall current, 247

stepper motor controller boards

connecting, 251–252

demonstration sketch, 253–254

stepper motors, 251

Stern, Becky, Wi-Fi Weather Display, 2–3

stopwatch projects, 146–149, 151–152, 158–160

String() function, 176

strlen() function, 297

surface-mount resistors, 27

switch bounce, 54, 55

switch case statement, 206–207

T
Teleduino library download, 377

Teleduino service

in projects, 375–379

using, 375

temperature-sensing and display projects

analog display, 244–246

in custom library demonstration, 197–201

digital display, 122–123

historical display, 181–184

logging, 142–144

quick-read thermometer, 79–82, 86–89

sending remote data, 309–314

Serial Monitor display, 91–92

temperature sensors. See TMP36 temperature sensor

terminal blocks, 252

terminal shields, 262

text displays, 170–171, 174–177

text messaging

building a texter, 388–389

remote control with, 390–393

using SMS, 382

TFT graphics LCD library sketches, 174–176, 176–178, 179–180

TFTscreen.background() function, 174

TFTscreen.begin() function, 174

TFTscreen.circle() function, 178

TFTscreen.fill() function, 178

TFTscreen.line() function, 178

TFTscreen.nofill() function, 178

TFTscreen.point() function, 178

TFTscreen.rect() function, 178

TFTscreen.setTextSize() function, 175

TFTscreen.stroke() function, 175

TFTscreen.text() function, 175, 176

thermometer projects. See temperature-sensing and display projects 3G
GSM shields

connecting, 383–384

testing, 384–385

using, 382

time data. See also real-time clock projects; stopwatch projects creating a
GPS-based clock, 284–286

elapsed time recording, 144–146

TinyGPS library

download, 281

in sketches, 282–283, 284–285, 286–288

TinySine 3G GSM shields, 382

TIP120 Darlington transistor

about, 247–248

in projects, 248–249

TMP36 temperature sensor. See also temperature-sensing and display
projects, 79–81, 82

toCharArray() function, 176

tokens (Twitter), 373

Tools menu, 15, 233

torque, 242

touchscreens

addressing and mapping, 213–215, 218

connecting, 212

in touch switch projects, 215–218, 218–221

using, 211

transceivers, 298

transistors

about, 39–40

in circuit example, 41–42

Darlington, 247

in schematic diagrams, 48

transmitters and receivers (TX/RX)

in Freetronics Eleven board, 235

RF Link sets, 291–293

trimpots (aka trimmers), 76–77

true/false. See Boolean variables

Trying Out a Piezo Buzzer (project), 78–79

Twitter and tweets, 373–375

Twitter Arduino library

download, 373

in sketches, 373–374

Two-Wire Interface (TWI) bus. See I2C bus

TX LED, 12

U
ultrasonic distance sensors

in collision detection project, 273–275

connecting, 272

testing, 272–273

using, 271–272

units of measure conversion charts, 51

Uno. See Arduino Uno

unsigned long variable, 145

Upload icon, 16, 20

USB programming cables. See FTDI cables

USB (Universal Serial Bus) connector, 11, 12

USB (Universal Serial Bus) interface

sockets, 12, 235

uploading sketches with, 231–232

Using a Digital Rheostat (project), 348–350

Using an External EEPROM (project), 339–342

Using Interrupts (project), 151–152

Using LED Matrix Modules (project), 160–166

Using long Variables (project), 95–97

Using a Port Expander IC (project), 343–345

V
V (volts), 25, 30

variable resistors, 75–77

variables

displaying contents of, 91

private, 196

public, 188

using, 35–36

Vasilakis, Michalis, Mini CNC Plotter, 3–4

Verify

in IDE toolbar, 16

using, 20

Vermeulen, Oscar, KIM-1 emulator, 3

VirtualWire library

download, 293

in sketches, 296–298

Vishay TSOP4138 IR receiver, 316

void function type, 86

voltage

Arduino Uno limitation, 29–30

and capacitors, 51

measurement, 25

in Ohm’s law (V), 30

reference, 73–75

voltage dividers, 74–75

W
W5100 controller chip, 367

weather display project, 2–3

web browsers, controlling Arduino from, 375–379

web pages

creating, 369–373

viewing, 373

while statements, 93

Wi-Fi Weather Display (Becky Stern), 2–3

Windows

Arduino IDE installation, 7

ZIP file creation, 190–191

Wire library sketches, 338–339, 341–342, 345, 353–355, 357–359, 361–
364

Wire.begin() function, 338

Wire.beginTransmission() function, 339

Wire.endTransmission() function, 339

Wire.read() function, 339

Wire.requestFrom() function, 339

Wire.write() function, 339

wireless modules. See LoRa shields; RF Link modules

wires

breadboard, 31, 32

in schematic diagrams, 48–49

Writing Data to the Memory Card (project), 140–142

Z
ZIP file creation

Mac OS X, 192–193

Windows, 190–191

	Reviews for the first edition of Arduino Workshop
	Title Page
	Copyright
	Dedication
	About the Author
	Acknowledgments
	Chapter 1: Getting Started
	The Possibilities Are Endless
	Strength in Numbers
	Parts and Accessories
	Required Software
	macOS
	Windows 10
	Ubuntu Linux

	Using Arduino Safely
	Looking Ahead

	Chapter 2: Exploring the Arduino Board and the IDE
	The Arduino Board
	Taking a Look Around the IDE
	The Command Area
	The Text Area
	The Output Window

	Creating Your First Sketch in the IDE
	Comments
	The setup() Function
	Controlling the Hardware
	The loop() Function
	Verifying Your Sketch
	Uploading and Running Your Sketch
	Modifying Your Sketch

	Looking Ahead

	Chapter 3: First Steps
	Planning Your Projects
	About Electricity
	Current
	Voltage
	Power

	Electronic Components
	The Resistor
	The Light-Emitting Diode
	The Solderless Breadboard

	Project #1: Creating a Blinking LED Wave
	The Algorithm
	The Hardware
	The Schematic
	The Sketch
	Running the Sketch

	Using Variables
	Project #2: Repeating with for Loops
	Varying LED Brightness with Pulse-Width Modulation
	Project #3: Demonstrating PWM
	More Electric Components
	The Transistor
	The Rectifier Diode
	The Relay

	Higher-Voltage Circuits
	Looking Ahead

	Chapter 4: Building Blocks
	Using Schematic Diagrams
	Identifying Components
	Wires in Schematics
	Dissecting a Schematic

	The Capacitor
	Measuring the Capacity of a Capacitor
	Reading Capacitor Values
	Types of Capacitors

	Digital Inputs
	Project #4: Demonstrating a Digital Input
	The Algorithm
	The Hardware
	The Schematic
	The Sketch
	Understanding the Sketch
	Modifying Your Sketch: Making More Decisions with if-else

	Boolean Variables
	Comparison Operators
	Making Two or More Comparisons

	Project #5: Controlling Traffic
	The Goal
	The Algorithm
	The Hardware
	The Schematic
	The Sketch
	Running the Sketch

	Analog vs. Digital Signals
	Project #6: Creating a Single-Cell Battery Tester
	The Goal
	The Algorithm
	The Hardware
	The Schematic
	The Sketch

	Doing Arithmetic with an Arduino
	Float Variables
	Comparison Operators for Calculations

	Improving Analog Measurement Precision with a Reference Voltage
	Using an External Reference Voltage
	Using the Internal Reference Voltage

	The Variable Resistor
	Piezoelectric Buzzers
	Piezo Schematic

	Project #7: Trying Out a Piezo Buzzer
	Project #8: Creating a Quick-Read Thermometer
	The Goal
	The Hardware
	The Schematic
	The Sketch

	Looking Ahead

	Chapter 5: Working with Functions
	Project #9: Creating a Function to Repeat an Action
	Project #10: Creating a Function to Set the Number of Blinks
	Creating a Function to Return a Value
	Project #11: Creating a Quick-Read Thermometer That Blinks the Temperature
	The Hardware
	The Schematic
	The Sketch

	Displaying Data from the Arduino in the Serial Monitor
	The Serial Monitor

	Project #12: Displaying the Temperature in the Serial Monitor
	Debugging with the Serial Monitor

	Making Decisions with while Statements
	while
	do-while

	Sending Data from the Serial Monitor to the Arduino
	Project #13: Multiplying a Number by Two
	long Variables
	Project #14: Using long Variables
	Looking Ahead

	Chapter 6: Numbers, Variables, and Arithmetic
	Generating Random Numbers
	Using Ambient Current to Generate a Random Number

	Project #15: Creating an Electronic Die
	The Hardware
	The Schematic
	The Sketch
	Modifying the Sketch

	A Quick Course in Binary
	Binary Numbers
	Byte Variables

	Increasing Digital Outputs with Shift Registers
	Project #16: Creating an LED Binary Number Display
	The Hardware
	The Schematic
	The Sketch

	Project #17: Making a Binary Quiz Game
	The Algorithm
	The Sketch

	Arrays
	Defining an Array
	Referring to Values in an Array
	Writing to and Reading from Arrays

	Seven-Segment LED Displays
	Controlling the LED

	Project #18: Creating a Single-Digit Display
	The Hardware
	The Schematic
	The Sketch
	Modifying the Sketch: Displaying Double Digits

	Project #19: Controlling Two Seven-Segment LED Display Modules
	The Hardware
	The Schematic
	Modulo

	Project #20: Creating a Digital Thermometer
	The Hardware
	The Sketch

	Looking Ahead

	Chapter 7: Expanding Your Arduino
	Shields
	ProtoShields
	Project #21: Creating a Custom Shield
	The Hardware
	The Schematic
	The Layout of the ProtoShield Board
	The Design
	Soldering the Components
	Testing Your ProtoShield

	Expanding Sketches with Libraries
	Downloading an Arduino Library as a ZIP File
	Importing an Arduino Library with Library Manager

	SD Memory Cards
	Connecting the Card Module
	Testing Your SD Card

	Project #22: Writing Data to the Memory Card
	The Sketch

	Project #23: Creating a Temperature-Logging Device
	The Hardware
	The Sketch

	Timing Applications with millis() and micros()
	Project #24: Creating a Stopwatch
	The Hardware
	The Schematic
	The Sketch

	Interrupts
	Interrupt Modes
	Configuring Interrupts
	Activating or Deactivating Interrupts

	Project #25: Using Interrupts
	The Sketch

	Looking Ahead

	Chapter 8: LED Numeric Displays and Matrices
	LED Numeric Displays
	Installing the Library

	Project #26: Digital Stopwatch
	Project #27: Using LED Matrix Modules
	Installing the Library
	Editing the Display Font

	Looking Ahead

	Chapter 9: Liquid Crystal Displays
	Character LCD Modules
	Using a Character LCD in a Sketch
	Displaying Text
	Displaying Variables or Numbers

	Project #28: Defining Custom Characters
	Graphic LCD Modules
	Connecting the Graphic LCD
	Using the LCD
	Controlling the Display

	Project #29: Seeing the Text Functions in Action
	The Sketch
	Running the Sketch

	Creating More Complex Display Effects with Graphic Functions
	Project #30: Seeing the Graphic Functions in Action
	The Sketch

	Project #31: Creating a Temperature History Monitor
	The Algorithm
	The Hardware
	The Sketch
	Running the Sketch
	Modifying the Sketch

	Looking Ahead

	Chapter 10: Creating Your Own Arduino Libraries
	Creating Your First Arduino Library
	Anatomy of an Arduino Library
	The Header File
	The Source File
	The KEYWORDS.TXT File

	Installing Your New Arduino Library
	Creating a ZIP File Using Windows 7 and Later
	Creating a ZIP File Using Mac OS X or Later
	Installing Your New Library

	Creating a Library That Accepts Values to Perform a Function
	Creating a Library That Processes and Displays Sensor Values
	Looking Ahead

	Chapter 11: Numeric Keypads
	Using a Numeric Keypad
	Wiring a Keypad
	Programming for the Keypad
	Testing the Sketch

	Making Decisions with switch case
	Project #32: Creating a Keypad-Controlled Lock
	The Sketch
	Understanding the Sketch
	Testing the Sketch

	Looking Ahead

	Chapter 12: Accepting User Input with Touchscreens
	Touchscreens
	Connecting the Touchscreen

	Project #33: Addressing Areas on the Touchscreen
	The Hardware
	The Sketch
	Testing the Sketch
	Mapping the Touchscreen

	Project #34: Creating a Two-Zone On/Off Touch Switch
	The Sketch
	Understanding the Sketch
	Testing the Sketch

	Using the map() Function
	Project #35: Creating a Three-Zone Touch Switch
	The Touchscreen Map
	The Sketch
	Understanding the Sketch

	Looking Ahead

	Chapter 13: Meet the Arduino Family
	Project #36: Creating Your Own Breadboard Arduino
	The Hardware
	The Schematic
	Running the Sketch

	The Many Arduino and Alternative Boards
	Arduino Uno
	Freetronics Eleven
	The Adafruit Pro Trinket
	The Arduino Nano
	The LilyPad
	The Arduino Mega 2560
	The Freetronics EtherMega
	The Arduino Due

	Looking Ahead

	Chapter 14: Motors and Movement
	Making Small Motions with Servos
	Selecting a Servo
	Connecting a Servo
	Putting a Servo to Work

	Project #37: Building an Analog Thermometer
	The Hardware
	The Schematic
	The Sketch

	Using Electric Motors
	Selecting a Motor
	The TIP120 Darlington Transistor

	Project #38: Controlling the Motor
	The Hardware
	The Schematic
	The Sketch

	Using Small Stepper Motors
	Project #39: Building and Controlling a Robot Vehicle
	The Hardware
	The Schematic
	Connecting the Motor Shield
	The Sketch

	Connecting Extra Hardware to the Robot
	Sensing Collisions
	Project #40: Detecting Robot Vehicle Collisions with a Microswitch
	The Schematic
	The Sketch

	Infrared Distance Sensors
	Wiring It Up
	Testing the IR Distance Sensor

	Project #41: Detecting Robot Vehicle Collisions with an IR Distance Sensor
	The Sketch
	Modifying the Sketch: Adding More Sensors

	Ultrasonic Distance Sensors
	Connecting the Ultrasonic Sensor
	Testing the Ultrasonic Sensor

	Project #42: Detecting Collisions with an Ultrasonic Distance Sensor
	The Sketch

	Looking Ahead

	Chapter 15: Using GPS with Your Arduino
	What Is GPS?
	Testing the GPS Shield
	Project #43: Creating a Simple GPS Receiver
	The Hardware
	The Sketch
	Running the Sketch

	Project #44: Creating an Accurate GPS-Based Clock
	The Hardware
	The Sketch

	Project #45: Recording the Position of a Moving Object over Time
	The Hardware
	The Sketch
	Running the Sketch

	Looking Ahead

	Chapter 16: Wireless Data
	Using Low-Cost Wireless Modules
	Project #46: Creating a Wireless Remote Control
	The Transmitter Circuit Hardware
	The Transmitter Schematic
	The Receiver Circuit Hardware
	The Receiver Schematic
	The Transmitter Sketch
	The Receiver Sketch

	Using LoRa Wireless Data Modules for Greater Range and Faster Speed
	Project #47: Remote Control over LoRa Wireless
	The Transmitter Circuit Hardware
	The Transmitter Schematic
	The Receiver Circuit Hardware
	The Receiver Schematic
	The Transmitter Sketch
	The Receiver Sketch

	Project #48: Remote Control over LoRa Wireless with Confirmation
	The Transmitter Circuit Hardware
	The Transmitter Schematic
	The Transmitter Sketch
	The Receiver Sketch

	Project #49: Sending Remote Sensor Data Using LoRa Wireless
	The Transmitter Circuit Hardware
	The Receiver Circuit Hardware
	The Receiver Schematic
	The Transmitter Sketch
	The Receiver Sketch

	Looking Ahead

	Chapter 17: Infrared Remote Control
	What Is Infrared?
	Setting Up for Infrared
	The IR Receiver
	The Remote Control
	A Test Sketch
	Testing the Setup

	Project #50: Creating an IR Remote Control Arduino
	The Hardware
	The Schematic
	The Sketch
	Modifying the Sketch

	Project #51: Creating an IR Remote Control Robot Vehicle
	The Hardware
	The Sketch

	Looking Ahead

	Chapter 18: Reading RFID Tags
	Inside RFID Devices
	Testing the Hardware
	The Schematic
	Testing the Schematic
	The Test Sketch
	Displaying the RFID Tag ID Number

	Project #52: Creating a Simple RFID Control System
	The Sketch
	Understanding the Sketch

	Storing Data in the Arduino’s Built-in EEPROM
	Reading and Writing to the EEPROM

	Project #53: Creating an RFID Control with “Last Action” Memory
	The Sketch
	Understanding the Sketch

	Looking Ahead

	Chapter 19: Data Buses
	The I2C Bus
	Project #54: Using an External EEPROM
	The Hardware
	The Schematic
	The Sketch
	Running the Sketch

	Project #55: Using a Port Expander IC
	The Hardware
	The Schematic
	The Sketch

	The SPI Bus
	Pin Connections
	Implementing the SPI
	Sending Data to an SPI Device

	Project #56: Using a Digital Rheostat
	The Hardware
	The Schematic
	The Sketch

	Looking Ahead

	Chapter 20: Real-Time Clocks
	Connecting the RTC Module
	Project #57: Adding and Displaying Time and Date with an RTC
	The Hardware
	The Sketch
	Understanding and Running the Sketch

	Project #58: Creating a Simple Digital Clock
	The Hardware
	The Sketch
	Understanding and Running the Sketch

	Project #59: Creating an RFID Time-Clock System
	The Hardware
	The Sketch
	Understanding the Sketch

	Looking Ahead

	Chapter 21: The Internet
	What You’ll Need
	Project #60: Building a Remote Monitoring Station
	The Hardware
	The Sketch
	Troubleshooting
	Understanding the Sketch

	Project #61: Creating an Arduino Tweeter
	The Hardware
	The Sketch

	Controlling Your Arduino from the Web
	Project #62: Setting Up a Remote Control for Your Arduino
	The Hardware
	The Sketch
	Controlling Your Arduino Remotely

	Looking Ahead

	Chapter 22: Cellular Communications
	The Hardware
	Hardware Configuration and Testing

	Project #63: Building an Arduino Dialer
	The Hardware
	The Schematic
	The Sketch
	Understanding the Sketch

	Project #64: Building an Arduino Texter
	The Sketch
	Understanding the Sketch

	Project #65: Setting Up an SMS Remote Control
	The Hardware
	The Schematic
	The Sketch
	Understanding the Sketch

	Looking Ahead

	Index

